International Journal of Mathematics Trends and Technology (IJMTT) — Volume 56 Issue 5 — April 2018

Common Fixed Point on Cone Rectangular
Metric Space

Jigmi Dorjee Bhutia, Kalishankar Tiwary
Dept of Mathematics,
Cooch Behar College, Cooch Behar, West Bengal, India.
Dept of Mathematics,
Raiganj University, Raiganj, West Bengal, India

Abstract:
In this paper we obtain some results on fixed point theorem in cone rectangular metric space which extends
some known results that are already proved in [8,14].
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Introduction:

Jungck [1] introduced the concept of commuting maps and proved the results that generalize the Banach
contraction principle. Sessa [2] further gave the idea of weakly commuting maps thereby generalizing the
commuting maps. Jungck [3] again extended this concept to compatible mappings. In 1998 [4] Jungck and Rhoades
introduced the notion of weakly compatible maps. Compatible maps are weakly compatible but the converse is not
true.

It is during the year 2007 when Huang and Zhang [5] introduced the concept of cone metric space by
replacing the range set of non negative real numbers of the metric d by the ordered Banach space. The existence of a
common fixed point in cone metric space has been considered recently in [6-22] and references therein.

In 2000 Branciari [6] introduced a class of generalized metric spaces by replacing triangular inequality by
similar ones which involve four or more points instead of three and improved Banach contraction mapping principle.

Recently, Azam et.al [7] introduced the notion of cone rectangular metric space and proved Banach
contraction mapping principle in a cone rectangular metric space setting.

Preliminaries
We recall some definitions and other results that will be needed in the sequel.

Definition 1.1 [5]: Let E be a real Banach space andP < E . Then P is said to be a cone if it satisfies the
following condition:

i) P is a non-empty closed subset of E and P = {6} .
i) If x,ye P,and a,be R, a=0,bx>0,thenax +by € P.
iii) Ifxe Pand — xe P ,thenx = 6.

Cone induces a Partial order relation
We can define a partial order relation on E with respect to the cone P in the following way x < y if and only if

y—-xe P.Also x<< yifandonly if y-xeint P and x < yimplies x < y butx = y . If int P = ¢ then
the cone is a solid cone.

Definition 1.2[5]: Let Xbeasetand d : X x X — E satisfying

i) d(x,y)>6,Vx,ye X andd (x,y) =0 ifandonlyifx = y.
i) d(x,y)=d(y,x), VXx,ye X .
iii) d(x,y)<d(x,z)+d(z,y), VX,y,ze X .
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Then d is called the cone metric and the pair (X ,d) is called the cone metric space.
E.g.1[5]: LetE = R*andP = {(x,y)e R*:x >0,y > 0} ,X = R and

d(x,y) = (|x - y|,a|x - y|), V X,y e X,a >20.Then (X ,d) is acone metric space and P is a normal
cone with normal constant 1.

There are two different kinds of cones: normal (with a normal constant K ) and non-normal

cones. Let E be areal Banach space, P — E acone and < the partial ordering defined by P .

Then P is said to be normal if there exist positive real number K such that forall x,y € P

0 <x<y implies”x”s K ||y||

Or, equivalently if x, <y <z, Vnand lim x =Ilm z =x= lm y = x.

The least of all such constant K is known as normal constant.
Definition 1.3 [7]: Let Xbeasetand d : X x X — E satisfying

i) d(x,y)>6,Vx,ye X andd (x,y) =0 ifandonlyifx = y.
ii) d(x,y)=d(y,x), VXx,ye X .
iii) d(x,y)<d(x,z)+d(z,w)+d(w,y), VX,y,z,we X and w,ze X \{x,y}.

Then d is called the cone rectangular metric and the pair (X ,d) is called the cone rectangular metric space. Every
cone metric space is a cone rectangular metric space but the converse is not true in general.
Example2[7]:Let X = N and E = R?and P ={(x,y) € E : x,y > 0}. define d : X x X — E as follows:

((0,0), if x=1y
d(x,y) = J (3,9), if xand yare in{1,2} but x =y
L(1,3), otherwise
Now (X ,d) is a cone rectangular metric space but not cone metric space because it lacks triangular property:
(3,9) =d(1,2) >d(1,3)+d(3,2) = (1,3) + (1,3) = (2,6) as (3,9) - (2,6) = (1,3) e P.
Example 3[10]: Let X ={a,b,c,e} and E = R’and P ={(x,y) € E : x, y > 0}. define

d: X x X — E as follows:

(d(x,x)=(0,0), Vxe X,
|d(y,X):d(x,y),Vx,ye X,
d(a,b) = (3,a),
Id(a,c):d(b,c):(l,a),
|d(a,e)=d(b,e)=d(c.e)=(2,a)

Where « > 0is a constant. Then (X ,d) is a cone rectangular metric space but not cone metric
space since it lacks triangular property:
(3,a)=d(a,b)andd (a,c)+d(c,b)= L a)+ L a)=(2,2a) but
d(a,c)+d(c,b)-d(a,b)=(2,2a)-(3,a)=(-1,a) ¢ P therefore d (a,b) < d(a,c) + d (c,b) is not
true.
Lemma 2.1[17]: Let P aconeandx, y, z € E.. We have the following properties

i) P +int P < int P. in particular we haveint P +int P < int P.

i) Aint P < int P.where 4 > 0.
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Remark 2.2[19]: Let P aconeand x,y,z € E.
i) If x << yand y << z thenx << z.
i) If x<< yand y < zthenx << z.

Definition 2.3 [7]: Let (x ,d )be a cone rectangular metric space. Let {x } be a sequence in X

andx e X . Ifforevery ¢ e E with ¢ >> ¢ thereis N such that for alln > N ,d (X, ,X) << €. Then
{x,} is said to be convergentto x and x is the limit of{x_} . We denote this by

lim x = x,or x, - Xx(n — o).

n— o«

Definition 2.4 [7]: Let (X ,d ) be a cone rectangular metric space. Let {x} be a sequence in X . If

forany c e E with ¢ >> 6 thereisN suchthatforalln > N ,d(x_ ,x . )<< c.Then{x_ } issaid

n+m

to be a Cauchy sequence in X .
Lemma 2.5[7]: Let (X ,d )be a cone rectangular metric space and P be a normal cone with

normal constant K . Let {x } be asequencein X . Then {x } convergesto x if and only if
”d(x,xn)”—) 0asn— .

Lemma 2.6[7]: Let (X ,d )be a cone rectangular metric space and P be a normal cone with

normal constant K . Let {x_} be asequencein X . Then {x_} is a Cauchy sequence if and only if

o x

n,xmm)”—) 0asn— .

Lemma 2.7[5]: Let (X ,d )be a cone metric space and P be a normal cone with normal constant

K . Let {x, } beasequencein X .If {x_} convergesto x and{x_ } convergesto y thenx =y .
Lemma 2.8 [5]: Let (X ,d )be a cone metric space. Let {x_} be asequencein X . If {x }

Convergesto x and{x} is a Cauchy sequence.

But the above two lemma’s, namely lemma 2.7 and lemma 2.8 is not true in general in case of
cone rectangular metric space. Consider the following example

Example 4[10]: Let E = Rand P ={x e R: x > 0}. let {x } beasequencein Q and

a,be R\Q,a=b Weput X ={x,,X, .. X_ ...} U {a,b}andweconsider d : X x X — E as
follows:

[d(x,x)=(0,0), Vxe X,
id(YlX)zd(le)lvxlyE X,

|d(xn,xm):1,Vn,m e N,n=#m,

1
d(x,,b)==,vneN,
n

1
d(x,,a)=—,Vne N,
n

|
|
|
|
|d(a,b)=1.

We see that (X , d )is not a cone metric space because we have
1 1 5
d(x,,x;)>d(x,,b)+d(b,x,)=—+—=—.
2 3 6
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. . . 1 .
However, (X ,d )is a cone rectangular metric space. Now since d (x, ,a) = —— 0, as n — o We obtain that
n

1
X, > a,a n—> o Also d(x,,b)=——> 0,asn—> o then x — b, as n - w.
n
Although the sequence {x } is convergent but we have d (x_, x_ ) = 1 which means that {x_ } is not

Cauchy.
Definition 2.9[7]: If every Cauchy sequence is convergentin(X ,d ), then (X ,d ) is called a

complete cone rectangular metric space.
Definition 2.10 [11]: Let f and g be two self mapson X . If fw = gw = v forsome w € X then

w is the coincidence point of f and g and v is the point of coincidence of f andg
Definition 2.11[11]: Let (X , d ) be a cone metric space. If every Cauchy sequence is convergent

then X is said to be complete cone metric space
Let (X ,d )be acone metric space.

i) Ifu<vand v << wthenu << w .
i) If ® <u << cforeachc eint P,thenu =6 .
iii) If E is areal Banach space with cone P and if a < a4 where0 < 1 <1 anda € P ,thena = 6 .

Definition 2.12 [4]: Let S and T be two self-mappings of a cone metric space (X ,d ).The pair

(s, T )is said to be weakly compatible if STu = TSu whenever Su = Tu for someu € X .

The following proposition is proved in [11].
Proposition 2.13 [11]: If f and g be two weakly compatible maps on X. If f and g have unique

point of coincidence fw = gw = v then v is the unique common fixed point of f and g.

Definition2.14 [8]:

Let be acone and @ be the set of all continuous non decreasing function ¢ : P — P such that
i) 0 <op(t)<tforallte P\{O}.

ii) the series > ¢ "(t) convergesforall t e P \ {6}.

n>0

Theorem 2.15[8]: Let (X , d ) be complete cone rectangular metric space let T : X — X satisfy
the following:
d(Tx,Ty)<p(d(x,¥)), V X, ye X, Where p € ®

Then T has a unique fixed pointin X
The following result have been proved by M. Jleli, and B. Samet [10]
Theorem 2.16[10]: Let (X , d ) be cone rectangular metric space and P be a normal cone with

normal constant K . Suppose that a mapping T : X — X satisfies the contractive conditions
d(Tx,Ty)<a(d(Tx,x)+d(Ty,y)),VXx,ye X,

forall x,y e X Where a € [0,%). Then

i) T has a unique fixed pointin X .
i) Forany x e X, the iterative sequence {T " x} converges to the fixed point.
Theorem 2.17 [14]: Let (X , d ) be cone rectangular metric space and suppose f,g,h: X — X
be three functions satisfying
d(fx,gy)< Ad(hx,hy), V x,ye X,
Where A € [0,1).. If f(X)u g(X) < h(X) and h(X) isacomplete subspace of X . Then f,g and
h have a unique point of coincidence. Moreover, if (f,h) and (g, h) are weakly compatible, then
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f, g and h have a unique common fixed point.

Main result
First we present few results whose proofs are similar to D.Turkoglu, M. Abuloha [19, Lemma 2,
Lemma 3, Proposition 1].

Lemma3.1: Let (X , d ) be Cone rectangular metric space. Then for each ¢ >> 0,c € E, there exist

S5 > osuchthat (¢ — x) e int P whenever ||x|| <d8,xe E.

Lemma 3.2: Let (X , d ) be Cone rectangular metric space. Then for each ¢, >> 0 and

c,> 0, c,,c, e E,thereexist c >> 0,c e E suchthat c << c,and ¢ << c,.

Forc>> 0,ce E,let B(x,c)={ye X |d(x,y)<< c}and g ={B(x,c)|xe X, 0 << c}.Then,the
collection 7, ={U < X :¥xe X,3B e B,x e B = U }isatopologyon X.

Proposition 3.3: Every cone rectangular metric space is a topological space.
But here we show that Cone rectangular metric space need not be a Hausdorff space. Consider the following
example.

Let E=Rand P ={xe R:x 20} let{x }beasequencein Q and a,be R\Q,a = b. we put
X=X, Xy s DG } uw {a,b}and we consider d : X x X — E as follows:
[d(x,x)=(0,0), Vxe X,

Id(y,x):d(x,y),Vx,ye X,

|d(xn,xm)=1,Vn,m e N,n=m,
d(x,,b)=—,Yne N, '
| n

|

|[d(x,,a)=—,VYne N,

| n

|d(a,b)=1.

Thenint P ={xe R|x >0} Now a = b,a,be X. alsowehave d(a,b)=1.

. 1 1 1 1
ConsiderB (a,—) = {x e X |d(a,x) << —}andB(b,~) = {x e X |d(b,x) << —}.
3 3 3 3

1
12

. 1 1 1
Now consider x, e X thend (a,x,) = — and —— —= —> 0.
4 4

3

1 1 .
Therefore —— — e int P i.e.,
3 4

1 1 1
—-d(a,x,)eint P = d(a,x,)<< —= X, € B(a,—).
3 3 3
. 1 1
Again B(b,—) = {x e X |d(a,x) << —}
3 3

1 1 1
We obtain that x, € B (b, —). which implies that B (a,—) n B(b,—) = ¢.
3 3 3

Theorem 3.4: Let (X , d ) be cone rectangular metric space. Let f,g,h: X — X bethree
functions satisfying
d(fx,gy) <ge(d(hx,hy)), Vv x,yeX,

Where p e @ . If f (X )uU g(X) < h(X) and h(X ) isacomplete subspace of X . Then f,g and h
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have a unique point of coincidence. Moreover, if (f,h) and (g, h) are weakly compatible, then
f, g and h have a unique common fixed point.

Proof: Let x, € X be an arbitrary point of X . Since f (X ) < h(X ) thenthere exist x, e X such
that f (x,) = h(x,).Againfor x, e X andsinceg (X ) = h(X) thereexistx, e X suchthatg(x,)=h(x,)

and so on. Therefore, we have h(x )= f(x, )and h(x,  ,)=9(x,,) n=0123,.
Then

d(hx ,hx )=d(fx ,,ox )
<o(d(hx, ., hx ))

=o(d(fx ;. 0x, )

A\

<p*(d(hx _,,hx )

<o"(d(hx,, hx,))
Similarly fork = 0,1,2,3,... we get,

d(hx ,hx , )<e"(d(hx,, hx,))

d(th,hX n+zk+1)g¢n(d(hX0'hX2k+1)) (2)

By using rectangular property and (2) we get,

d(hx,,hx,) <d(hx,, hx,)+d(hx , hx,)+d(hx,, hx,)
< d(hx,,hx,) + @ (d(hx,, hx,)) +¢2(d(hx0,hx2))
d(hx,,hx,) <d(hx , hx,)+d(hx,,hx,)+d(hx,, hx,)+d(hx,, hx,)+d(hx,, hx,)

< d(hx,, hx,) + @ (d(hx,, hx,)) + ¢ (d(hx,, hx,)) + ¢’ (d(hx,, hx,)) + ¢ (d (hx,, hx,))
3
<Y o' (d(hx,, hx,)) + @ (d (hx g, hx,)).
i=0
By induction we have for each k = 2,3,4,
2k-3

d(hx, hx,, )< S @' (d(hxy,hx,) + ¢ 7" (d (hx,, hx ). (3)

i=0

Also by using rectangular inequality and (2) we get,

d(hx,,hx,)<d(hx,, hx,)+d(hx ,hx,)+d(hx,,hx,)+d(hx,, hx,)+d(hx,, hx,)

4
<> @' (d(hx,, hx,)).
i=0
By induction we have for each k = 0,1,2,3,4,
2k

d(hx . hx,, )<Y @' (d(hx,, hx,)). 4)

i=0
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Using (3) in (2) we get,
d(hx,,hx ) <¢"(d(hx,, hx,,))

2k-3

<p" (Y @' (d(hx,,hx,)) + o

i=0

2k-2

(d (hx ,, hx,)).

2k-3

<" (Y o' (d(hx,,hx,) +d(hx,,hx,)) + ¢

i=0

2k-2

(d (hx . hx ) +d (hx,, hx,)).

2k-2

<" (Y @' (d(hx, hx,)+d(hx g, hx,)).

i=0

<o"(Y @' (d(hx,,hx,)+d(hx,, hx,))

i=0
Using (4) in (2) we get,

d (hX n'! hx n+2k+1) < 4 ! (d (hX 0’ hx 2k+1))
2k

<p" (3 @' (d(hx,,hx,)

<" (3 o' (d(hxy.hx ) +d(hx, hx,)).

i=0

<" (3 @' (d(hx,, hx,)+d(hx,, hx,)).

i=0
Hence for each m we conclude

d(hxn,thm)s(p"(Z o' (d (hx,, hx,)+d(hx,, hx,)) . (4)

i=0

Since @' (d (hx,, hx,)+d(hx,, hx,)) converges, where d (hx ,,hx,)+d(hx,,hx,)e P\{6}and P is

i=0

closed, then 3" o' (d (hx,,hx ) +d (hx,hx,)) € P\ {#}. hence

i=0

(p"(z q)i(d(hxo,hxl)+d(hxo,hxz)) — 6 asn— o,

i=0

Hence given ¢ >> ¢ there exist a natural number n; € N such that

9" (X @' (d(hx,, hx,)+d(hx, hx,)) << ¢, ¥n=n,. (5)
i=0
Hence from (4) and (5), we get,

d(hx, ,hx )<< ¢, Vnzn,.

This implies that {hx _ } is a Cauchy sequence in X . Since h(X ) is a complete subspace of X , there exist a point
v e X suchthat hx = — v . Also, we can have a point u € X suchthat h(u) =v

We will prove h(u) = f (u).

Given ¢ >> 6 , we choose natural numbers k_, k, such that
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c c
d(hx ,v)<< — ¥vnxk, d(hx ,hx )<< — VnzxKk,.
3 3

n?

By rectangular property we have,
d(hu, fu) <d(hu,hx )+d(hx ,

<d(v,hx )+d(hx ,hx . )+d(gx,, fu)

hx )+ d(hx fu)

n+1 n+1’

<d(v,hx, )+d(hx ,hx ) +e(d(hx ,hu))
hx,,,)+d(hx  hu))

n’ n+1

< d(v,hx )+ d(hx

C c
<< —+ =
3 3
Wherek = max{ k, ,k,}.

Since c¢ is arbitrary we haved (hu, fu) = @ therefore we get h(u) = f (u) = v.

Similarly, we can prove thath(u) = g (u) sothatwe geth(u) = f (u) = g(u) = v. Which implies that v point of

+—=¢. Vn2=Kk.

w | o

coincidence of f, g and h. Now we show that the point of coincidence is unique, if not let v be another point of
coincidence of f,g and h.thatish(u") = f(u')=g(u’)=v forsomeu" e X .
Then,
d(v,v)=d(fu,qgu’)
@ (d (hu,hu ")).
@ (d(v,v")).
This implies thatv™ = v. which proves the uniqueness of point of coincidence. Now since ( f,h) and (g,h) are

IN

IA

weakly compatible, then by the proposition 2.1 we conclude that f , g and h have a unique common fixed point.
The following corollaries are the main result in [8]
Corollary 3.5: Let (X , d ) be cone rectangular metric space. Let T : X — X satisfying
d(Tx,Ty)<e(d(x,y)), V X, ye X,
Wherep € @ . Then T has a unique fixed pointin X .
Proof: Consider f (u)=g(u)=T (u) and h(u) = identity mapping in the theorem 3.4, we get the
desired result.
Corollary 3.6: Let (X , d ) be cone rectangular metric space. Let f,h: X — X be three functions
satisfying
d(fx, fy)<e(d(hx,hy)), V x, ye X,
Where ¢ € @ . If f (X ) < h(X) and h(X ) is acomplete subspace of X . Then f and h have a
unique point of coincidence. Moreover, if ( f,h) is weakly compatible, then f and h have a
unique common fixed pointin X .
Proof: Consider f (u) = g (u) inthe theorem 3.4, we get the desired result.
The following corollary is the main result in [14]
Corollary 3.7: Let (X , d ) be cone rectangular metric space. Let f,g,h: X — X bethree
functions satisfying
d(fx,gy)< A(d(hx,hy)), V x,ye X,
Where 4 € [0,1). If f(X)u g(X) < h(X) and h(X) isacomplete subspace of X . Then f,g and
h have a unique point of coincidence. Moreover, if (f,h) and (g, h) are weakly compatible, then
f, g and h have a unique common fixed point.
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Proof: Consider ¢ (t) = At in the theorem 3.4, we get the desired result
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