Some Allied Open Functions via Semi*Preopen and Preopen Sets in Topology

V.Ananthasuruthi^{#1} S.Pasunkili Pandian^{#2}

 #1 M.Phil Research scholar Aditanar college of Arts and Science
#2 Associate Professor, Department of Mathematics, Aditanar college of Arts and Science Tiruchendur Tamil Nadu India.

Abstract:

In this paper, we define a new classes of functions, namely p-Semi*Preopen, p*- Semi*Preopen functions and contra-p-Semi*Preopen functions using Semi*preirresolute functions, Semi*Preopen sets, and preopensets and their properties are investigated.

Key words :

Preopen sets, Semi*Preopen sets, Preopen functions, Semi*Preopen functions, p-Semi*Preopen, p*-Semi*Preopen functions and contra-p-Semi*Preopen functions.

1. INTRODUCTION

In 1963, Levine [7] introduced the concept of semiopen sets in topological spaces. Andrijevic [1] introduced the class of semipreopen and semipreclosed sets in topological spaces. In 2013, S. pasunkilipandian [11] introduced new class of semi star preopen sets in topological spaces. Navalagi [8] introduced new class of functions in p-semipreopen function and contra-p-semipreopen function. The purpose of this paper is to study some properties of p-Semi*Preopen, p*- Semi*Preopen functions and contra-p-Semi*Preopen functions.

2. PRELIMINARIES

Throughout this paper (X, τ) , (Y, σ) and (Z, γ) (or simply X, Y and Z) denote topological spaces on which no separation axioms are assumed. The closure and the interior of $A \subset X$ are denoted by Cl(A) and Int(A) respectively. **Definition 2.1[7]:** A subset A of a topological space (X, τ) is called generalized closed (briefly g-closed) if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Definition 2.2[11]: Let A be a subset of (X, τ) . Then generalized closure of A is defined as the intersection of all g-closed sets containing A and is denoted by $Cl^*(A)$.

Definition 2.3: The subset A of a topological space (X, τ) is semiopen if $A \subseteq Cl$ (Int(A)).

Definition 2.4: The subset A of a topological space (X, τ) is preopen if $A \subseteq Int(Cl(A))$. The family of all semiopen (resp.preopen, semipreopen) sets of a space X is denoted by SO(X) (resp.PO(X), SPO(X)) and that of semi closed (resp.preclosed, semipreclosed) sets of a space X is denoted by SF(X)(resp.PF(X), SPF(X)).

Definition 2.5: The preclosure of a set A of X is the intersection of all preclosed sets that contain A and A is denoted by pCl(A).

The union of all preopen sets which are contained in A is called the pre-interior of A is denoted by pInt(A).

Definition 2.6: The subset A of a topological space (X, τ) is called semi*preopen if $A \subseteq Cl^*$ (pInt(A)).

Definition 2.7: A function $f: X \rightarrow Y$ is called preopen, if for every open set B of X, f(B) is preopen in Y.

Definition 2.8: A function $f: X \rightarrow Y$ is called semi*preopen, if the image of each open set of X, is semi*preopen in Y. It is denoted by S*PO(X).

Definition 2.9: A function $f: X \rightarrow Y$ is called semi*preopen in the sense of Cammaroto and Noiri[CN], if the

image of each semiopen set of X, is a semi*preopen in Y.

Definition 2.10: A function $f: X \rightarrow Y$ is called contra-preopen, if for every open set B of X, f(B) is preclosed in Y.

Definition 2.11: A function $f: X \to Y$ is said to be semi*preirresolute, if $f^{1}(V)$ is semi*preopen in X for every semi*preopen set V in Y.

Remark 2.12: (i). A subset A is preopen if and only if pInt(A) = A.

(ii). A subset A is preclosed if and only if pCl(A) = A.

Theorem 2.13: Every open set is preopen.

Theorem 2.14 : Every open set is semi*preopen.

Theorem 2.15: Every semi*preopen set is semipreopen.

3. p-SEMI*PREOPEN FUNCTIONS

In this section we define p-semi*preopen functions, p*-semi*preopen functions and contra- p-semi*preopen functions and investigate some of their properties.

Definition 3.1: A function $f: X \to Y$ is said to be p-semi*preopen if the image of each semi*preopen set of X is an preopen set in Y.

Example 3.2 : Let X ={a, b, c} be a set with topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and Y={1, 2, 3} be a set with topology $\sigma = \{\phi, Y, \{1\}, \{3\}, \{1, 3\}\}$. Then S*PO(X)= $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and PO(Y) = $\{\phi, \{1\}, \{3\}, \{1, 3\}, Y\}$. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a function defined by f(a) = 1 = f(c) and f(b) = 3. Then f is p-semi*preopen function.

Theorem 3.3: Every p-semi*preopen function is preopen.

Proof: Let $f: X \to Y$ be a p-semi*preopen function. Let V be an open set in X. Since every open set is semi*preopen, V is semi*preopen in X. This implies f(V) is preopen in Y. Therefore f is preopen.

Remark 3.4: The converse of the above theorem 3.3 is not true as shown in the following example.

Example 3.5: Let $X = \{a, b, c\}$ be a set with topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $Y = \{1, 2, 3\}$ be a set with topology $\sigma = \{\phi, Y, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}\}$. Then $S*PO(X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ and $PO(Y) = \{\phi, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, Y\}$. Let $f:(X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = 2, f(b) = 1, and f(c) = 3. Then clearly f is preopen, but f is not p-semi*preopen function since $f(\{a, c\}) = \{2, 3\} \notin PO(Y)$.

Theorem 3.6: A function $f: X \to Y$ is said to be p-semi*preopen if and only if for every subset $A \subset X$, $f(s*pInt(A)) \subset pInt(f(A))$.

Proof: Let f be a p-semi*preopen function. Then $f(s*pInt(A)) \subset f(A)$ for each $A \subset X$. Since s*pInt(A) is a semi*preopen set in X, f(s*pInt(A)) is a preopen function contained in Y. Also, pInt (f(A)) is a largest preopen set contained in f(A). That is, $pInt(f(A)) \subset f(A)$. Therefore $f(s*pInt(A)) \subset pInt(f(A))$. On the other hand, let $f(s*pInt(A)) \subset pInt(f(A))$ for every subset $A \subset X$. Let G be any semi*preopen set in X. Then $f(G) = f(s*pInt(G)) \subset pInt(f(G))$ which implies that $f(G) \subset pInt(f(G))$. But in general, pInt $(f(G)) \subset f(G)$. Therefore f(G) = pInt(f(G)), which implies that f(G) is a preopen set in Y. Hence f is a p-semi*preopen function.

Definition 3.7: A function $f: X \rightarrow Y$ is called p*-semi*preopen functions if the image of each preopen set U of X is semi*preopen in Y.

Example 3.8: Let X={1, 2, 3} with $\tau = \{\phi, X, \{1\}, \{3\}, \{1, 3\}\}$ and Y={*a*, b, c}, with $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. {*a*, c}. Then PO(X)={ ϕ , {1}, {3}, {1, 3}, X} and S*PO(Y)= { ϕ , Y, {*a*}, {*b*}, {*a*, c}}. Let *f*: X \to Y defined by *f*(1) = *a*, *f*(2) = c, *f*(3) = b. Then *f* is p*-semi*preopen. Theorem **3 0**. Even σ semi*preopen.

Theorem 3.9: Every p*-semi*preopen function is semi*preopen.

Proof: Let $f: X \to Y$ be a p*-semi*preopen function. Let U be an open set in X.Since every open set is preopen, we have U is preopen in X. This implies f(U) is semi*preopen in Y.Hence f is semi*preopen.

Remark 3.10: The converse of above theorem 3.9 is not true can be seen from the following example.

Example 3.11: Let X ={*a*, b, c} be a set with the topology $\tau = \{\phi, X, \{a\}\}$ and Y={1, 2, 3}, with $\sigma = \{\phi, Y, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}\}$. Then PO(X) = { ϕ , X, {*a*}, {*a*, b}, {*a*, c}} and S*PO(Y)= { ϕ , Y, {1}, {2}, {1, 2}

3}}. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a function defined by f(a) = 2, f(b) = 1, f(c) = 3. Then f is semi*preopen. But f is not p*-semi*preopen since for the preopen set $\{a, c\}$ in $Y, f(\{a, c\}) = \{2, 3\} \notin S^*PO(Y)$.

Remark 3.12: The concept of p*-semi*preopen function and semi*preopen (in the sense of Cammaroto and Noiri) sets are independent as seen from the following examples.

Example 3.13: Let X ={*a*, b, c} be a set with topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and Y={1, 2, 3} be a set with topology $\sigma = \{\phi, Y, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}\}$. Then PO(X)= $\{\phi, \{a\}, \{b\}, \{a, b\}, X\}$, SO(X)= $\{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ and S*PO(Y)= $\{\phi, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a function defined by f(a)=2, f(b)=1, f(c)=3. Then f is p*-semi*preopen.But f is not semi*preopen [CN] since $f(\{a, c\})=\{2, 3\} \notin S^*PO(Y)$.

Example 3.14: Let X ={*a*, b, c, d} be a set with topology $\tau = \{\phi, X, \{a, b\}, \{a, b, c\}\}$ and Y = {1, 2, 3} be a set with topology $\sigma = \{\phi, Y, \{1\}, \{3\}, \{1, 3\}\}$. Then PO(X) = { ϕ , {*a*}, {*b*}, {*a*, *b*}, {*b*, *c*}, {*c*, *d*}, {*a*, *c*}, {*a*, *d*}, {*b*, *d*}, X}, SO(X) = { ϕ , {*a*, *b*}, {*a*, *b*, *c*}, {*a*, *b*, *d*}, X} and S*PO(Y)= { ϕ , {1}, {3}, {1, 2}, {1, 3}, {2, 3}, Y}. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = f(d) = 1, f(b) = f(c) = 2. Then *f* is semi*preopen[CN]. But *f* is not p*-semi*preopen function since the preopen set {*b*} is in Y, $f(\{b\}) = \{2\} \notin S*PO(Y)$.

PRE-SEMI*PREOPEN FUNCTIONS

Definition 3.15: A function $f: X \rightarrow Y$ is called pre-semi*preopen if the image of each semi*preopen set in X is a semi*preopen set in Y.

Example 3.16: Let $X = \{a, b, c\}$ be a set with topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $Y = \{1, 2, 3\}$ be a set with topology $\sigma = \{\phi, Y, \{1\}, \{3\}, \{1, 3\}\}$. Then $S*PO(X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $S*PO(Y) = \{\phi, \{1\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = 1, f(b) = 3, f(c) = 2.then f is pre-semi*preopen.

Theorem 3.17: Every pre-semi*preopen function is semi*preopen.

Proof: Let $f: X \rightarrow Y$ be a pre-semi*preopen function.let G be an open set in X.Since every open set is semi*preopen, we have G is semi*preopen in X. This implies f(G) is semi*preopen in Y.Therefore f is semi*preopen.

Remark 3.18: The converse of the above theorem 3.17 is not true as shown in the following example.

Example 3.19: Let $X = \{a, b, c\}$ be a set with topology $\tau = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$ and $Y = \{1, 2, 3\}$ be a set with topology $\sigma = \{\phi, Y, \{1\}, \{3\}, \{1, 3\}\}$. Then $S*PO(X) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ and $S*PO(Y) = \{\phi, \{1\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a function defined by f(a) = 2, f(b) = 3, f(c) = 1. Then f is semi*preopen function, but f is not pre-semi*preopen function since $f(\{a\}) = \{2\} \notin S*PO(Y)$.

Theorem 3.20:Let X, Y and Z be three topological spaces and let $f: X \rightarrow Y$ and g: $Y \rightarrow Z$ be two functions. Then the following conditions are true.

i) if f is pre-semi*preopen function and g is p-semi*preopen function, then gof is p- semi* preopen function.

ii) if *f* is p-semi*preopen function and g is p*-semi*preopen function, then gof is pre-semi*preopen function.

iii) if f is semi*preopen function and g is p-semi*preopen function, then gof is preopen function.

iv) if f is preopen function and g is p*-semi*preopen function, then gof is semi*preopen function.

Proof: (i) Let $f: X \to Y$ be a pre-semi*preopen function and g: $Y \to Z$ is p-semi*preopen function.let U be a semi*preopen subset of X. Since *f* is pre-semi*preopen function, we have f(U) is semi*preopen set of Y.Now, g is p-semi*preopen function, g(f(U))=gof(U) is preopen in Z. This implies that $gof: X \to Z$ is p- semi* preopen function.

(ii) Let U be a semi*preopen subset of X.Since f is p-semi*preopen function, we have f(U) is preopen set of Y. Also g: $Y \rightarrow Z$ is p*-semi*preopen function, g(f(U)) = gof(U) is semi* preopen in Z. This implies that $gof: X \rightarrow Z$ is pre-semi*preopen function.

(iii) Let u be an open set in X.Since f is semi*preopen, we have f(u) is semi*preopen function in Y.Again, since g is p-semi*preopen function and f(u) is semi*preopen, g(f(u))=gof(u) is preopen in Z.Therefore gof is preopen function.

(iv) Let G be an open set in X.Then f(G) is preopen in Y.[Since f is preopen function].Since g is p*-semi*preopen function and f(G) is preopen function, we have g(f(G)) = gof(G) is semi*preopen in Z.Therefore gof is semi*preopen function.

4. CONTRA-p-SEMI*PREOPEN FUNCTIONS

Definition 4.1: A function $f: X \rightarrow Y$ is said to be contra- p-semi*preopen function if the image of each semi*preopen set of X is preclosed set in Y.

Example 4.2: Let $X = \{a, b, c\}$ be a set with topology $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $Y = \{1, 2, 3\}$ be a set with topology $\sigma = \{\phi, Y, \{1\}, \{3\}, \{1, 3\}\}$. Then $S*PO(X) = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ and $PO(Y) = \{\phi, \{1\}, \{3\}, \{1, 3\}, Y\}$ and $PF(Y) = \{\phi, \{2\}, \{1, 2\}, \{2, 3\}, Y\}$. Let $f:(X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = 2, f(b) = 3, f(c) = 1. Then f is contra- p-semi*preopen function.

Theorem 4.3: Every contra- p-semi*preopen function is contra-preopen.

Proof: Let $f: X \to Y$ be a contra- p-semi*preopen function.let U be a open set in X.Since every open set is semi*preopen, we have U is semi*preopen in X.This implies f(U) is preclosed. Therefore f is contra-preopen function.

Remark 4.4: The converse of the above theorem 3.23 is not true as shown in the following example.

Example 4.5: Let $X = \{a, b, c\}$ be a set with topology $\tau = \{\phi, X, \{c\}, \{a, c\}\}$ and $Y = \{1, 2, 3\}$ be a set with topology $\sigma = \{\phi, Y, \{2\}, \{2, 3\}\}$. Then $S*PO(X) = \{\phi, X, \{c\}, \{b, c\}, \{a, c\}\}$ and $PO(Y) = \{\phi, \{2\}, \{1, 2\}, \{2, 3\}, Y\}$ and $PF(Y) = \{\phi, \{1, 3\}, \{3\}, \{1\}, Y\}$. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a function defined by f(a) = 1 = f(c), f(b) = 2. Then f is contra-preopen function. But f is not contra- p-semi*preopen function since $f(\{b, c\}) = \{1, 2\} = f(X) \notin PF(Y)$.

Theorem 4.6: Let X,Y be any two topological spaces. Then $f: X \rightarrow Y$ is contra-p-semi*preopen if and only if the image of each p-semi*preclosed set of X is preopen in Y.

Proof : Let $f: X \to Y$ be a contra- p-semi*preopen.let V be a semi*preclosed set in X. Then X\V is semi*preopen in X. By our assumption, f(X|V) is preclosed in Y. That is, Y/f(V) is preclosed in Y. This implies f(V) is preopen in Y. Conversely, assume that image of every semi*preclosed set of X is preopen in Y. Let V be a semi*preopen in X. Then X\V is semi*preclosed in X. Therefore our assumption, f(X|V) is pre-open in Y.That is, Y/f(V) is preopen in Y. This implies f(V) is preopen in Y. This implies f(V) is preopen in Y. Therefore our assumption, f(X|V) is pre-open in Y.That is, Y/f(V) is preopen in Y. This implies f(V) is preopen in Y. Therefore f is contra-p-semi*preopen.

Theorem 4.7: For a function $f: X \rightarrow Y$ the following are equivalent: i) f is contra-p-semi*preopen

ii) for every subset B of Y and for every semi*preclosed subset F of X with $f^{1}(B) \subseteq F$, then there exists a preopen subset O of Y with $B \subseteq O$ and $f^{1}(O) \subseteq F$.

iii) for every $y \in Y$ and for every semi^{*} preclosed subset F of X with $f^{1}(y) \subseteq F$, there exists a preopen subset O of Y with $y \in O$ and $f^{1}(O) \subseteq F$.

Proof: (i) \Rightarrow (ii): Let B be a subset of Y.let F be a semi*preclosed subset of X with $f^1(B) \subseteq F$. Then F^c is semi*preopen.Since f is contra- p-semi*preopen function, we have $f(F)^c$ is preclosed in Y.This implies $[f(F^c)]^c$ is preopen in Y. Put $O=[f(F^c)]^c$. Therefore O is preopen in Y. Since $f^1(B) \subseteq F$, we have $f(F^c) \subseteq B^c$ and $B \subseteq O$. Moreover $f^1(O) = f^1[f(F^c)]^c = [f^1[f(F^c)]^c \subseteq (F^c)^c = F$. This implies $f^1(O) \subseteq F$. (ii) \Rightarrow (iii): put $B=\{y\}$.

(iii) \Rightarrow (i): Let A be a semi*preopen subset of X. Then let $y \in (f(A)^c$ and $\lim_{t \to A^c} By$ (iii) there exist a preopen subset O_y of Y with $y \in O_y$ and $f^1(O_y) \subseteq F$. Then we see that $y \in O_y \subseteq [f(A)]^c$. Hence $[f(A)]^c = \{O_y / y \in [f(A)]^c$ is preopen. Therefore f(A) is a preclosed subset of Y.Hence f is contra-p-semi*preopen function.

Theorem 4.8: Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then if f is contra-p-semi*preopen, $pCl(f(O)) \subseteq f(s*pCl(O))$ for every semi*preopen subset O of X.

Proof:Let O be semi*preopen subset of X.Since *f* is contra-p-semi*preopen, f(O) is preclosed subset of Y. Then pCl(f(O))=f(O). Also, $(f(O) \subseteq f(s*pCl(O))$. This implies $pCl(f(O)) \subseteq f(s*pCl(O))$ for every $O \in S*PO(X)$. **Theorem 4.9:**Every semi*preopen function is semipreopen function.

Proof: Let $f: X \rightarrow Y$ be a semi*preopen function. Let V be an open set in X. Then f(V) is semi*preopen function in Y. Since every semi*preopen set is semipreopen, f(V) is semipreopen function in Y. Therefore f is semipreopen function.

Theorem 4.10: Let $f : (X, \tau) \to (Y, \sigma)$ be a function. If f is contra-p-semi*preopen, and semipreopen (ie, $f(O) \subseteq pInt(pCl f(O))$) for every semipreopen set O of X, then f is p-semi*preopen.

Proof: Let A be a semi*preopen subset of X. Since *f* is semipreopen, $f(A) \subseteq pInt(pCl f(A))$. Since *f* is contra-p-semi*preopen, f(A) is preclosed. This implies pInt(pCl(f(A))=pInt(f(A))) and hence $f(A) \subseteq pInt(f(A))$. Also $pInt(f(A)) \subseteq f(A)$. That is, f(A)=pInt(f(A)). Therefore f(A) is preopen. Hence *f* is p-semi*preopen.

Theorem 4.11: Let $f:(X, \tau) \to (Y, \sigma)$ and $g:(Y, \sigma) \to (Z, \gamma)$ be two functions such that $gof:(X, \tau) \to (Z, \gamma)$ is contra-p-semi*preopen function. If f is a semi*preirresolute and surjective, then g is contra-p-semi*preopen function.

Proof: Suppose V is any semi*preopen set in Y. Since f is semi*preirresolute, $f^{1}(V)$ is semi*preopen set in X. Since gof is contra-p-semi*preopen function and surjective, $gof(f^{1}(V))=g(V)$ is preclosed in Z. Therefore g is contra-p-semi*preopen function.

5. REFERENCES

- [3]F.Cammaroto and T.Noiri, Almost Irresolute functions, Indian J.pure Appl.Math., 20(5), (1989), pp.472-482.
- [4]S.G. Crossley and S.K.Hildebrand, Semi-Closure, Texas J.Sci., 22, No.2-3, (11970), pp.99-112.
- [5] P.Das, Note on Some Application of semi Open Sets, Progress of Math, BHU, 7,(1973),33-44.
- [6] Govindappa Navalagi, pre-Neighbourhoods, The Mathematics Education, XXXII, (4),
- Dec.1998, 201-206.

[7] N.Levine, semi open sets and semi continuity in topological spaces, Amer.Math.Monthly, 70 (1963), pp.36-41.

- [8] A.S.Mashour, M.E. Abd E1-Monsef and I.A.Hasanein, On Pre Topological spaces, Bull.Math.Soc.Sci.R.S.R., 28(76)(1984), 39-45.
- [9] G.Navalagi and S.D. Patil, On Contra-semiopen and Contra-semiclosed Functions, (submitted).
- [10] T.Noiri, A. Generalization of closed mappings, Atti.Acad.Naz Lincei. Rend-cl.Sci.Fis.Mat.Natur.,54(8), (1973),pp.412-415.
- [11] S.Pasunkili pandian., A study on semi star preopen sets in topological spaces, Ph.D Thesis, Manonmaniam Sundarnar University, Tirunelveli, India, 2013.

^[1] D.Andrijevic, semi-preopen Sets, Mat vesnik, 38, (1986), no.pp.24-32.

^[2] N.Biswas, On some Mapping in topological Spaces, Bull.Calcutta Math. Soc., 61, (1969), pp. 127-135.