Lie Symmetries of (2+1)-dimensional Modified Equal Width Wave Equation

S. Padmasekaran ${ }^{1}$, R. Asokan ${ }^{2}$ and K. Kannagidevi ${ }^{3}$
${ }^{1}$ Department of Mathematics, Periyar University, Salem, Tamil Nadu, India.
${ }^{2,3}$ Department of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India.

Abstract

We establish the symmetry reductions of (2+1)- Dimensional Modified Equal Width Wave Equation is subjected to the Lie's classical method. Classification of its symmetry algebra into one- and two-dimensional subalgebras are carried out in order to facilitate its reduction systematically to $(1+1)$-dimensional PDEs and then to first or second-order ODEs.

Keywords:Nonlinear PDE,Lie's Classical Method,Lies Algebra and Symmetry Reductions.

Introduction

A simple model equation is the Korteweg-de Vries (KdV) equation [8]

$$
\begin{equation*}
v_{t}+6 v v_{x}+\delta v_{x x x}=0, \tag{1}
\end{equation*}
$$

which describe the long waves in shallow water. Its modified version is,

$$
\begin{equation*}
u_{t}-6 u^{2} u_{x}+u_{x x x}=0 \tag{2}
\end{equation*}
$$

and again there is Miura tramsformation [7]

$$
\begin{equation*}
v=u^{2}+u_{x} \tag{3}
\end{equation*}
$$

between the KdV equation (1) and its modified version (2).
In 2002, Liu and Yang [6] studied the bifurcation properties of generalized KdV equation (GKdVE)

$$
\begin{equation*}
u_{t}+a u^{n} u_{x}+u_{x x x}=0, \quad a \in R, n \in Z^{+} . \tag{4}
\end{equation*}
$$

Gungor and Winternitz [10] transformed the Generalized Kadomtsev-Petviashvili Equation (GKPE)

$$
\begin{align*}
& \left(u_{t}+p(t) u u_{x}+q(t) u_{x x x}\right)_{x}+\sigma(y, t) u_{y y}+a(y, t) u_{y}+b(y, t) u_{x y} \\
& \quad+c(y, t) u_{x x}+e(y, t) u_{x}+f(y, t) u+h(y, t)=0 \tag{5}
\end{align*}
$$

to its canonical form and established conditions on the coefficient functions under which (5) has an infinite dimensional symmetry group having a Kac-Moody-Virasoro structure.

In [13], they carried out the symmetry analysis of Variable Coefficient Kadomtsev Petviashvili Equation (VCKP) in the form,

$$
\left(u_{t}+f(x, y, t) u u_{x}+g(x, y, t) u_{x x x}\right)_{x}+h(x, y, t) u_{y}=0 .
$$

Burgers' equation $u_{t}+u u_{x}=\gamma u_{x x}$, is the simplest second order NLPDE which balances the effect of nonlinear convection and the linear diffusion. In this chapter, we discuss the symmetry reductions of the $(2+1)$-dimensional modified Equal Width Wave equation as,

$$
\begin{equation*}
u_{t}+u^{3} u_{x}-u_{x x t}-u_{y y t} . \tag{6}
\end{equation*}
$$

Our intention is to show that equation (6) admits a four-dimensional symmetry group and determine the corresponding Lie algebra, classify the one- and two-dimensional subalgebras of the symmetry algebra of (6), in order to reduce (6) to $(1+1)$-dimensional PDEs and then to ODEs. We shall establish that the symmetry generators form a closed Lie algebra and this allowed us to use the recent method due to Ahmad, Bokhari, Kara and Zaman [11] to successively reduce (6) to (1+1)-dimensional PDEs and ODEs with the help of two-dimensional Abelian and non-Abelian solvable subalgebras.This chapter is organised as follows: First, we determine the symmetry group of (6) and write down the associated Lie algebra. secondly, we consider all one-dimensional subalgebras and obtain the corresponding reductions to ($1+1$)-dimensional PDEs. Next, we show that the generators form a closed Lie algebra and use this fact to reduce (6) successively to ($1+1$)- dimensional PDEs and ODEs. Finally, we summarises the conclusions of the present work.

The Symmetry Group and Lie Algebra of modified Equal Width wave equation If (6) is invariant under a one parameter Lie group of point transformations (Bluman and Kumei [1-3], Olver [4])

$$
\begin{align*}
x^{*} & =x+\epsilon \xi(x, y, t ; u)+O\left(\epsilon^{2}\right), \tag{7}\\
y^{*} & =y+\epsilon \eta(x, y, t ; u)+O\left(\epsilon^{2}\right), \tag{8}\\
t^{*} & =t+\epsilon \tau(x, y, t ; u)+O\left(\epsilon^{2}\right), \tag{9}\\
u^{*} & =u+\epsilon \phi(x, y, t ; u)+O\left(\epsilon^{2}\right) . \tag{10}
\end{align*}
$$

Then the third Prolongation $\operatorname{Pr}^{3}(V)$ of the corresponding vector field

$$
\begin{equation*}
V=\xi(x, y, t ; u) \frac{\partial}{\partial x}+\eta(x, y, t ; u) \frac{\partial}{\partial y}+\tau(x, y, t ; u) \frac{\partial}{\partial t}+\phi(x, y, t ; u) \frac{\partial}{\partial u}, \tag{11}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\left.p^{3}(V) \Omega(x, y, t ; u)\right|_{\Omega(x, y, t ; u=0}=0 \tag{12}
\end{equation*}
$$

The determining equations are obtained from (12) and solved for the infinitesimals ξ, η, τ and ϕ. They are as follows

$$
\begin{equation*}
\xi=k_{1} \tag{13}
\end{equation*}
$$

$$
\begin{align*}
\eta & =k_{4} \tag{14}\\
\tau & =k_{2}-3 k_{3} t \tag{15}\\
\phi & =k_{4} u \tag{16}
\end{align*}
$$

At this stage, we construct the symmetry generators corresponding to each of the constants involved.
Totally there are three generators given by

$$
\begin{align*}
V_{1} & =\partial_{x}, \\
V_{2} & =\partial_{t}, \\
V_{3} & =-3 t \partial_{t}+u \partial_{u} \\
V_{2} & =\partial_{y} \tag{17}
\end{align*}
$$

The symmetry generators found in Eq.(17) form a closed Lie Algebra whose commutation table is shown below.
Table 1 Commutator Table

$\left[V_{i}, V_{j}\right]$	V_{1}	V_{2}	V_{3}	V_{4}
V_{1}	0	0	0	0
V_{2}	0	0	$-3 V_{2}$	0
V_{3}	0	0	0	0
V_{4}	0	0	0	0

The commutation relations of the Lie algebra, determined by V_{1}, V_{2}, V_{3} and V_{4} are shown in the above table.

For this four-dimensional Lie algebra the commutator table for V_{i} is a $(4 \otimes 4)$ table whose $(i, j)^{t h}$ entry expresses the Lie Bracket $\left[V_{i}, V_{j}\right]$ given by the above Lie algebra L. The table is skew-symmetric and the diagonal elements all vanish. The coefficient $C_{i, j, k}$ is the coefficient of V_{i} of the $(i, j)^{t h}$ entry of the commutator table. The Lie algebra L is solvable.

In the next section, we derive the reduction of (6) to PDEs with two independent variables and ODEs. These are four one-dimensional Lie subalgebras

$$
L_{s, 1}=\left\{V_{1}\right\}, L_{s, 2}=\left\{V_{2}\right\}, L_{s, 3}=\left\{V_{3}\right\}, L_{s, 4}=\left\{V_{4}\right\}
$$

and corresponding to each one-dimensional subalgebras we may reduce (6) to a PDE with two independent variables.

Further reductions to ODEs are associated with two-dimensional subalgebras.
It is evident from the commutator table that there is one two-dimensional solvable non-abelian subalgebras. And there are five two-dimensional Abelian subalgebras, namely,

$$
\begin{equation*}
L_{A, 1}=\left\{V_{1}, V_{2}\right\}, L_{A, 2}=\left\{V_{1}, V_{3}\right\}, L_{A, 3}=\left\{V_{1}, V_{4}\right\} L_{A, 4}=\left\{V_{2}, V_{4}\right\} L_{A, 5}=\left\{V_{3}, V_{4}\right\} \tag{18}
\end{equation*}
$$

Reductions of (2+1)-dimensional Modified Equal Width wave equation by OneDimensional Subalgebras

Case 1: $V_{1}=\partial_{x}$.
The characteristic equation associated with this generator is

$$
\begin{equation*}
\frac{d x}{1}=\frac{d y}{0}=\frac{d t}{0}=\frac{d u}{0} . \tag{19}
\end{equation*}
$$

We integrate the characteristic equation to get three similarity variables,

$$
\begin{equation*}
y=r, \quad t=s \quad \text { and } \quad u=W(r, s) . \tag{20}
\end{equation*}
$$

Using these similarity variables in Eq.(6) can be recast in the form

$$
\begin{equation*}
W_{s}-W_{r r s}=0 \tag{21}
\end{equation*}
$$

Case 2: $V_{2}=\partial_{t}$.
The characteristic equation associated with this generator is

$$
\begin{equation*}
\frac{d x}{0}=\frac{d y}{0}=\frac{d t}{1}=\frac{d u}{0} \tag{22}
\end{equation*}
$$

Following the standard procedure we integrate the characteristic equation to get three similarity variables,

$$
\begin{equation*}
x=r, \quad y=s \quad \text { and } \quad u=W(r, s) . \tag{23}
\end{equation*}
$$

Using these similarity variables in Eq.(6) can be recast in the form

$$
\begin{equation*}
W^{3} W_{r}=0 \tag{24}
\end{equation*}
$$

Case 3 : $V_{3}=-3 t \partial_{t}+$ upartial $_{u}$.
The characteristic equation associated with this generator is

$$
\begin{equation*}
\frac{d x}{0}=\frac{d y}{0}=\frac{d t}{-3 t}=\frac{d u}{u} \tag{25}
\end{equation*}
$$

Following standard procedure we integrate the characteristic equation to get three similarity variables,

$$
\begin{equation*}
x=r, \quad y=s \quad \text { and } u=W^{1 / 3}(r, s) t^{-1 / 3} . \tag{26}
\end{equation*}
$$

Using these similarity variables in Eq.(6) can be recast in the form

$$
\begin{equation*}
W^{1 / 3}-W^{1 / 3} W_{r}+(2 / 9) W^{-5 / 3}\left(W_{r}^{2}+W_{s}^{2}\right)-(1 / 3) W^{-2 / 3}\left(W_{r r}+W_{s s}\right)=0 \tag{27}
\end{equation*}
$$

Case 4: $V_{4}=\partial_{y}$.
The characteristic equation associated with this generator is

$$
\begin{equation*}
\frac{d x}{0}=\frac{d y}{1}=\frac{d t}{0}=\frac{d u}{0} \tag{28}
\end{equation*}
$$

Following standard procedure we integrate the characteristic equation to get three similarity variables,

$$
\begin{equation*}
x=r, \quad t=s \quad \text { and } \quad u=W(r, s) . \tag{29}
\end{equation*}
$$

Using these similarity variables in Eq.(6) can be recast in the form

$$
\begin{equation*}
W_{s}+W^{3}\left(W_{r}\right)-W_{r r s}=0 \tag{30}
\end{equation*}
$$

Reductions of (2+1)-dimensional modified Equal Width wave equationby TwoDimensional Abelian Subalgebras

Case I: Reduction under V_{1} and V_{2}.
From Table 1 we find that the given generators commute $\left[V_{1}, V_{2}\right]=0$. Thus either of V_{1} or V_{2} can be used to start the reduction with. For our purpose we begin reduction with V_{1}. Therefore we get Eq.(20) and Eq.(21).
At this stage, we express V_{2} in terms of the similarity variables defined in (20). The transformed V_{2} is

$$
\begin{equation*}
\tilde{V}_{2}=\partial s \tag{31}
\end{equation*}
$$

The characteristic equation for \tilde{V}_{2} is

$$
\frac{d r}{0}=\frac{d s}{1}=\frac{d W}{0}
$$

Integrating this equation as before leads to new variables

$$
r=\zeta \text { and } W=R(\zeta)
$$

which reduce Eq.(21) to

$$
\begin{equation*}
\left.-R_{(} \zeta \zeta\right)+R(\zeta)=0 \tag{32}
\end{equation*}
$$

Case II: Reduction under V_{1} and V_{3}.
From Table 1 we find that the given generators commute $\left[V_{1}, V_{3}\right]=0$. Thus either of V_{1} or V_{3} can be used to start the reduction with. For our convenience we begin reduction with V_{3}. At this stage, we express V_{1} in terms of the similarity variables defined in Eq.(26). The transformed V_{1} is

$$
\begin{equation*}
\tilde{V}_{1}=\partial_{r} \tag{33}
\end{equation*}
$$

The characteristic equation for \tilde{V}_{1} is

$$
\frac{d r}{1}=\frac{d s}{0}=\frac{d W}{0} .
$$

Integrating this equation as before leads to new variables

$$
s=\zeta \text { and } W=R(\zeta)
$$

which reduce Eq.(27) to

$$
\begin{equation*}
R(\zeta)^{1 / 3}+(2 / 9) R^{-5 / 3}\left(R_{\zeta}\right)^{2}-(1 / 3) R^{-2 / 3}\left(R_{\zeta \zeta}\right)=0 \tag{34}
\end{equation*}
$$

Case III : Reduction under V_{1} and V_{4}.

From Table 1 we find that the given generators commute $\left[V_{1}, V_{4}\right]=0$. Thus either of V_{1} or V_{4} can be used to start the reduction with. For our convenience we begin reduction with V_{1}. Therefore we get Eq.(20) and Eq.(21).
At this stage, we express V_{1} in terms of the similarity variables defined in Eq.(20). The transformed V_{4} is

$$
\begin{equation*}
\tilde{V}_{4}=\partial_{r} \tag{35}
\end{equation*}
$$

 new variables

$$
s=\zeta \text { and } W=R(\zeta)
$$

which reduce Eq.(21) to

$$
\begin{equation*}
R_{(}(\zeta)=0 . \tag{36}
\end{equation*}
$$

Case IV : Reduction under V_{2} and V_{4}.
From Table 1 we find that the given generators commute $\left[V_{2}, V_{4}\right]=0$. Thus either of V_{2} or V_{4} can be used to start the reduction with. For our convenience we begin reduction with V_{2}. Therefore we get Eq.(23) and Eq.(24).
At this stage, we express V_{4} in terms of the similarity variables defined in Eq.(23). The transformed V_{4} is

$$
\begin{equation*}
\tilde{V}_{4}=\partial_{s} \tag{37}
\end{equation*}
$$

The characteristic equation for \tilde{V}_{4} is $\mathrm{dr}^{0=\frac{d s}{1}=\frac{d W}{0}}$. Integrating this equation as before leads to new variables

$$
r=\zeta \text { and } W=R(\zeta)
$$

which reduce Eq.(24) to

$$
\begin{equation*}
\left.R^{3} R_{(} \zeta\right)=0 \tag{38}
\end{equation*}
$$

Case V : Reduction under V_{3} and V_{4}.

From Table 1 we find that the given generators commute $\left[V_{3}, V_{4}\right]=0$. Thus either of V_{3} or V_{4} can be used to start the reduction with. For our convenience we begin reduction with V_{3}.

Therefore we get Eq.(26) and Eq.(27).
At this stage, we express V_{4} in terms of the similarity variables defined in Eq.(26). The transformed V_{4} is

$$
\begin{equation*}
\tilde{V}_{4}=\partial_{s} \tag{39}
\end{equation*}
$$

The characteristic equation for \tilde{V}_{4} is $\mathrm{dr}_{\overline{0=\frac{d s}{1}=\frac{d W}{0}}}$. Integrating this equation as before leads to new variables

$$
r=\zeta \text { and } W=R(\zeta)
$$

which reduce Eq.(27) to

$$
\begin{equation*}
\left.\left.\left.R^{1 / 3}-R^{1 / 3} R_{(} \zeta\right)+(2 / 9) R^{-5 / 3} R_{(} \zeta\right)^{2}-(1 / 3) R^{-2 / 3} R_{(} \zeta \zeta\right)=0 \tag{40}
\end{equation*}
$$

Conclusions:

In this chapter, A (2+1)-dimensional Modified Equal width wave equation, $u_{t}+u^{2} u_{x}-\left(u_{x x t}+\right.$ $\left.u_{y y t}\right)=0$ is subjected to Lie's classical method. Equation (6) admits a three-dimensional symmetry group. It is established that the symmetry generators form a closed Lie algebra. Classification of symmetry algebra of (6) into one- and two-dimensional subalgebras is carried out. Systematic reduction to ($1+1$)-dimensional PDE and then to first order ODEs are performed using one-dimensional and two-dimensional solvable Abelian subalgebras.

References

1. G. Bluman, S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, (1989).
2. S. Padmasekaran, S.Rajeswari and G. Sivagami,Similarity Solution of Semilinear Parabolic Equations with Variable Coefficients,IJMAA,Volume 4, Issue 3A (2016), 201209.
3. S.Padmasekaran and S.Rajeswari,Solitons and Exponential Solutions for a Nonlinear (2+1)dim PDE, IJPAM,Volume 115 No. 9 2017, 121-130.
4. S. Padmasekaran and S. Rajeswari, Lie Symmetries of (2+1)dim PDEIJMTT,Volume 51 No. 6,11-2017.
5. S. Padmasekaran and S.Rajeswari,Solitons and Exponential Solutions for a Nonlinear (2+1)dim PDE, IJPAM,Volume 115 No. 9 2017, 121-130.
6. S. Padmasekaran and S. Rajeswari, Lie's Symmetries of (2+1)dim PDEIJMTT,Volume 51 No. 6,11-2017.
7. P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, (1986).
8. A. Ahmad, Ashfaque H. Bokhari, A. H. Kara, F. D. Zaman, Symmetry Classifications and Reductions of Some Classes of (2+1)-Nonlinear Heat Equation, J. Math. Anal. Appl., 339: 175-181,(2008).
9. Z. Liu and C. Yang, The application of bifurcation method to a higher-order KdV equation,J. Math. Anal. Appl., 275: 1-12, (2002).
10. R. M. Miura, Korteweg-de Vries equations and generalizations. A remarkable explicit nonlinear transformation, I.Math. Phys. 9: 1202-1204, (1968).
11. D. J. Korteweg and G. de Vries, On the Chans of Form of Long Waves Advancing in a Rectangular canal, and On a New type of Long Stationary Waves, Philosophical Magazine 39 (1985), 422-443.
12. F. Gungor and P. Winternitz, Generalized Kadomtsev Petviashvili equation with an infinitesimal dimensional symmetry algebra, J. Math. Anal. 276 (2002), 314-328.
13. F. Gungor and P. Winternitz, Equaivalence Classes and Symmetries of the Variable Coefficient Kadomtsev Petviashvili Equation, Nonlinear Dynamics 35 (2004), 381-396.
14. P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 1986.
15. N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel Publishing Company, The Netherlands, 1985.
16. R.E. Grundy, Similarity solutions of the nonlinear diffusion equation, Quart. Appl. Math.,37 (1979) 259-280.
17. D.L. Hill, J.M. Hill, Similarity solutions for nonlinear diffusion- further exact solutions, J. Eng. Math., 24 (1990) 109-124.
18. J.M. Hill, Similarity solutions for nonlinear diffusion- a new integration procedure, J. Eng.Math., 23 (1989) 141-155.
