E-Cordiality of Tail C_{3} Related One Point Union Graphs

Mukund Bapat

Abstract

1. Abstract:

In this paper we obtain e-cordial labeling of one point union of k copies of tail graph namely $G^{(k)}$ where $G=$ tail $C_{3}\left(P_{t}\right)$. We have taken different values of t as 2,3,4. If we change point of union on G then different structures of $G^{(k)}$ are obtained. Of these we have taken pairwise non isomorphic structures of $G^{(k)}$ and have proved that they all are e-cordial under certain conditions. We have also considered the case that more than one tails are attached to G such that sum of edges is $t-1$ for given t and the family is e-cordial.

Key words: graph, E-cordial, tail graph, C_{3}, labeling.
Subject Classification: 05C78

2. Introduction:

In 1997 Yilmaz and Cahit introduced weaker version of edge graceful labeling E-cordial labeling [4]. Let G be a (p, q) graph. $\mathrm{f}: \mathrm{E} \rightarrow\{0,1\}$ be a function. Define f on V by $\mathrm{f}(\mathrm{v})=\sum\{f(v u)(v u) \in E(G)\}(\bmod 2)$.The function f is called as E-cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $v_{f}(\mathrm{i})$ is the number of vertices labeled with $i=0,1$. And $e_{f}(i)$ is the number of edges labeled with $i=0,1$, We follow the convention that $v_{f}(0,1)=(a$, b) for $v_{f}(0)=a$ and $v_{f}(1)=b$ further $e_{f}(0,1)=(x, y)$ for $e_{f}(0)=x$ and $e_{f}(1)=y$. A graph that admits E-cordial labeling is called as E-cordial graph.Yilmaz and Cahit prove that trees T_{n} are E-cordial iff for n not congruent to $2(\bmod 4), \mathrm{K}_{\mathrm{n}}$ are E-cordial iff n not congruent to $2(\bmod 4)$, Fans F_{n} are E-cordial iff for n not congruent to 1(mod 4).Yilmaz and Cahit observe that A graph on n vertices cannot be E-cordial if n is congruent to $2(\bmod 4)$.One should refer Dynamic survey of graph labeling by Joe Gallian [2] for more results on E-cordial graphs.

The graphs we consider are finite, undirected, simple and connected. For terminology and definitions we refer Harary[3] and Dynamic survey of graph labeling by Joe Gillian [2]. The families we discuss are obtained by taking acopies of graph G and fuse it with one end of path P_{t}.Further take one point union on different points to get $\mathrm{G}^{(\mathrm{k})}$. If there are more pathsthat all are attached at the same fixed point on G we represent these families by $\mathrm{G}(\mathrm{tPn})$. We take $\mathrm{t}=1$ and $\mathrm{G}=\mathrm{C}_{3}, \mathrm{n}=2,3,4$.

3. Preliminaries:

3.1 Fusion of vertex. Let G be a (p, q) graph. Let $\mathrm{u} \neq \mathrm{v}$ be two vertices of G . We replace them with single vertex w and all edges incident with u and that with v are made incident with w . If a loop is formed is deleted. The new graph has at least $\mathrm{p}-1$ vertices and $\mathrm{q}-1$ edges.[5]
$3.2 \quad \mathrm{G}^{(\mathrm{K})}$ it is One point union of k copies of G is obtained by taking k copies of G and fusing a fixed vertex of each copy with same fixed vertex of other copies to create a single vertex common to all copies.If G is a (p, q) graph then $\mid V\left(G_{(k)} \mid=k(p-1)+1\right.$ and $|E(G)|=k . q$
3.3 A tail graph (also called as antenna graph) is obtained by fusing a path p_{k} to some vertex of G . This is denoted by tail $\left(G, P_{k}\right)$. If there are t number of tails of equal length say $(k-1)$ then it is denoted by tail $\left(G, t_{k}\right)$.If there are two or more tails attached at same vertex of G we denote it by tail $G\left(P_{t}, P_{k} ..\right)$ If G is a (p, q) graph and a tail P_{k} is attached to it then $\operatorname{tail}\left(G, \mathrm{P}_{\mathrm{k}}\right)$ has $\mathrm{p}+\mathrm{k}-1$ vertices and $\mathrm{q}+\mathrm{k}-1$ edges.

4. Main Results:

Theorem 4.1All structures of one point union of k copies ofG $=$ tail $\left(\mathrm{C}_{3}, \mathrm{P}_{2}\right)$ i.e. $\mathrm{G}^{(\mathrm{K})}$ are e-cordial provided k is not congruent to $3(\bmod 4)$.

Proof:The different structures are due to the common vertex is changed.

Fig.4.1 common vertex can be ' a ', ' b ', and ${ }^{\prime} c^{\prime}$ or ' $d^{\prime} . v_{f}(0,1)=(2,2), e_{f}(0,1)=(2,2)$

Figure 4.3 : edge labels are shown. $v_{f}(0,1)=(3,4), e_{f}(0,1)=(4,4)$

Figure 4.4 : edge labels are shown. $\mathrm{v}_{\mathrm{f}}(0,1)=(3,4), \mathrm{e}_{\mathrm{f}}(0,1)=(4,4)$

It follows from figure 4.1 that there are only three non-isomorphic structures possible and are at verices 'a', 'b', and ' c ' or ${ }^{\text {' }}$ '. In $G^{(K)}$ when $k=1$ the copy in figure 4.1 will work.
Define a functionf: $\mathrm{E}\left((\mathrm{G})^{(\mathrm{k})}\right) \rightarrow\{0,1\}$. This gives us four types of labeling as shown in figure 4.1, fig.4.2, fig.4.3 and fig 4.4.

For all other $\mathrm{K}>1$ we first obtain $\mathrm{G}^{(\mathrm{K})}$ for $\mathrm{k}=2 \mathrm{x}, \mathrm{x}=1,2, \ldots$, . This is done by fusing x times at vertex ' u ' the block in figure 4.2 or figure 4.3 or figure 4.4 depending on if one point union is to be taken at ' b ', at ' a ', or at ' c ' respectively. $G^{(K)}$ for $k=2 x+1, x=1,2, \ldots$, is obtained by fusing a copy in figure 4.1 on respective vertex at vertex u.

The label number distribution for all structures is as follows:
For $k=2 x, x=1,3,5$,..we have $v_{f}(0,1)=(3+6 x, 4+6 x), e_{f}(0,1)=(4 x, 4 x)$ and label of common vertex ' 1 '.
For $k=2 x, x=2,4,6$,..we have $v_{f}(0,1)=(7+6 x, 6+6 x), e_{f}(0,1)=(4 x, 4 x)$ and label of common vertex ' 0 '. When the common vertex is ' b ' or ' c ' for $k=2 x+1$, for $x=2,4,6,, .$. we have label distribution as $v_{f}(0,1)=(8+6 x, 8+6 x), e_{f}(0,1)=$ $(2+4 \mathrm{x}, 2+4 \mathrm{x})$ and label of common vertex is ' 1 '. and when common vertex is ' a ' for $k=2 \mathrm{x}+1$, for $\mathrm{x}=2,4,6$,...we have label distribution as $\mathrm{v}_{\mathrm{f}}(0,1)=(8+6 \mathrm{x}, 8+6 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(2+4 \mathrm{x}, 2+4 \mathrm{x})$. The only difference is at label of common vertex is ' 0 '.
Thus the graph is e-cordial. \#
Theorem 4.2 All structures of one point union of k copies of $G=$ tail $\left(C_{3}, 2 P_{2}\right) i . e . G^{(K)}$ are e-cordial for all $k=1,2$,..
Proof: There are four possible structures on $G^{(k)}$ which are pairwise non-isomorphic depending on common point ' a ', ' b ' or ' c '. This is clear from fig 4.5.

The function $\mathrm{f}: \mathrm{E}\left(\mathrm{G}^{(\mathrm{K})}\right) \rightarrow\{0,1\}$ gives following three types of labels. We combine it to obtain a labeled copy of $\mathrm{G}^{(\mathrm{K})}$. The numbers in diagrams are edge labels.

Fig.4.5 common vertex can be ' a ', ' b ', and ${ }^{\prime} c^{\prime}$ or ' $d^{\prime} . v_{f}(0,1)=(2,2), e_{f}(0,1)=(2,2)$

Fig.4.6 $v_{f}(0,1)=(3,2), e_{f}(0,1)=(3,2)$

Fig.4.7 $v_{f}(0,1)=(1,4), e_{f}(0,1)=(2,3)$

Fig.4.8 $v_{f}(0,1)=(3,2), e_{f}(0,1)=(3,2)$

In structure 1 we fuse Type A and Type B label at vertex ' a ' whose label is ' 1 '. For $k \equiv 1(\bmod 2)$ we use Type A label and Type B label for $\mathrm{k} \equiv 0(\bmod 2)$.
In structure 2 we fuse Type A and Type B label at vertex ' c ' whose label is ' 1 '. For $k \equiv 1(\bmod 2)$ we use Type A label and Type B label for $\mathrm{k} \equiv 0(\bmod 2)$.
In structure 3 we fuse Type C and Type B label at vertex ' b 'whose label is ' 1 '. For $k \equiv 1$ (mod 2) we use Type C label and Type B label for $\mathrm{k} \equiv 0(\bmod 2)$.

The resultant label numbers are $\mathrm{v}_{\mathrm{f}}(0,1)=(3+4 \mathrm{x}, 2+4 \mathrm{x})$, $\left.\mathrm{e}_{\mathrm{f}}(0,1)=(3+5 \mathrm{x}, 2+5 \mathrm{x})\right)$ for $\mathrm{k}=2 \mathrm{x}+1$ such that $x=0,1,2 \ldots$ and $v_{f}(0,1)=(5+4 x, 4+4 x), e_{f}(0,1)=(5 x, 5 x)$ for $k=2 x$ such that $x=1,2 \ldots$ Thus for all values of k we have the graph is e-cordial. \#

Theorem 4.3 All structures of one point union of k copies of $G=$ tail $\left(C_{3}, P_{3}\right)$ i.e. $G^{(K)}$ are e-cordial for all $k=1,2, .$.
Proof: There are four possible structures on $G^{(k)}$ which are pairwise non-isomorphic depending on common point 'a', 'b', 'c'or 'd'. This is clear from fig 4.5.The function $\mathrm{f}: \mathrm{E}\left(\mathrm{G}^{(\mathrm{K})}\right) \rightarrow\{0,1\}$ gives following two types of labels. We combine it to obtain a labeled copy of $\mathrm{G}^{(\mathrm{K})}$.

Fig.4.9 common vertex can be ' a ', ' b ', and ' c ' or ' d '. and ' ${ }^{\prime}$ or ${ }^{\prime} d^{\prime}$.

Fig.4.10 $v_{f}(0,1)=(3,2), e_{f}(0,1)=(3,2)$

Fig.4.11 $v_{f}(0,1)=(1,4), e_{f}(0,1)=(2,3)$

In structure 1 we fuse Type A and Type B label at vertex 'b'. For $k \equiv 1$ (mod2) we use Type A label and Type B label for $\mathrm{k} \equiv 0(\bmod 2)$.
In structure 2 we fuse Type A and Type B label at vertex ' c '. For $k \equiv 1(\bmod 2)$ we use Type A label and Type B label for $\mathrm{k} \equiv 0(\bmod 2)$.
In structure 3 we fuse Type A and Type B label at vertex ' a '. For $k \equiv 1(\bmod 2)$ we use Type A label and Type B label for $\mathrm{k} \equiv 0(\bmod 2)$.
In structure 4 we fuse Type A and Type B label at vertex ' d '. For $k \equiv 1(\bmod 2)$ we use Type A label and Type B label for $\mathrm{k} \equiv 0(\bmod 2)$.
The resultant label numbers are $\mathrm{v}_{\mathrm{f}}(0,1)=(3+4 \mathrm{x}, 2+4 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(3+5 \mathrm{x}, 2+5 \mathrm{x})$ for $\mathrm{k}=2 \mathrm{x}+1$ such that $\mathrm{x}=0,1,2 \ldots$ and $\mathrm{v}_{\mathrm{f}}(0,1)=(5+4 \mathrm{x}, 4+4 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(5 \mathrm{x}, 5 \mathrm{x})$ for $\mathrm{k}=2 \mathrm{x}$ such that $\mathrm{x}=1,2 \ldots$ Thus for all values of k we have the graph is $\mathrm{e}-$ cordial. \#

Theorem 4.4 All structures of one point union of k copies of $G=$ tail $\left(\mathrm{C}_{3}, 3 \mathrm{P}_{2}\right)$ i.e. $\mathrm{G}^{(\mathrm{K})}$ are e-cordial for all knot congruent to $1(\bmod 4)$.

Fig.4.12 $v_{f}(0,1)=(2,4), e_{f}(0,1)=(3,3)$. This is not e-cordial.

Fig.4.13 $v_{f}(0,1)=(5,6), e_{f}(0,1)=$ $(6,6)$.label of vertex ' b '= 1

Proof: There are 3apossible structures on $G^{(k)}$ which are pairwise non-isomorphic depending on common point ' a ', ' b ',' or ' c ' on G. This is clear from fig 4.12 . When $k \equiv 1(\bmod 4)$, the structures are not e-cordial.The function $\mathrm{f}: \mathrm{E}\left(\mathrm{G}^{(\mathrm{K})}\right) \rightarrow\{0,1\}$ gives types B label as above shown in fig 4.13. We combine it to obtain a labeled copy of $\mathrm{G}^{(\mathrm{K})}$. To obtain any structure we first use Type B label repeatedly for k times where k is even number given by $k=2 x ; x=1$, 2, \ldots

To obtain labeled copy of $\mathrm{G}^{(\mathrm{K})}$ for $\mathrm{k}=2 \mathrm{x}+1$ and k not congruent to $1(\bmod 4)$, we first obtain the structure for $\mathrm{k}=2 \mathrm{x}$ and at the common point of it fuse Type A label with vertex on it, same as the common vertex.

For structure 1 the fusion point on G is vertex ' a '.
For structure 2 the fusion point on G is vertex ' b '.
For structure 3 the fusion point on G is vertex ' c '.
In all structures we get label number distribution as follows: $v_{f}(0,1)=(5 x+1,5 x), e_{f}(0,1)=(6 x, 6 x)$ when $k=2 x, x=$ $2,4,6$..and fusion vertex label as ' 0 '. When $k=2 x ; x=1,3,5 \ldots$ we have $v_{f}(0,1)=(5 x, 5 x+1), e_{f}(0,1)=(6 x, 6 x)$ and the vertex label of common vertex is ' 1 '. When k is of type $K=3+4 x, x=0,1,2,3 . . v_{f}(0,1)=(10 x+8,10 x+8), e_{f}(0,1)=$ ($6 x, 6 x$).And fusion vertex label as ' 0 ',

Thus the graph is e-cordial.
\#
Theorem 4.5 All structures of one point union of k copies of $G=$ tail $\left(\mathrm{C}_{3}, \mathrm{P}_{3}, \mathrm{P}_{2}\right)$ i.e. $\mathrm{G}^{(\mathrm{K})}$ are e-cordial for all k not congruent to $1(\bmod 4)$.

Fig.4.14 $v_{f}(0,1)=(2,4), e_{f}(0,1)=(3,3)$. This is not $e-$

Fig.4.15 $v_{f}(0,1)=(5,6), e_{f}(0,1)=(6,6)$

Proof:There are 5 possible structures on $G^{(k)}$ which are pairwise non-isomorphic depending on common point ' a ', ' b ', ' d' , 'e' or 'c' on G. This is clear from fig 4.14. When $k \equiv 1(\bmod 4)$, the structures are not e-cordial.

The function $\mathrm{f}: \mathrm{E}\left(\mathrm{G}^{(\mathrm{K})}\right) \rightarrow\{0,1\}$ gives type B label as shown in fig. 4.15. We combine it to obtain a labeled copy of $\mathrm{G}^{(\mathrm{K})}$. To obtain any structure we first use Type B label repeatedly for k times where k is even number given by $\mathrm{k}=$ $2 \mathrm{x} ; \mathrm{x}=1,2, \ldots$

To obtain labeled copy of $G^{(K)}$ for $k=2 x+1$ and k not congruent to $1(\bmod 4)$, we first obtain the structure for $\mathrm{k}=2 \mathrm{x}$ and at the common point of it fuse Type A label with vertex on it, same as the common vertex.
For structure 1 the fusion point on G is vertex ' a '.
For structure 2 the fusion point on G is vertex ' b '.

For structure 3 the fusion point on G is vertex ' d '.
For structure 1 the fusion point on G is vertex ' e '.
For structure 2 the fusion point on G is vertex ' c '.
In all structures we get label number distribution as follows: $v_{f}(0,1)=(5 x+1,5 x), e_{f}(0,1)=(6 x, 6 x)$ when $k=2 x, x=$ $2,4,6$..and fusion vertex label as ' 0 '. When $k=2 x ; x=1,3,5 \ldots$ we have $v_{f}(0,1)=(5 x, 5 x+1), e_{f}(0,1)=(6 x, 6 x)$ and the vertex label of common vertex is ' 1 '.

When k is of type $K=3+4 x, x=0,1,2,3 . . v_{f}(0,1)=(10 x+8,10 x+8), e_{f}(0,1)=(6 x, 6 x)$. With fusion vertex label as ' 0 ' Thus the graph is e-cordial. \#

Theorem 4.6 All structures of one point union of k copies of $G=$ tail $\left(C_{3}, P_{4}\right)$ i.e. $G^{(K)}$ are e-cordial for all k not congruent to $1(\bmod 4)$.

Fig.4.16 $\mathrm{v}_{\mathrm{f}}(0,1)=(2,4), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$. This copy is not e-cordial.

Proof:There are 5 possible structures on $G^{(k)}$ which are pairwise non-isomorphic depending on common point ' a ', ' b ',' d', 'e' or 'c' on G. This is clear from fig 4.16. When $k \equiv 1(\bmod 4)$, the structures are not e-cordial. The function $\mathrm{f}: \mathrm{E}\left(\mathrm{G}^{(\mathrm{K})}\right) \rightarrow\{0,1\}$ gives type B label as shown in fig. 4.17. We combine it to obtain a labeled copy of $\mathrm{G}^{(\mathrm{K})}$. To obtain any structure we first use Type B label repeatedly for k times where k is even number given by $\mathrm{k}=$ $2 \mathrm{x} ; \mathrm{x}=1,2, \ldots$

To obtain labeled copy of $\mathrm{G}^{(\mathrm{K})}$ for $\mathrm{k}=2 \mathrm{x}+1$ and k not congruent to $1(\bmod 4)$, we first obtain the structure for $\mathrm{k}=2 \mathrm{x}$ and at the common point of it fuse Type A label with vertex on it, same as the common vertex.

For structure 1 the fusion point on G is vertex ' a '.
For structure 2 the fusion point on G is vertex ' b '.
For structure 3 the fusion point on G is vertex ' d '.
For structure 1 the fusion point on G is vertex ' e '.
For structure 2 the fusion point on G is vertex ' c '.
In all structures we get label number distribution as follows: $v_{f}(0,1)=(5 x+1,5 x), e_{f}(0,1)=(6 x, 6 x)$ when $k=2 x, x=$ $2,4,6$..and fusion vertex label as ' 0 '. When $k=2 x ; x=1,3,5 \ldots$ we have $v_{f}(0,1)=(5 x, 5 x+1), e_{f}(0,1)=(6 x, 6 x)$ and the vertex label of common vertex is ' 1 '.

When k is of type $K=3+4 x, x=0,1,2,3 . . v_{f}(0,1)=(10 x+8,10 x+8), e_{f}(0,1)=(6 x, 6 x)$.
Thus the graph is e-cordial. \#
Conclusions: In this paper we have obtained one point union of k copies of tail graph tail $\left(\mathrm{G}, \mathrm{P}_{\mathrm{t}}\right)$. We have taken $\mathrm{G}=$ C_{3} and $\mathrm{t}=2,3,4$. Doing so we also consider tail P_{t} attached to G is splited in a different tails of smaller length such that sum of all edges will be t-1.In obtaining $G^{(k)}$ we get non isomorphic structures .these all are e-cordial depending on main result that number of vertices must not be congruent to $2(\bmod 4)$.

The results we have obtained are : that All structures of one point union of k copies of

1) $G=$ tail $\left(C_{3}, P_{2}\right)$ i.e. $G^{(K)}$ are e-cordial provided k is not congruent to $3(\bmod 4)$.
2) $G=$ tail $\left(\mathrm{C}_{3}, 2 \mathrm{P}_{2}\right)$ i.e. $\mathrm{G}^{(\mathrm{K})}$ are e-cordial for all $\mathrm{k}=1,2$,..
3) $G=$ tail $\left(C_{3}, P_{3}\right)$ i.e. $G^{(K)}$ are e-cordial for all $k=1,2$,..
4) $\mathrm{G}=$ tail $\left(\mathrm{C}_{3}, 3 \mathrm{P}_{2}\right)$ i.e. $\mathrm{G}^{(\mathrm{K})}$ are e-cordial for all k not congruent to $1(\mathrm{mod}$
5) $\mathrm{G}=$ tail $\left(\mathrm{C}_{3}, \mathrm{P}_{3}, \mathrm{P}_{2}\right)$ i.e. $\mathrm{G}^{(\mathrm{K})}$ are e-cordial for all k not congruent to $1(\bmod 4)$.
$6) \mathrm{G}=$ tail $\left(\mathrm{C}_{3}, \mathrm{P}_{4}\right)$ i.e. $\mathrm{G}^{(\mathrm{K})}$ are e-cordial for all k not congruent to $1(\bmod 4)$.
We obtain different structures on same graph and show that they all are e-cordial.This property og G is called as invariance under e-cordiality.

References:

[1] Bapat M.V. Ph.D. thesis,University Of Mumbai, 2004
[2] Joe Gallian Dynamic survey of graph labeling 2016
[3] Harary,GraphTheory,Narosa publishing, New Delhi
[4] Yilmaz,Cahit ,E-cordial graphs,Ars combina,46,251-256.
[5] A First look at Graph Theory. A book byJohn clark, D.Holton, world scientific. 1 Mukund V. Bapat, Hindale, Devgad, Sindhudurg, Maharashtra, India

