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ABSTRACT: 
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be a polynomial of degree n . In this paper we have obtained some 

generalizations of Enestr o m -Kakeya Theorem regarding the region for location of zeros of polynomial in 

terms of restricted coefficients. Our results give not only zero free regions for polynomials but also the number 

of zeros that can lie in a prescribed region. Our result sharpens as well as generalizes the earlier known results.  
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1-INTRODUCTION AND STATEMENT OF RESULTS 

 

The following results are well known in the theory of the distribution of zeros of polynomial. 

 

THEOREM A: - If 
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be a polynomial of degree n  with the coefficients satisfying the 

condition   
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then all zeros of )( zp lie in 

                                                                1z .                                                                     (2) 

 

This is known as Enestr o m-Kakeya theorem [1, 2]. 

 

Joyal, Labelle and Rahman [4] extended Theorem A to the polynomials with coefficients not necessarily non-

negative. More precisely, they proved the following  

 

THEOREM B. Let 
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is a polynomial of degree n, such that  
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Then )( zp  has all its zeros in  
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If 0
0
a , then this result reduces to Theorem A. 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 56 Issue 5 – April 2018 

ISSN: 2231-5373                                  http://www.ijmttjournal.org                             Page 345 

THEOREM C: - If 
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then )( zp has all its zeros in the ring-shaped region given by 
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  The above result is due to Govil and Rahman [3]. 

 

Govil and Rahman [3] generalized Enestr o m-Kakeya Theorem for polynomials with complex coefficients by 

considering the moduli of the coefficients to be monotonically increasing and proved the following  

 

THEOREM D. Let 
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is a polynomial of degree n, with complex coefficients such that for some 

real   
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and  
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Then )( zp  has all its zeros in  
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In this paper firstly we prove the following result for polynomials with complex coefficients, which improves 

upon Theorem D in particular case and also improves upon other results. More precisely, we prove 

 

THEOREM 1. If 
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be a polynomial of degree n, with complex coefficients such that for 

some real  , 

                                                 
2

arg



j

a , j=0,1,2……n  
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 then p(z) has no zero in 
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exceed 
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We now find a disk containing all zeros of )( zp under the hypothesis of Theorem 1, improving the bound of 

Theorem D  for K=1 and 0 , as following 

 

THEOREM  2. If 
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be a polynomial of degree n, with complex coefficients such that for 

some real  , 
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REMARK  3. For the case 0 , Theorem 2 reduces to a result due to Shah and Liman [5, Theorem 1].  

For the case K=1 and 0 , Theorem 2 gives the following 

COROLLARY 4. If 
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be a polynomial of degree n, with complex coefficients such that  for 
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  then all the zeros of )( zp lie in                          
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Corollary 4 always gives better bound than Theorem D due to Govil and Rahman [3], except in the 

case, 0
0
a  or 0 or ( 2/ ). 

2. LEMMAS 

 

We need the following lemma for the proof of the above theorems. 

 

LEMMA 2.1.  If 
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The above lemma follows from inequality (6) in [3]. 

 

 

3.  PROOF OF THE THEOREMS 

 

PROOF OF THEOREM 1.  Consider the polynomial 
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For 1z , we have 
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which on applying Lemma 2.1 for t=1, gives  
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Now, it is known (see [6], p. 171) that if )( zf  is regular, 0)0( f  and MzF )(  in 1z ; then the 

maximum number of zeros of )( zf  in 1 z  can not exceed 














)0(
log

)/1(log

1

f

M


. Applying this 

result to )( zF , we get the maximum number of zeros of )( zF  and hence of )( zp  in 1 z  can not 
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This gives one part of Theorem 1. 

 

Now we shall show that no zero of )( zp lies in  
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For this, we have 
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Further, since h(0)=0 and  h(z) is analytic, applying Schwarz’s lemma to )( zh , we get 
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Hence )z(F  and therefore )z(p  has no zero in  
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This proves Theorem 1 completely. 

 

 

 

PROOF OF THEOREM 2.  Consider the polynomial 
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Then for 1z , we have 

 

              0011

1
)()()( azaazaazazF

n

nn

n

n





  

 

                

                        

001

1

211

1

)(

)()(

azaa

zaazaKazKazaza
n

nn

n

nn

n

n

n

n

n

n













 

              

       
.1

0

1

01

2

3221

1






















































nn

nnnn

nn

nn

n

z

a

z

aa

z

aa

z

aa
aKa

zKzza
 

 

On applying Lemma 2.1 and the fact 1
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Hence all the zeros of )z(F  with 1z  lie in 
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But those zeros of  )( zF  with 1z  already satisfy the inequality (17). Since all the zeros of )( zp  are also 

the zeros of )z(F , therefore it follows that all the zeros of )( zp  lie in the disk defined by inequality (17) and 

this completes the proof of the Theorem 2. 
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