Vertex Prime Labeling of Path Related Graphs

Mukund V. Bapat ${ }^{1}$

Abstract

1. Abstract:

Two graphs or two copies of given graph are joined by some paths are referred as path related graphs. In this paper we discuss two copies of given graph joined at same vertex by t paths of same length for vertex prime labeling. These families are denoted by $G\left(t-P_{m}\right)$ where t is the number of paths P_{m}. We refer these graphs when $t=1$ as $G\left(P_{m}\right)$. We choose G as W_{4} and Gear graph G_{4}. We also discuss $W_{4}\left(t-P_{m}\right) G_{4}$ which is family of graphs having t paths of same length between W_{4} and G_{4}.

Key words: Path, labeling, vertex prime, graph.
Subject Classification: 05C78

2. INTRODUCTION:

The graphs we consider are finite, connected, and simple and un- directed. We refer F.Harary[4], Dynamic survey of graph labeling [3] for definitions and terminology. Deretsky, Lee, Mitchem Proposed a labeling called as vertex prime labeling of graph.[2].A function $f: E(G) \rightarrow\{1,2, . .|E|\}$ is such that for any vertex v the gcd of all labels on edges incidentwith v is 1 . This is true to all vertices with degree at least 2 .The graph that admits vertex prime labeling is called as vertex prime graph. They have shown that all forests, connected graphs, $5 \mathrm{C}_{2 \mathrm{~m}}$, graph with exactly two components one of which is not odd cycle etc are vertex prime. One should refer A Dynamic survey of graph labeling by Joe Gallian[3]to find further work done in this type of labeling.

3.Preliminaries:

3.1 A wheel graph W_{n} is obtained by taking a cycle C_{n} and a new vertex w outside of C_{n}. W is joined to each vertex of C_{n} by an edge each. It has $2 n$ edges and $n+1$ vertices. .In this paper we consider w_{4} and related graphs for vertex prime labeling.
3.2 Gear graph $G n$ is obtained from W_{n} by inserting a new vertex between consecutive vertex of cycle C_{n}. It has $2 n$ +1 vertices and $3 n$ edges.In this paper we consider G_{4} and related graphs for vertex prime labeling.
3.3Fusion of vertex. Let G be a (p, q) graph. letu $\neq v$ be two vertices of G. We replace them with single vertex w and all edges incident with u and that with v are made incident with w. If a loop is formed is deleted. The new graph has $\mathrm{p}-1$ vertices and at least $\mathrm{q}-1$ edges.[6]
3.4 Let G_{1} be $\left(p_{1}, q_{1}\right)$ and G_{2} be $\left(p_{2}, q_{2}\right)$ be any two graphs. We join two graphs G_{1} and G_{2} by a path P_{m}. The resultant graph we denote as $G_{1}\left(P_{m}\right) G_{2}$. It has $P_{1}+P_{2}+m-2$ vertices and $q_{1}+q_{2}+m-1$ edges .In this paper we discuss $W_{4}\left(P_{m}\right) G_{4}$ for vertex prime labeling.
3.5 The collection of positive numbers will be co prime if
i) It contains the number ' 1 ',
ii) It contains two consecutive integers
iii) It contains a prime number and no multiple of it

4. Theorems Proved:

4.1 The graph obtained by joining two copies of W_{4} by path Pm i.e. $G=W_{4}\left(1-P_{m}\right)$ is vertex prime. The point of fusion on both copies is hub vertex of W_{4}.Further if we change the point where the path is fused with W_{4} the resultant graph is also vertex prime.

Proof: We define this graph as : $\mathrm{V}_{1}=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{u}_{\mathrm{j}}^{\mathrm{i}} / \mathrm{j}=1,2,3,4\right.$. And $\left.\left.\mathrm{i}=1,2\right)\right\}$. These are vertices on two copies of W_{4}. $V_{2}=\left\{v_{1}, v_{2}, . . v_{m}\right\}$.These are vertices on path P_{m}. The edge set on pokes is given by $E_{1}=\left\{\left(w_{i} u_{j}^{i}\right) / j=1,2,3,4\right.$. And i $=1,2)\} . \mathrm{E}_{2}=\left\{\left(\mathrm{u}_{\mathrm{j}}^{\mathrm{i}} \mathbf{u}_{\mathrm{j}+1}^{\mathrm{i}}\right) / \mathrm{j}=1,2,3\right.$, 4.where $\mathrm{j}+1$ is taken modulo 4, and $\left.\mathrm{i}=1,2\right\} . \mathrm{E}_{2}$ are C_{4}-cycle edges on two copies of $W_{4} . E_{3}=\left\{\left(v_{i} v_{i+1}\right) / i=1,2, . ., m-1.\right\}$ Since we take the paths at hub w_{i} we have $w_{1}=v_{1}$ and $w_{2}=v_{m}$. Thus $\mathrm{V}(\mathrm{G})=\mathrm{V}_{1} \mathrm{UV}_{2} . \mathrm{E}(\mathrm{G})=\mathrm{E}_{1} \mathrm{UE}_{2} \mathrm{UE}_{3}$.

Define $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, . ., \mathrm{m}+15\}$ as follows:
$f\left(w_{i} u_{j}^{i}\right)=j$ for $i=1 ; j=1,2,3,4$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{j}}^{\mathrm{i}} \mathrm{u}_{\mathrm{j}+1}^{\mathrm{i}}\right)=4+\mathrm{j}, \mathrm{j}=1,2,3,4$ and $\mathrm{i}=1$;
$f\left(v_{i} v_{i+1}\right)=8+i, i=1,2, . ., m-1$;
$\mathrm{f}\left(\mathrm{u}_{\mathrm{j}}^{\mathrm{i}} \mathrm{u}_{\mathrm{j}+1}^{\mathrm{i}}\right)=\mathrm{m}+7+\mathrm{j}, \mathrm{j}=1,2,3,4$ and $\mathrm{i}=2$;
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}} \mathrm{u}_{\mathrm{j}}^{\mathrm{i}}\right)=\mathrm{m}+11+\mathrm{j}$ for $\mathrm{i}=2 ; \mathrm{j}=1,2,3,4$.

Fig 4.1: A labeled copy of vertex prime graph $\mathrm{W}_{4}\left(\mathrm{P}_{6}\right)$ Edge labels are shown. P 6 is attached at cycle vertex of W_{4})

If we shift the point of fusion of P_{m} with W_{4} say to a vertex on outer cycle of W_{4}, u_{j}^{1} andu ${ }_{j}{ }_{j}$ for some $j=1,2,3,4$ then the only change will be v_{1} will be same as u^{1} and v_{m} as u_{j}^{2}. The function described above will work as vertex prime label.

Thus the graph is vertex prime. \#
4.2Theorem: The graph G obtained by joining two copies of W_{4} by paths Pm between every pair of like vertex on two copies of $W_{4}\left(\right.$ given by G_{1} and $\left.G_{2}\right)$ is vertex prime. These are paths $(\operatorname{ug}(u))$ where $g(u)$ is image of u under any automorphism g on G_{4}. Here u and $\mathrm{g}(\mathrm{u})$ are like vertices.

Proof:

We start with two vertex prime labeled copies of W_{4}. Furtherthere will be five different paths from G_{1} to G_{2}. We define this graph as: $\mathrm{V}_{1}=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{u}_{j}^{\mathrm{i}} / \mathrm{j}=1,2,3,4\right.$. And $\left.\left.\mathrm{i}=1,2\right)\right\}$. These are vertices on two copies of $\mathrm{W}_{4} . \mathrm{V}_{2}=$ $\left\{v_{i, 1}, v i, 2, . . v_{i}, m\right\}$. These are path $\left(P_{m}\right)$ vertices from vertex $v_{i, 1}$ on G_{1} to $v_{i, m}$ on G_{2}. When the path will be $\left(w_{1} w_{2}\right)$ then w_{1} will be $v_{i, 1}$ and w_{2} will be $v_{i, m}$. The edge set on pokes is given by $\left.E_{1}=\left\{\left(w_{i} u_{j}^{i}\right) / j=1,2,3,4 . ; i=1,2\right)\right\}$. $E_{2}=\left\{\left(u_{j}^{i} u_{j+1}^{i}\right) / j\right.$ $=1,2,3$, 4.where $j+1$ is taken modulo 4$\}. E_{2}$ are C_{4}-cycle edges on two copies of $W_{4} . E_{3}=\left\{\left(v_{i} v_{i+1}\right) / i=1,2, \ldots, m-\right.$ 1.\}. If we take the paths between hub w_{i} we have $w_{1}=v_{1}$ and $w_{2}=v_{m}$. Thus $V(G)=V_{1} U V_{2} . E(G)=E_{1} U E_{2} U E_{3}$. Define $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, . . \mathrm{q}\}$ as follows where $\mathrm{q}=|\mathrm{E}(\mathrm{G})|$:

```
\(\mathrm{f}\left(\mathrm{w}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{\mathrm{i}}\right)=\mathrm{j}\) for \(\mathrm{i}=1 ; \mathrm{j}=1,2,3,4\)
\(f\left(u_{j}^{i} u_{j+1}^{i}\right)=4+j, j=1,2,3,4\) and \(i=1\);
\(\mathrm{f}\left(\mathrm{u}_{\mathrm{j}}^{\mathrm{i}} \mathrm{u}_{\mathrm{j}+1}^{\mathrm{i}}\right)=8+\mathrm{j}, \mathrm{j}=1,2,3,4\) and \(\mathrm{i}=2\);
\(f\left(w_{i} u^{i}{ }_{j}\right)=12+j\) for \(i=2 ; j=1,2,3,4\).
```

At this stage we have completed the vertexprime labeling of both copies of $W_{4} \cdot f\left(v_{i, j} v_{i, j+1}\right)=16+i(m-1)+j, i=$ $1,2,3,4,5 ; j=1,2, . .(m-1)$

Fig 4.2: A labeled copy of vertex prime graph with 5 pathspathson W_{4}. Edge labels are shown.
Thus the graph is vertex prime.
\#

4.3Theorem:

The graph obtained by joining two copies of Gear graph G_{4} (say G^{\prime} and $G^{\prime \prime}$) by path P_{m} i.e. $G=G_{4}\left(P_{m}\right)$ is vertex prime. The point of fusion on both copies is hub vertex of G_{4}. Further if we change the point where the path is fused with G_{4} the resultant graph is also vertex prime.

Proof:

We define this graph as: $\mathrm{V}_{1}=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{u}_{\mathrm{j}}^{\mathrm{i}} / \mathrm{j}=1,2, \ldots 8\right.$ And $\left.\left.\mathrm{i}=1,2\right)\right\}$. These are vertices on two copies of G_{4}. $V_{2}=\left\{v_{1}, v_{2}, . . v_{m}\right\}$.These are vertices on path P_{m}. The edge set on pokes is given by $E_{1}=\left\{\left(w_{i} u_{j}{ }^{i}\right) / j=1,3,5,7\right.$. And i $=1,2)\} . E_{2}=\left\{\left(u_{j}{ }_{j} u_{j+1}\right) / j=1,2, \ldots, 8\right.$.where $j+1$ is taken modulo $\left.8, i=1,2.\right\} . E_{2}$ are C_{8}-cycle edges on two copies of G_{4}. $E_{3}=\left\{\left(v_{i} v_{i+1}\right) / i=1,2, \ldots, m-1.\right\}$ Since we take the paths fused at hub w_{i} we have $w_{1}=v_{1}$ and $w_{2}=v_{m}$. Thus $V(G)=V_{1} U V_{2} . E(G) E_{1} U E_{2} U E_{3}$.

Define $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, . ., \mathrm{m}+23\}$ as follows:

$$
f\left(w_{i} u_{j}^{i}\right)=t \text { for } i=2 ; j=1,3,5,7 \text { and } t \text { is such that } j=2 t-1
$$

These are labels on pokes of G^{\prime}
$f\left(u_{j}^{i} u_{j+1}^{i}\right)=4+j, j=1,2, . ., 8$ and $i=1$; These are labels on cycle C_{8} of G '
$f\left(v_{i} v_{i+1}\right)=12+i, i=1,2, \ldots, m-1$;These are labels on path $\left(v_{i} v_{m}\right)$
$f\left(u_{j}^{i} u_{j+1}^{i}\right)=m+11+j, j=1,2, \ldots, 8$ and $i=2$; These are labels on cycle C_{8} of $G "$
$f\left(w_{i} u_{j}^{i}\right)=m+19+t$ for $i=2 ; j=1,3,5,7$ and t is such that $j=2 t-1$
These are labels on pokes of G".

Fig 4.3: A labeled copy of vertex prime graph $\mathrm{G}_{4}\left(1-\mathrm{P}_{6}\right)$ Edge labels are shown.

If we change the end vertices of path from $v_{1}=w_{1}$ to any vertex on cycle C_{8} of G^{\prime} and $v_{m}=w_{2}$ to any vertex on cycle C_{8} of $\mathrm{G}^{\prime \prime}$ The above labeling function f will work as it is and the resultant graph will be vertex prime.

Thus the graph is vertex prime.
\#

4.4 Theorem:

The graph G obtained by joining two copies of G_{4} (given by G_{1} and G_{2}) by paths P_{m} between every pair of like vertices G_{4} is vertex prime. These are paths $(u g(u))$ where $g(u)$ is image of u under auto morphism g on G_{4}.

Proof:

We start with two vertex prime labeled copies of G_{4}. Furtherthere will be 8 different paths from G_{1} to G_{2}.

We define this graph as: $V_{1}=\left\{w_{1}, w_{2}, u_{j}^{i} / j=1,2, ., 8\right.$. and $\left.\left.i=1,2\right)\right\}$. These are vertices on two copies of $G_{4} . V_{2}=$ $\left\{v_{i, 1}, v i, 2, . . v_{i, m}\right\}$.These are path $\left(P_{m}\right)$ vertices from vertex $v_{i, 1}$ on G_{1} to $v_{i, m}$ on G_{2}. When the paths will be $\left(w_{1} w_{2}\right)$ then w_{1} will be $v_{i, 1}$ and w_{2} will bev $i_{i, m}$. The edge set on pokes is given by $E_{1}=\left\{\left(w_{i} u_{j}^{i}\right) / j=1,3,5\right.$, 7 . And $\left.\left.i=1,2\right)\right\}$. $E_{2}=\left\{\left(u_{j}^{i} u_{j+1}^{i}\right) / j=1,2, . ., 8\right.$ where $j+1$ is taken modulo 4$\}$. E_{2} are C_{8}-cycle edges on each copy of $G_{4} . E_{3}=\left\{\left(v_{i} v_{i+1}\right) / i=\right.$ $1,2, . ., m-1$.$\} . Thus G$ has $9(m-1)$ edges. Further $V(G)=V_{1} U V_{2}$ and $E(G)=E_{1} U E_{2} U E_{3}$.

Define $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, . . \mathrm{q})\}$ as follows where $\mathrm{q}=|\mathrm{E}(\mathrm{G})|$
$f\left(w_{i} u_{j}^{i}\right)=t$ for $i=2 ; j=1,3,5,7$ and t is such that $j=2 t-1$
$f\left(u_{j}^{i} u^{i}{ }_{j+1}\right)=4+j, j=1,2, . ., 8$ and $i=1$;
$f\left(u_{j}^{i} u_{j+1}^{i}\right)=12+j, j=1,2, \ldots, 8$ and $i=2$;
$f\left(w_{i} u_{j}^{i}\right)=20+j+t$ for $i=2 ; j=1,3,5,7$ and t is such that $j=2 t-1$
At this stage we have completed the vertex prime labeling of both copies of $G 4 . f\left(v_{i, j} v_{i, j+1}\right)=24+i(m-1)+j, i=1,2$, .., $12 ; j=1,2, . .(m-1)$, for any path $(u g(u))$ where $u=v_{i, 1}$ and $g(u)=v_{i, m}$.

Fig 4.4: A labeled copy of vertex prime graph with 9 paths P_{6} on G_{4}. A few of the edge labels Thus the graph is vertex prime. \# are shown.
4.5Theorem: Let G be a graph obtained from W_{4} and G_{4} by joining their hub by a path P_{m} is vertex prime. If we shift the end points of path Pm from hub to any other vertex on respective graph then also the resultant graph is vertex prime.

Proof:

We define the graph G as follows: $\mathrm{V}_{1}=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{u}_{\mathrm{j}}^{\mathrm{i}} / \mathrm{j}=1,2,3,4\right.$. for $\mathrm{i}=1$ and are vertices on W_{4} and $\mathrm{i}=2$ then vertices are on G_{4}.Further if $\mathrm{i}=2$ then $\left.\left.\mathrm{j}=1,2, ., 8\right)\right\} . \mathrm{V}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, . . \mathrm{v}_{\mathrm{m}}\right\}$. These are vertices on path P_{m}. The edge set on pokes is given by $\mathrm{E}_{1}=\left\{\left(\mathrm{w}_{\mathrm{i}} \mathrm{u}_{\mathrm{j}}^{\mathrm{i}}\right) / \mathrm{j}=1,2,3,4\right.$; when $\mathrm{i}=1$ for pokes of W_{4} and when $\mathrm{i}=2$ these are pokes of G_{4} and in that case $j=1,3,5,7)\} . E_{2}=\left\{\left(u_{j}{ }_{j} u^{1}{ }_{j+1}\right) / j=1,2,3,4\right.$.where $j+1$ is taken modulo 4$\}$. These are cycle vertices of $W_{4} \cdot E_{3}=\left\{\left(v_{i} v_{i+1}\right) / i=1,2,, m-1.\right\}$ are edges on path $P_{m} . E_{2}{ }^{\prime}=\left\{\left(u_{j}^{2} u_{j+1}^{2}\right) / j=1,2,, .8\right.$; where $j+1$ is taken modulo $8\}$. Care should be taken thatedge $\left(\mathrm{u}_{1}{ }_{1} \mathrm{u}^{2}\right)$ - the C_{8} edge should be adjacent to last edge $\left(\mathrm{v}_{\mathrm{m}-\mathrm{l}} \mathrm{v}_{\mathrm{m}}\right)$ of path incident to $C_{8} . E_{2}$ ' are C_{8}-cycle edges on G_{4}. Since we take the paths at hub w_{i} we have $w_{1}=v_{1}$ and $w_{2}=v_{m}$ which is the hub of G4.Thus $\mathrm{V}(\mathrm{G})=\mathrm{V}_{1} \mathrm{UV}_{2}$. And $\mathrm{E}(\mathrm{G})=\mathrm{E}_{1} \mathrm{UE}_{2} \mathrm{UE} 2^{\prime} \mathrm{UE}_{3}$.

Define $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, . ., \mathrm{m}+19\}$ as follows:

$$
\begin{aligned}
& f\left(w_{i} u^{1}{ }_{j}\right)=\mathrm{j} \text { for } \mathrm{i}=1 ; \mathrm{j}=1,2,3,4 \\
& \mathrm{f}\left(\mathrm{u}^{1}{ }_{\mathrm{j}} \mathrm{u}^{1}{ }_{j+1}\right)=4+\mathrm{j}, \mathrm{j}=1,2,3,4 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}+1}\right)=8+\mathrm{j} \quad ; \mathrm{j}=1,2,, \mathrm{~m}-1 . \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{j}} \mathrm{u}^{2}{ }_{\mathrm{j}+1}\right)=\mathrm{m}+7+\mathrm{j}, \mathrm{j}=1,2, . ., 8 \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}} \mathrm{u}_{\mathrm{j}}^{\mathrm{i}}\right)=\mathrm{m}+15+\mathrm{t} \text { for } \mathrm{i}=2 ; \mathrm{j}=1,3,5,7 \text { and } \mathrm{t} \text { is such that } \mathrm{j}=2 \mathrm{t}-1
\end{aligned}
$$

Fig 4.5: A labeled copy of vertex prime graph $\mathrm{W}_{4}\left(\mathrm{P}_{6}\right) \mathrm{G}_{4}$ Edge labels are shown.
Ifwe change the end vertices of path P_{m} then the same function f as above will work as vertex prime label function. Thus the above labeling is independent of end points of P_{m}.

Thus the graph is vertex prime.
\#

4.6Theorem:

Hub of W_{4} is joined to every vertex of other copy of W_{4} by paths P_{m}. The resultant graph is vertex prime.The result holds even if we change the starting point of path namely hub, to any other vertex on W_{4}.

Proof:

We define this graph as : $\mathrm{V}_{1}=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{u}_{\mathrm{j}}^{\mathrm{i}} / \mathrm{j}=1,2,3,4\right.$. And $\left.\left.\mathrm{i}=1,2\right)\right\}$. These are vertices on two copies of W_{4}. $V_{2}=\left\{v_{i}, 1, v_{i}, 2, . . v_{i}, m\right.$ where $i=1,2 . ., 5$ for five paths ends at five different vertices of $\left.W_{4}\right\}$. These are vertices on path $P m$. The edge set on pokes is given by $E_{1}=\left\{\left(w_{i} u_{j}^{i}\right) / j=1,2,3,4\right.$. And $\left.\left.i=1,2\right)\right\} . E_{2}=\left\{\left(u_{j}^{1} u^{1}{ }_{j+1}\right) / j=1,2,3\right.$, 4.where $\mathrm{j}+1$ is taken modulo 4$\} \mathrm{U}\left\{\left(\mathrm{u}_{\mathrm{j}} \mathrm{ju}_{\mathrm{j}+1}^{2}\right) / \mathrm{j}=1,2,3\right.$, 4. where $\mathrm{j}+1$ is taken modulo 4$\}$.
E_{2} are C_{4}-cycle edges on two copies of $W_{4} . E_{3}=\left\{\left(v_{i, j} v_{i, j+1}\right) / j=1,2, . ., m-1 ; i=1,2, . .5\right\}$. Since we take the path starting at hub w_{i} we have $w_{1}=v_{i}, 1$.Thus $V(G)=V_{1} U V_{2} . E(G)=E_{1} U E E_{2} U E_{3}$.

Define $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, . ., \mathrm{q}\}$ as follows $\mathrm{q}=|\mathrm{E}(\mathrm{G})|$:
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{\mathrm{i}}\right)=\mathrm{j}$ for $\mathrm{i}=1 ; \mathrm{j}=1,2,3,4$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{j}}^{\mathrm{i}} \mathrm{u}_{\mathrm{j}+1}^{\mathrm{i}}\right)=4+\mathrm{j}, \mathrm{j}=1,2,3,4$ and $\mathrm{i}=1$;

```
\(f\left(\left(v_{i, j} v_{i, j+1}\right)\right)=8+(m-1)(i-1)+j, j=1,2, . ., m-1 ; i=1,2 . .5\).
    \(\mathrm{f}\left(\mathrm{u}_{\mathrm{j}}^{\mathrm{i}} \mathrm{u}_{\mathrm{j}+1}^{\mathrm{i}}\right)=5 \mathrm{~m}+3+\mathrm{j}, \mathrm{j}=1,2,3,4\) and \(\mathrm{i}=2\);
    \(\mathrm{f}\left(\mathrm{w}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{\mathrm{i}}\right)=5 \mathrm{~m}+7+\mathrm{j}\) for \(\mathrm{i}=2 ; \mathrm{j}=1,2,3,4\).
```

If we change starting point of all paths from hub to any other vertex on W_{4} still above labeling function f will serve as vertex prime label.

Fig 4.6: A labeled copy of vertex prime graph $\mathrm{W}_{4}\left(\mathrm{P}_{6}\right) \mathrm{W}_{4}$ Edge labels are shown.All paths starts from a cycle vertex of W_{4}
Thus the graph is vertex prime.
\#

Conclusions:

We have defined a new family of graphs $G_{1}\left(t-p_{m}\right) G_{2}$. When $t=1$ write $G_{1}\left(p_{m}\right) G_{2}$. When $G 1=$ W4and $G 2$ $=\mathrm{G} 4$ we have shown that graph is vertex prime. Further The graphs are vertex prime independent of starting and end point of path P_{m}. We have also shown that if we take 5 paths starting at hub vertex of W_{4} and each one ending at different vertex of other copy of W_{4}, the resultant graph is vertex prime. If we change the starting vertex from hub to any other vertex of W_{4} still we have shown that the same function works as vertex prime label. It is necessary to investigate the similar graphs for vertex prime labeling.

References:

[1] Mukund V. Bapat Ph.D. thesis, university of Mumbai,India,2004.
[2] T. Deretsky, S. M. Lee, and J. Mitchem, On vertex prime labelings of graphs, in Graph Theory, Combinatorics and Applications Vol. 1, J. Alavi, G. Chartrand, O. Oellerman, and A. Schwenk, eds., Proceedings 6th International Conference Theory and Applications of Graphs (Wiley, New York, 1991) 359-369.
[3] Joe Gallian Dynamic survey of graph labeling 2016
[4] Harary,GraphTheory,Narosa publishing, New Delhi
[5] Yilmaz,Cahit ,E-cordial graphs,Ars combina,46,251-256.
[6] Introduction to Graph Theory by D. WEST, Pearson Education Asia. 1 Mukund V. Bapat, Hindale,Devgad,Sindhudurg,Maharashtra India: 416630

