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Abstract: The degree of a vertex of a molecular graph is the number of first neighbors of the vertex. Sum degree 

and  Multiplication degree of the vertex of a molecular graph  is the sum of the  degree of  the vertices of the  

neighborhood  vertices of  the vertex and  product of the degree of  the vertices of the  neighborhood  vertices of 

a vertex respectively. The R degree of the vertex of a molecular graph is the sum of the sum degree of the vertex 

and the Multiplication degree of the vertex. The concept of degree in graph theory is closely interconnected to 

the concept of valence in chemistry. In this paper, some formulas are obtained for calculating the vertex based 

topological R index of the some Bridge graphs. 
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I. INTRODUCTION 

 A topological representation of a molecule is called molecular graph. A molecular graph is a collection 

of points representing the atoms and set of lines representing the covalent bondsin the molecule.The first degree 

based topological index was introduced by Randic in 1975. His index was defined as 
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[7,8,12] .Augmented Zagreb index is the Modified version of ABC 

index, it was introduced by Furtulaet al.[3]. It is defined as ,  
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.Geometric-arithmetic indexwas invented by Vukicevicand Furtula[6]. It is defined as
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 .Zhang re-introduced the Harmonic index in [17],
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.Sum-connectivity indexwas introduced by Bo Zhou andNenadTrinajstić [4]. It 

was defined as,  
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 .The concept of R degree of a vertex and R index of a graph 

were introduced by the Author SileymanEdiz[18].The R degree of a vertex and R index of some well-known 

graphs given in[2]. 

 

II. DEFINITIONS 

Throughout this paper, we consider only simple connected graphs, i.e. connected graphs without self-loops and 

parallel edges. For a graph G, V(G) and E(G) denote the set of all vertices and edges respectively. The degree of 

the vertex v is defined as the number of edges incident with v and denoted by d(v). The set of all vertices which 

are adjacent to vis called the neighborhood of vand denoted by N(v). For a vertex v, the sum degree of v is 
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defined as  
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uS  and for a vertex v, the multiplication degree of v is defined as 
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uM [18].Bridge is an edge of a graph whose deletion increases its number of connected 

components.  Bridge graph (Tree) is a graph whose every edge is a Bridge. The subdivided star(K1,n:n) is a 

graph obtained as one point union of n paths of path of length two.[13].The Pn,p,ktree is a graph obtained from 

Pnby adding p neighbors to each of its nonterminal vertices and k neighbors to each of its terminal 

vertices[13].The BistarBn,n is a graph obtained by joining the center (apex) vertices of two copies of K1,n by an 

edge[13].The Thorn rod Pp,tis a graph, which includes a linear chain of pvertices and degree-t terminal vertices 

at each of the two rod ends[13].The Corona G1 G2 of two graphs G1 and G2is defined as the graph G obtained 

by taking one copy of G1 (which has nvertices) and n copies of G2 and then joining the ithvertex of G1 to every 

vertex in the ith copy of G2. The graph Pn K1 is called a comb. It is denoted as 
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III. R INDEX OF SOME BRIDGE GRAPHS 

Theorem:3.1 
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Fig 3.1 
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Theorem:3.2  

   
22

nn,

1
23218)B(  nnnR

 

  27423) B(
2

nn,

2
 nnnR  

  2225)B(
nn,

3
 nnR

 
Proof: Let   22B

nn,
 nV  and    12B

nn,
 nE

 
 

 

 

 

 

 

5,5
B  

Fig.3.2 
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Theorem:3.3 
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Fig. 3.3 
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Theorem:3.4  
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Fig.3.4 
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IV. CONCLUSION 
In this paper, some formulas are obtained for calculating the new vertex based topological R index of the certain 

Bridge graphs. 
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