Modelling of Biserial Bulk Queue Network Linked With Common Server

Meenu Mittal ${ }^{\# 1}$, Renu Gupta*2
\#Assistant Professor of Mathematics
Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), India
*Research Scholar in Mathematics
Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), India

Abstract

Queuing theory continues to be one of the most extensive theories of stochastic models. Advanced theoretical models are being developed through innovative analytical study with vast applications. The present paper deals with the modelling of biserial bulk queue network with fixed batch size and connected with a common server. Performance measure of the model has been analysed in stochastic environment. Numerical illustration is provided to understand the model in a better way.

Keywords - Batch arrival, queue characteristics, stochastic environment.

I. INTRODUCTION

The initial study of queuing theory was carried out by A.K. Erlang [1]. The multi input idea in queuing theory was introduced by Pandey [2]. Jackson [3] derived the differential difference equations and obtained the steady state equations. The transient solution of a queue network model consisting of two queues in series was studied by O'Brein [4] with poisson input and exponential holding time. Queuing problems with batch arrival was studied by Suzuki [5]. The basic concept of biserial queuing system into the theory of queues was introduced by Maggu ([6], [7]). Further the transient analysis of serial queues under service parameter constraints was discussed by Maggu [8]. Two biseries queues with batch arrival at each stage were studied by Hafiz Noor Mohammad et.al. [9].
Singh T.P. and Kumar Vinod et.al. [10] studied the transient behaviour of a queuing network with parallel biseries queues. Further Singh T.P. and Gupta Deepak [11] analysed a queue network model comprised of biserial and parallel channel linked with a common server. The queue network model having batch arrival with threshold effect was studied by Mittal Meenu et.al. [12]. Later on priority queue model along intermediate queue under fuzzy environment with application was studied by Mittal Meenu et.al. [13] and Singh T.P., Kusum \& Gupta Deepak [14] studied the feedback queue model where service rate were assumed propotional to queue numbers. The present paper is further an extension of the study made by Hafiz Noor Mohammad et.al. [9] in the sense that this paper deals with modelling of biserial bulk queue network with fixed size batch arrival and connected with a common server. Performance measure of the model has been analysed in stochastic environment. To understand the model in a better way numerical illustration is provided.

II. Description of the model

The queue network model in the problem consists of three service channels S_{1}, S_{2}, and S_{3}. The S_{1} and S_{2} are biseries service channels with queues q_{1} and q_{2} in front of these channels respectively. The third service channel S_{3} is commonly linked with these two service channels.

Fig. 1 Biserial bulk queue network model linked with common server

The customers demanding service arrive in batches of fixed sizes b_{1} and b_{2} with arrival rates λ_{1} and λ_{2} under poisson assumption and joins the queues q_{1} and q_{2} respectively. The mean service rates at these service channels have been assumed as μ_{1}, μ_{2} and μ_{3} respectively and are exponentially distributed.

Customers coming at rate λ_{1} after completion of service at S_{1} will either join S_{2} or S_{3} with the probabilities p_{12} or p_{13} such that $\mathrm{p}_{12}+\mathrm{p}_{13}=1$ and those coming at the rate λ_{2} after completion of service at S_{2} will join either S_{1} or S_{3} with the probabilities p_{21} or p_{23} such that $p_{21}+p_{23}=1$ respectively. After completion of service at S_{3} the customer is allowed to depart from the system.

A. Practical Situations

Many practical situations of model arise in banking system, administrative setup, club management, handling of children park, supermarket and production management etc. For example, suppose a game club consists of three sections $S_{1}, S_{2 \&} S_{3}$. The sections S_{1} and S_{2} provide the facility to play the games. Both the games can be played only with a team of fixed size say $b_{1} \& b_{2}$ respectively. The customers entering into the club either may join the section S_{1} or S_{2}. Also there is a chance that a customer can either move from one game to another or directly towards the section S_{3} for security measures.

B. Mathematical Analysis

The differential difference equations in transient form are as follows:

$$
\begin{align*}
& P_{n_{1}, n_{2} . n_{3}}^{\prime}(t)=-\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}+\mu_{3}\right) P_{n_{1} . n_{2} . n_{3}}(t)+\lambda_{1} P_{n_{1}-b_{1} . n_{2} . n_{3}}(t)+\lambda_{2} P_{n_{1}, n_{2}-b_{2} . n_{3}}(t) \\
& +\mu_{1} p_{12} P_{n_{1}+1 . n_{2}-1 . n_{3}}(t)+\mu_{1} p_{13} P_{n_{1}+1 . n_{2} \cdot n_{3}-1}(t)+\mu_{2} p_{21} P_{n_{1}-1 . n_{2}+1 . n_{3}}(t) \\
& +\mu_{2} p_{23} P_{n_{1} \cdot n_{2}+1 . n_{3}-1}(t)+\mu_{3} P_{n_{1} \cdot n_{2} \cdot n_{3}+1}(t) \tag{1}\\
& \text { for }\left(\mathrm{n}_{1}>\mathrm{b}_{1}, \mathrm{n}_{2}>\mathrm{b}_{2}, \mathrm{n}_{3}>0\right) \\
& \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} \cdot \mathrm{n}_{3}}^{\prime}(\mathrm{t})=-\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}+\mu_{3}\right) \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} \cdot \mathrm{n}_{3}}(\mathrm{t})+\lambda_{1} \mathrm{P}_{\mathrm{n}_{1}-\mathrm{b}_{1} \cdot \mathrm{n}_{2} \cdot \mathrm{n}_{3}}(\mathrm{t})+\mu_{1} \mathrm{p}_{12} \mathrm{P}_{\mathrm{n}_{1}+1 . \mathrm{n}_{2}-1 . \mathrm{n}_{3}}(\mathrm{t}) \\
& +\mu_{1} p_{13} P_{n_{1}+1 . n_{2} . n_{3}-1}(t)+\mu_{2} p_{21} P_{n_{1}-1 . n_{2}+1 . n_{3}}(t)+\mu_{2} p_{23} P_{n_{1} . n_{2}+1 . n_{3}-1}(t) \\
& +\mu_{3} P_{n_{1} \cdot n_{2}, n_{3}+1}(t) \\
& \operatorname{for}\left(\mathrm{n}_{1}>\mathrm{b}_{1}, \mathrm{n}_{2}<\mathrm{b}_{2}, \mathrm{n}_{3}>0\right. \\
& \text {) } \\
& P_{n_{1} .0 . n_{3}}^{\prime}(t)=-\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{3}\right) P_{n_{1} \cdot 0 \cdot n_{3}}(t)+\lambda_{1} P_{n_{1}-b_{1} .0 . n_{3}}(t)+\mu_{1} p_{13} P_{n_{1}+1.0 \cdot n_{3}-1}(t) \\
& +\mu_{2} p_{21} P_{n_{1}-1.1 . n_{3}}(t)+\mu_{2} p_{23} P_{n_{1}, 1 . n_{3}-1}(t)+\mu_{3} P_{n_{1} .0 . n_{3}+1}(t) \tag{3}\\
& \text { for }\left(\mathrm{n}_{1}>\mathrm{b}_{1}, \mathrm{n}_{2}=0, \mathrm{n}_{3}>0\right) \\
& \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} .0}^{\prime}(\mathrm{t})=-\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}\right) \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} \cdot 0}(\mathrm{t})+\lambda_{1} \mathrm{P}_{\mathrm{n}_{1}-\mathrm{b}_{1} . \mathrm{n}_{2} .0}(\mathrm{t})+\lambda_{2} \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2}-\mathrm{b}_{2} .0}(\mathrm{t}) \\
& +\mu_{1} p_{12} P_{n_{1}+1 . n_{2}-1.0}(t)+\mu_{2} p_{21} P_{n_{1}-1 . n_{2}+1.0}(t)+\mu_{3} P_{n_{1} \cdot n_{2} .1}(t) \tag{4}\\
& \text { for }\left(\mathrm{n}_{1}>\mathrm{b}_{1}, \mathrm{n}_{2}>\mathrm{b}_{2}, \mathrm{n}_{3}=0\right) \\
& \mathrm{P}_{\mathrm{n}_{1}, \mathrm{n}_{2} .0}^{\prime}(\mathrm{t})=-\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}\right) \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} .0}(\mathrm{t})+\lambda_{1} \mathrm{P}_{\mathrm{n}_{1}-b_{1} . \mathrm{n}_{2} .0}(\mathrm{t})+\mu_{1} \mathrm{p}_{12} \mathrm{P}_{\mathrm{n}_{1}+1 . \mathrm{n}_{2}-1.0}(\mathrm{t}) \\
& +\mu_{2} p_{21} P_{n_{1}-1 . n_{2}+1.0}(t)+\mu_{3} P_{n_{1} . n_{2} .0}(t) \\
& \text { (5) } \\
& \mathrm{n}_{2}<\mathrm{b}_{2}, \mathrm{n}_{3}=0 \text {) } \\
& \mathrm{P}_{\mathrm{n}_{1} .0 .0}^{\prime}(\mathrm{t})=-\left(\lambda_{1}+\lambda_{2}+\mu_{1}\right) \mathrm{P}_{\mathrm{n}_{1} \cdot 0.0}(\mathrm{t})+\lambda_{1} \mathrm{P}_{\mathrm{n}_{1}-\mathrm{b}_{1} .0 .0}(\mathrm{t})+\mu_{2} \mathrm{p}_{21} \mathrm{P}_{\mathrm{n}_{1}-1.1 .0}(\mathrm{t}) \\
& +\mu_{3} \mathrm{P}_{\mathrm{n}_{1} .0 .1}(\mathrm{t}) \tag{6}\\
& \text { for }\left(\mathrm{n}_{1}>\mathrm{b}_{1}, \mathrm{n}_{2}=0, \mathrm{n}_{3}=0\right) \\
& \mathrm{P}_{0 . \mathrm{n}_{2}, n_{3}}^{\prime}(\mathrm{t})-\left(\lambda_{1}+\lambda_{2}+\mu_{2}+\mu_{3}\right) \mathrm{P}_{0 \cdot \mathrm{n}_{2} \cdot \mathrm{n}_{3}}(\mathrm{t})+\lambda_{2} \mathrm{P}_{0 . \mathrm{n}_{2}-\mathrm{b}_{2} \cdot \mathrm{n}_{3}}(\mathrm{t})+\mu_{1} \mathrm{p}_{12} \mathrm{P}_{1 . \mathrm{n}_{2}-1 . \mathrm{n}_{3}}(\mathrm{t}) \\
& +\mu_{1} \mathrm{p}_{13} \mathrm{P}_{1 . \mathrm{n}_{2} . \mathrm{n}_{3}-1}(\mathrm{t})+\mu_{2} \mathrm{p}_{23} \mathrm{P}_{0 . \mathrm{n}_{2}+1 . \mathrm{n}_{3}-1}(\mathrm{t}) \\
& +\mu_{3} \mathrm{P}_{0 . \mathrm{n}_{2} . \mathrm{n}_{3}+1}(\mathrm{t}) \tag{7}\\
& \text { for }\left(\mathrm{n}_{1}=0, \mathrm{n}_{2}>\mathrm{b}_{2}, \mathrm{n}_{3}>0\right) \\
& P_{0 . n_{2}, n_{3}}^{\prime}(t)=-\left(\lambda_{1}+\lambda_{2}+\mu_{2}+\mu_{3}\right) P_{0 . n_{2} \cdot n_{3}}(t)+\mu_{1} p_{12} P_{1 . n_{2}-1 . n_{3}}(t)+\mu_{1} p_{13} P_{1 . n_{2}, n_{3}-1}(t) \\
& +\mu_{2} \mathrm{p}_{23} \mathrm{P}_{0 . \mathrm{n}_{2}+1 . n_{3}-1}(\mathrm{t})+\mu_{3} \mathrm{P}_{0 . n_{2} \cdot n_{3}+1}(\mathrm{t}) \tag{8}\\
& P_{0.0 n_{3}}^{\prime}(t)=-\left(\lambda_{1}+\lambda_{2}+\mu_{3}\right) P_{0 \cdot 0 \cdot n_{3}}(t)+\mu_{1} p_{13} \quad P_{1.0 . n_{3}-1}(t)+\mu_{2} p_{23} P_{0.1 . n_{3}-1}(t) \\
& +\mu_{3} P_{0.0 . n_{3}+1}(t) \tag{9}\\
& \operatorname{for}\left(\mathrm{n}_{1}=0, \mathrm{n}_{2}=0, \mathrm{n}_{3}>0\right) \\
& \mathrm{P}_{0 \cdot \mathrm{n}_{2} \cdot 0}^{\prime}(\mathrm{t})=-\left(\lambda_{1}+\lambda_{2}+\mu_{2}\right) \mathrm{P}_{0 \cdot \mathrm{n}_{2} \cdot 0}(\mathrm{t})+\lambda_{2} \mathrm{P}_{0 . \mathrm{n}_{2}-\mathrm{b}_{2} .0}(\mathrm{t})+\mu_{1} \mathrm{p}_{12} \mathrm{P}_{1 . \mathrm{n}_{2}-1.0}(\mathrm{t}) \\
& +\mu_{3} P_{0 . n_{2} .1}(\mathrm{t}) \tag{10}\\
& \mathrm{P}_{0 \cdot n_{2} \cdot 0}^{\prime}(\mathrm{t})=-\left(\lambda_{1}+\lambda_{2}+\mu_{2}\right) \mathrm{P}_{0 \cdot \mathrm{n}_{2} \cdot 0}(\mathrm{t})+\mu_{1} \mathrm{p}_{12} \mathrm{P}_{0 . \mathrm{n}_{2}-1.0}(\mathrm{t}) \\
& +\mu_{3} \mathrm{P}_{0 . \mathrm{n}_{2} .1}(\mathrm{t}) \tag{11}\\
& \operatorname{for}\left(\mathrm{n}_{1}=0, \mathrm{n}_{2}<\mathrm{b}_{2}, \mathrm{n}_{3}=0\right) \tag{12}
\end{align*}
$$

$\mathrm{P}_{0.0 \cdot 0}^{\prime}(\mathrm{t})=-\left(\lambda_{1}+\lambda_{2}\right) \mathrm{P}_{0 \cdot 0 \cdot 0}(\mathrm{t})+\mu_{3} \mathrm{P}_{0.0 .1}(\mathrm{t})$

$$
\begin{align*}
& P_{n_{1} \cdot n_{2} \cdot n_{3}}^{\prime}(t)=-\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}+\mu_{3}\right) P_{n_{1} \cdot n_{2} \cdot n_{3}}(t)+\lambda_{2} P_{n_{1} \cdot n_{2}-b_{2} \cdot n_{3}}(t)+ \\
& \mu_{1} p_{12} P_{n_{1}+1 . n_{2}-1 . n_{3}}(t)+\mu_{1} p_{13} P_{n_{1}+1 . n_{2} \cdot n_{3}-1}(t)+\mu_{2} p_{21} P_{n_{1}-1 . n_{2}+1 . n_{3}}(t) \\
& +\mu_{2} \mathrm{p}_{23} \mathrm{P}_{\mathrm{n}_{1} . \mathrm{n}_{2}+1 . \mathrm{n}_{3}-1}(\mathrm{t})+\mu_{3} \mathrm{P}_{\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}+1}(\mathrm{t}) \tag{13}\\
& \operatorname{for}\left(\mathrm{n}_{1}=0, \mathrm{n}_{2}=0, \mathrm{n}_{3}=0\right) \\
& \text { for }\left(\mathrm{n}_{1}<\mathrm{b}_{1}, \mathrm{n}_{2}>\mathrm{b}_{2}, \mathrm{n}_{3}>0\right) \\
& P_{n_{1} \cdot n_{2} . n_{3}}^{\prime}(t)=-\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}+\mu_{3}\right) P_{n_{1} \cdot n_{2} \cdot n_{3}}(t)+\mu_{1} p_{12} P_{n_{1}+1 . n_{2}-1 . n_{3}}(t) \\
& +\mu_{1} p_{13} P_{n_{1}+1 . n_{2} . n_{3}-1}(t)+\mu_{2} p_{21} P_{n_{1}-1 . n_{2}+1 . n_{3}}(t)+\mu_{2} p_{23} P_{n_{1} \cdot n_{2}+1 . n_{3}-1}(t) \\
& +\mu_{3} \mathrm{P}_{\mathrm{n}_{1} . \mathrm{n}_{2} . \mathrm{n}_{3}+1}(\mathrm{t}) \tag{14}\\
& \operatorname{for}\left(\mathrm{n}_{1}<\mathrm{b}_{1}, \mathrm{n}_{2}<\mathrm{b}_{2}, \mathrm{n}_{3}>0\right) \\
& P_{n_{1} .0 . n_{3}}^{\prime}(t)=-\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{3}\right) P_{n_{1} \cdot 0 \cdot n_{3}}(t)+\mu_{1} p_{13} P_{n_{1}+1.0 \cdot n_{3}-1}(t)+\mu_{2} p_{21} P_{n_{1}-1.1 . n_{3}}(t) \\
& +\mu_{2} p_{23} P_{n_{1}, 1 . n_{3}-1}(t)+\mu_{3} P_{n_{1} .0 . n_{3}+1}(t) \tag{15}\\
& \text { for }\left(\mathrm{n}_{1}<\mathrm{b}_{1}, \mathrm{n}_{2}=0, \mathrm{n}_{3}>0\right) \\
& \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} \cdot 0}^{\prime}(\mathrm{t})=-\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}\right) \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} \cdot 0}(\mathrm{t})+\lambda_{2} \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} \cdot b_{2} \cdot 0}(\mathrm{t})+\mu_{1} \mathrm{p}_{12} \mathrm{P}_{\mathrm{n}_{1}+1 . \mathrm{n}_{2}-1.0}(\mathrm{t}) \\
& +\mu_{2} p_{21} P_{n_{1}-1 . n_{2}+1.0}(t)+\mu_{3} P_{n_{1} \cdot n_{2} .1}(t) \tag{16}\\
& \operatorname{for}\left(\mathrm{n}_{1}<\mathrm{b}_{1}, \mathrm{n}_{2}>\mathrm{b}_{2}, \mathrm{n}_{3}=0\right) \\
& \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} \cdot 0}^{\prime}(\mathrm{t})=-\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}\right) \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} \cdot 0}(\mathrm{t})+\lambda_{2} \mathrm{P}_{\mathrm{n}_{1} . \mathrm{n}_{2}-\mathrm{b}_{2} .0}(\mathrm{t})+\mu_{1} \mathrm{p}_{12} \mathrm{P}_{\mathrm{n}_{1}+1 . \mathrm{n}_{2}-1.0}(\mathrm{t}) \\
& +\mu_{2} \mathrm{p}_{21} \mathrm{P}_{\mathrm{n}_{1}-1 . \mathrm{n}_{2}+1.0}(\mathrm{t})+\mu_{3} \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} .1}(\mathrm{t}) \tag{17}\\
& \operatorname{for}\left(\mathrm{n}_{1}<\mathrm{b}_{1}, \mathrm{n}_{2}<\mathrm{b}_{2}, \mathrm{n}_{3}=0\right) \tag{18}\\
& \text { for }\left(n_{1}<b_{1}, n_{2}=0, n_{3}=0\right)
\end{align*}
$$

Taking limit as $t \rightarrow \infty$, corresponding steady state equations are as follows:
$\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}+\mu_{3}\right) P_{n_{1} \cdot n_{2} \cdot n_{3}}=\lambda_{1} P_{n_{1} \cdot b_{1} \cdot n_{2} \cdot n_{3}}+\lambda_{2} P_{n_{1} \cdot n_{2} \cdot b_{2} \cdot n_{3}}+\mu_{1} p_{12} P_{n_{1}+1 \cdot n_{2}-1 . n_{3}}$

$$
\begin{align*}
& +\mu_{1} p_{13} P_{n_{1}+1 \cdot n_{2} \cdot n_{3}-1}+\mu_{2} p_{21} P_{n_{1}-1 \cdot n_{2}+1 \cdot n_{3}}+\mu_{2} p_{23} P_{n_{1} \cdot n_{2}+1 \cdot n_{3}-1} \\
& +\mu_{3} P_{n_{1} \cdot n_{2} \cdot n_{3}+1} \tag{19}
\end{align*}
$$

$\operatorname{for}\left(\mathrm{n}_{1}>\mathrm{b}_{1}, \mathrm{n}_{2}>\mathrm{b}_{2}, \mathrm{n}_{3}>0\right)$
$\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}+\mu_{3}\right) P_{n_{1} \cdot n_{2} \cdot n_{3}}=\lambda_{1} P_{n_{1}-b_{1} \cdot n_{2} \cdot n_{3}}+\mu_{1} p_{12} P_{n_{1}+1 . n_{2}-1 . n_{3}}+\mu_{1} p_{13} P_{n_{1}+1 \cdot n_{2} \cdot n_{3}-1}$
$+\mu_{2} p_{21} P_{n_{1}-1 . n_{2}+1 . n_{3}}+\mu_{2} p_{23} P_{n_{1} . n_{2}+1 . n_{3}-1}+\mu_{3} P_{n_{1} \cdot n_{2} \cdot n_{3}+1}$
for $\left(\mathrm{n}_{1}>\mathrm{b}_{1}, \mathrm{n}_{2}<\mathrm{b}_{2}, \mathrm{n}_{3}>0\right)$
$\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{3}\right) P_{n_{1} \cdot 0 \cdot n_{3}}=\lambda_{1} P_{n_{1}-b_{1} .0 n_{3}}+\mu_{1} p_{13} P_{n_{1}+1.0 . n_{3}-1}+\mu_{2} p_{21} P_{n_{1}-1.1 . n_{3}}$ $+\mu_{2} p_{23} P_{n_{1}, 1 . \mathrm{n}_{3}-1}+\mu_{3} \mathrm{P}_{\mathrm{n}_{1} .0 . \mathrm{n}_{3}+1}$
for $\left(\mathrm{n}_{1}>\mathrm{b}_{1}, \mathrm{n}_{2}=0, \mathrm{n}_{3}>0\right)$
$\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}\right) \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} \cdot 0}=\lambda_{1} \mathrm{P}_{\mathrm{n}_{1}-\mathrm{b}_{1} \cdot \mathrm{n}_{2} .0}+\lambda_{2} \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2}-\mathrm{b}_{2} .0}+\mu_{1} \mathrm{p}_{12} \mathrm{P}_{\mathrm{n}_{1}+1 . \mathrm{n}_{2}-1.0}$ $+\mu_{2} p_{21} P_{n_{1}-1 . \mathrm{n}_{2}+1.0}+\mu_{3} P_{n_{1} . n_{2} .1}$
for $\left(\mathrm{n}_{1}>\mathrm{b}_{1}, \mathrm{n}_{2}>\mathrm{b}_{2}, \mathrm{n}_{3}=0\right)$
$\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}\right) P_{n_{1} \cdot n_{2} \cdot 0}=\lambda_{1} P_{n_{1}-b_{1} \cdot n_{2} .0}+\mu_{1} p_{12} P_{n_{1}+1 . n_{2}-1.0}+\mu_{2} p_{21} P_{n_{1}-1 . n_{2}+1.0}$ $+\mu_{3} P_{n_{1} \cdot n_{2} .0}$
$\operatorname{for}\left(\mathrm{n}_{1}>\mathrm{b}_{1}, \mathrm{n}_{2}<\mathrm{b}_{2}, \mathrm{n}_{3}=0\right)$
for $\left(n_{1}>b_{1}, n_{2}=0, n_{3}=0\right)$
$\left(\lambda_{1}+\lambda_{2}+\mu_{2}+\mu_{3}\right) P_{0 \cdot n_{2} \cdot n_{3}}=\lambda_{2} P_{0 . n_{2}-b_{2} \cdot n_{3}}+\mu_{1} p_{12} P_{1 . n_{2}-1 . n_{3}}+\mu_{1} p_{13} P_{1 . n_{2} \cdot n_{3}-1}$

$$
\begin{equation*}
+\mu_{2} \mathrm{p}_{23} \mathrm{P}_{0 . \mathrm{n}_{2}+1 . \mathrm{n}_{3}-1}+\mu_{3} \mathrm{P}_{0 . \mathrm{n}_{2} \cdot \mathrm{n}_{3}+1} \tag{25}
\end{equation*}
$$

$\operatorname{for}\left(\mathrm{n}_{1}=0, \mathrm{n}_{2}>\mathrm{b}_{2}, \mathrm{n}_{3}>0\right)$
$\left(\lambda_{1}+\lambda_{2}+\mu_{2}+\mu_{3}\right) P_{0 . n_{2} \cdot n_{3}}=\mu_{1} p_{12} P_{1 . n_{2}-1 . n_{3}}+\mu_{1} p_{13} P_{1 . n_{2} \cdot n_{3}-1}+\mu_{2} p_{23} P_{0 . n_{2}+1 . n_{3}-1}$ $+\mu_{3} P_{0 . n_{2}, n_{3}+1}$
$\operatorname{for}\left(\mathrm{n}_{1}=0, \mathrm{n}_{2}<\mathrm{b}_{2}, \mathrm{n}_{3}>0\right)$
$\left(\lambda_{1}+\lambda_{2}+\mu_{3}\right) \mathrm{P}_{0 \cdot 0 \cdot \mathrm{n}_{3}}=\mu_{1} \mathrm{p}_{13} \mathrm{P}_{1.0 \mathrm{n}_{3}-1}+\mu_{2} \mathrm{p}_{23} \mathrm{P}_{0.1 \cdot \mathrm{n}_{3}-1}+\mu_{3} \mathrm{P}_{0.0 \cdot \mathrm{n}_{3}+1}$
$\operatorname{for}\left(\mathrm{n}_{1}=0, \mathrm{n}_{2}=0, \mathrm{n}_{3}>0\right)$

$$
\begin{array}{lr}
\left(\lambda_{1}+\lambda_{2}+\mu_{2}\right) P_{0 \cdot n_{2} \cdot 0}=\lambda_{2} P_{0 . n_{2}-b_{2} .0}+\mu_{1} p_{12} P_{1 . n_{2}-1.0}+\mu_{3} P_{0 . n_{2} \cdot 1} & \operatorname{for}\left(n_{1}=0, n_{2}>b_{2}, n_{3}=0\right) \\
\left(\lambda_{1}+\lambda_{2}+\mu_{2}\right) P_{0 \cdot n_{2} \cdot 0}=\mu_{1} p_{12} P_{0 . n_{2}-1.0}+\mu_{3} P_{0 . n_{2} .1} & \operatorname{for}\left(n_{1}=0, n_{2}<b_{2}, n_{3}=0\right) \\
\left(\lambda_{1}+\lambda_{2}\right) P_{0 \cdot 0 \cdot 0}=\mu_{3} P_{0.0 .1} & \operatorname{for}\left(n_{1}=0, n_{2}=0, n_{3}=0\right) \\
\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}+\mu_{3}\right) P_{n_{1} \cdot n_{2} \cdot n_{3}}=\lambda_{2} P_{n_{1} \cdot n_{2}-b_{2} \cdot n_{3}}+\mu_{1} p_{12} P_{n_{1}+1 . n_{2}-1 . n_{3}}+\mu_{1} p_{13} P_{n_{1}+1 . n_{2} \cdot n_{3}-1} \tag{30}
\end{array}
$$

$$
\begin{align*}
& +\mu_{2} p_{21} P_{n_{1}-1 . n_{2}+1 . n_{3}}+\mu_{2} p_{23} P_{n_{1} \cdot n_{2}+1 . n_{3}-1}+\mu_{3} P_{n_{1} \cdot n_{2}, n_{3}+1} \tag{31}\\
& \begin{array}{r}
\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}+\mu_{3}\right) P_{n_{1} \cdot n_{2} \cdot n_{3}}=\mu_{1} p_{12} P_{n_{1}+1 \cdot n_{2}-1 . n_{3}}+\mu_{1} p_{13} P_{n_{1}+1 \cdot n_{2} \cdot n_{3}-1} \\
+\mu_{2} p_{21} P_{n_{1}-1 \cdot n_{2}+1 \cdot n_{3}}+\mu_{2} p_{23} P_{n_{1} \cdot n_{2}+1 . n_{3}-1}+\mu_{3} P_{n_{1} \cdot n_{2} \cdot n_{3}+1}
\end{array} \\
& \begin{aligned}
&\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\right.\left.+\mu_{2}+\mu_{3}\right) P_{n_{1} \cdot n_{2} \cdot n_{3}}=\mu_{1} p_{12} P_{n_{1}+1 . n_{2}-1 . n_{3}}+\mu_{1} p_{13} P_{n_{1}+1 . n_{2} \cdot n_{3}-1} \\
&+\mu_{2} p_{21} P_{n_{1}-1 \cdot n_{2}+1 . n_{3}}+\mu_{2} p_{23} P_{n_{1} \cdot n_{2}+1 . n_{3}-1}+\mu_{3} P_{n_{1} \cdot n_{2} \cdot n_{3}+1}
\end{aligned} \\
& \operatorname{for}\left(\mathrm{n}_{1}<\mathrm{b}_{1}, \mathrm{n}_{2}>\mathrm{b}_{2}, \mathrm{n}_{3}>0\right) \\
& \operatorname{for}\left(\mathrm{n}_{1}<\mathrm{b}_{1}, \mathrm{n}_{2}<\mathrm{b}_{2}, \mathrm{n}_{3}>0\right) \\
& \begin{aligned}
\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{3}\right) P_{n_{1} \cdot 0 \cdot n_{3}}= & \mu_{1} p_{13} P_{n_{1}+1.0 \mathrm{n}_{3}-1}+\mu_{2} p_{21} P_{n_{1}-1.1 . n_{3}}+\mu_{2} p_{23} P_{n_{1} .1 . n_{3}-1} \\
& +\mu_{3} P_{n_{1} \cdot 0 . n_{3}+1}
\end{aligned} \\
& \text { for }\left(\mathrm{n}_{1}<\mathrm{b}_{1}, \mathrm{n}_{2}=0, \mathrm{n}_{3}>0\right) \\
& \left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}\right) P_{n_{1} \cdot n_{2} \cdot 0}=\lambda_{2} P_{n_{1} \cdot n_{2}-b_{2} .0}+\mu_{1} p_{12} P_{n_{1}+1 \cdot n_{2}-1.0}+\mu_{2} p_{21} P_{n_{1}-1 . n_{2}+1.0} \\
& +\mu_{3} P_{n_{1}, n_{2}, 1} \tag{34}\\
& \operatorname{for}\left(\mathrm{n}_{1}<\mathrm{b}_{1}, \mathrm{n}_{2}>\mathrm{b}_{2}, \mathrm{n}_{3}=0\right) \\
& \left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}\right) P_{n_{1} \cdot n_{2} \cdot 0}=\lambda_{2} P_{n_{1} \cdot n_{2}-b_{2} .0}+\mu_{1} p_{12} P_{n_{1}+1 . n_{2}-1.0}+\mu_{2} p_{21} P_{n_{1}-1 . n_{2}+1.0} \\
& +\mu_{3} \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} .1} \tag{35}\\
& \operatorname{for}\left(\mathrm{n}_{1}<\mathrm{b}_{1}, \mathrm{n}_{2}<\mathrm{b}_{2}, \mathrm{n}_{3}=0\right) \tag{36}\\
& \operatorname{for}\left(\mathrm{n}_{1}<\mathrm{b}_{1}, \mathrm{n}_{2}=0, \mathrm{n}_{3}=0\right)
\end{align*}
$$

In order to solve the above system of equations (19) to (36), we apply generating function technique. For this we define generating function as:

$$
\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum_{\mathrm{n}_{1}=0}^{\infty} \underset{(37)}{\sum_{\mathrm{n}_{2}}^{\infty}=0} \sum_{\mathrm{n}_{3}=0}^{\infty} \quad \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} \cdot \mathrm{n}_{3}} X^{\mathrm{n}_{1}} \mathrm{Y}^{\mathrm{n}_{2}} Z^{\mathrm{n}_{3}}
$$

Also for simplification, we define partial generating function as:
$\mathrm{F}_{\mathrm{n}_{2} \cdot \mathrm{n}_{3}}(\mathrm{X})=\sum_{\mathrm{n}_{1}=0}^{\infty} \quad \mathrm{P}_{\mathrm{n}_{1} \cdot \mathrm{n}_{2} \cdot \mathrm{n}_{3}} X^{\mathrm{n}_{1}}$
$\mathrm{~F}_{\mathrm{n}_{3}}(\mathrm{X}, \mathrm{Y})=\sum_{\mathrm{n}_{2}=0}^{\infty}$
$\mathrm{F}_{\mathrm{n}_{2} \cdot n_{3}}(X) \mathrm{Y}^{\mathrm{n}_{2}}$
$\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum_{\mathrm{n}_{3}=0}^{\infty} \mathrm{F}_{\mathrm{n}_{3}}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}_{3}^{\mathrm{n}}$

Multiplying equation (19) \& (25) by $\mathrm{X}^{\mathrm{n}_{1}}$ and taking summation over n_{1} from b_{1} to ∞ and 0 to b_{1} and making use of equations (31) \& (38), we obtain

$$
\begin{align*}
& \left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}+\mu_{3}\right) F_{n_{2} \cdot n_{3}}(X)-\mu_{1} P_{0 . n_{2}, n_{3}}=\lambda_{1} X^{b_{1}} F_{n_{2} \cdot n_{3}}(X)+\lambda_{2} F_{n_{2}-b_{2} . n_{3}}(X) \\
& +\frac{\mu 1 p_{12}}{X}\left[F_{n_{2}-1 . n_{3}}(X)-P_{0 . n_{2}-1 . n_{3}}\right]+\frac{\mu 1 p_{13}}{X}\left[F_{n_{2}, n_{3}-1}(X)-P_{0 . n_{2}, n_{3}-1}\right] \\
& +\mu_{2} \mathrm{p}_{2}{ }_{1} \mathrm{XFF}_{\mathrm{n}_{2}+1 . \mathrm{n}_{3}}(\mathrm{X})+\mu_{2} \mathrm{p}_{2}{ }_{3} \quad \mathrm{~F}_{\mathrm{n}_{2}+1 . \mathrm{n}_{3}-1}(\mathrm{X}) \\
& +\mu_{3} \quad \mathrm{~F}_{\mathrm{n}_{2} \cdot \mathrm{n}_{3}+1}(\mathrm{X}) \tag{40}
\end{align*}
$$

for $\left(n_{1} \geq b_{1}, n_{2}>b_{2,} n_{3}>0\right)$
Multiplying equation (20) \& (26) by $\mathrm{X}^{\mathrm{n}_{1}}$ and taking summation over n_{1} from b_{1} to ∞ and 0 to b_{1} and making use of equations (32) \& (38), we obtain:

$$
\begin{align*}
& \left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}+\mu_{3}\right) \mathrm{F}_{\mathrm{n}_{2} \cdot \mathrm{n}_{3}}(\mathrm{X})-\mu_{1} \mathrm{P}_{0 . \mathrm{n}_{2} . \mathrm{n}_{3}}=\lambda_{1} \mathrm{X}^{\mathrm{b}_{1}} \mathrm{~F}_{\mathrm{n}_{2} \cdot \mathrm{n}_{3}}(\mathrm{X})+ \\
& \quad \frac{\mu 1 \mathrm{p}_{12}}{X}\left[\mathrm{~F}_{\mathrm{n}_{2}-1 . \mathrm{n}_{3}}(\mathrm{X})-\mathrm{P}_{0 . \mathrm{n}_{2}-1 . \mathrm{n}_{3}}\right]+\frac{\mu \mathrm{p}_{13}}{X}\left[\mathrm{~F}_{\mathrm{n}_{2} \cdot \mathrm{n}_{3}-1}(\mathrm{X})-\mathrm{P}_{0 . \mathrm{n}_{2} \cdot \mathrm{n}_{3}-1}\right]+ \\
& \mu_{2} \mathrm{p}_{2}{ }_{1} \mathrm{X} \mathrm{~F}_{\mathrm{n}_{2}+1 . \mathrm{n}_{3}}(\mathrm{X})+\mu_{2} \mathrm{p}_{2}{ }_{3} \mathrm{~F}_{\mathrm{n}_{2}+1 . \mathrm{n}_{3}-1}(\mathrm{X})+\mu_{3} \mathrm{~F}_{\mathrm{n}_{2} \cdot \mathrm{n}_{3}+1}(\mathrm{X}) \tag{41}
\end{align*}
$$

Multiplying equation (21) \& (27) by $X^{\mathrm{n}_{1}}$ and taking summation over n_{1} from b_{1} to ∞ and 0 to b_{1} and making use of equations (33) \& (38), we obtain:

$$
\begin{align*}
& \left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{3}\right) \mathrm{F}_{0 \cdot \mathrm{n}_{3}}(\mathrm{X})-\mu_{1} \mathrm{P}_{0.0 \cdot \mathrm{n}_{3}}=\lambda_{1} \mathrm{X}^{\mathrm{b}_{1}} \mathrm{~F}_{0 \cdot \mathrm{n}_{3}}(\mathrm{X}) \\
& \quad+\frac{\mu 1 \mathrm{p}_{13}}{X}\left[\mathrm{~F}_{0 \mathrm{n}_{3}-1}(\mathrm{X})-\mathrm{P}_{0.0 . \mathrm{n}_{3}-1}\right]+\mu_{2} \mathrm{p}_{21} \quad \mathrm{XF}_{1 . \mathrm{n}_{3}}(\mathrm{X}) \\
& \quad+\mu_{2} \mathrm{p}_{2}{ }_{3} \mathrm{~F}_{1 . \mathrm{n}_{3}-1}(\mathrm{X})+\mu_{3} \mathrm{~F}_{0 . \mathrm{n}_{3}+1}(\mathrm{X}) \tag{42}
\end{align*}
$$

for $\left(n_{1} \geq b_{1,} n_{2}=0, n_{3}>0\right)$
Multiplying equation (22) \& (28) by $\mathrm{X}^{\mathrm{n}_{1}}$ and taking summation over n_{1} from b_{1} to ∞ and 0 to b_{1} and making use of equations (34) \& (38), we obtain:

$$
\begin{aligned}
\left(\lambda_{1}+\lambda_{2}+\mu_{1}\right. & \left.+\mu_{2}\right) \mathrm{F}_{\mathrm{n}_{2} \cdot 0}(\mathrm{X})-\mu_{1} \mathrm{P}_{0 . \mathrm{n}_{2} .0}=\lambda_{1} \mathrm{X}^{\mathrm{b}_{1}} \mathrm{~F}_{\mathrm{n}_{2} \cdot 0}(\mathrm{X})+\lambda_{2} \mathrm{~F}_{\mathrm{n}_{2}-\mathrm{b}_{2} .0}(\mathrm{X}) \\
& +\frac{\mu 1 \mathrm{p}_{12}}{X}\left[\mathrm{~F}_{\mathrm{n}_{2}-1.0}(\mathrm{X})-\mathrm{P}_{0 . \mathrm{n}_{2}-1.0}\right]+\mu_{2} \mathrm{p}_{21} \quad \mathrm{X}_{\mathrm{n}_{2}+1.0}(\mathrm{X})+\mu_{3} \quad \mathrm{~F}_{\mathrm{n}_{2} .1}(\mathrm{X})
\end{aligned}
$$

$$
\operatorname{for}\left(\mathrm{n}_{1} \geq \mathrm{b}_{1,} \mathrm{n}_{2}>\mathrm{b}_{2}, \mathrm{n}_{3}=0\right)
$$

Multiplying equation (23) \& (29) by $\mathrm{X}^{\mathrm{n}_{1}}$ and taking summation over n_{1} from b_{1} to ∞ and 0 to b_{1} and making use of equations (35) \& (38), we obtain:
$\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}\right) \mathrm{F}_{\mathrm{n}_{2} \cdot 0}(\mathrm{X})-\mu_{1} \mathrm{P}_{0 . \mathrm{n}_{2} .0}=\lambda_{1} \mathrm{X}^{\mathrm{b}_{1}} \mathrm{~F}_{\mathrm{n}_{2} \cdot 0}(\mathrm{X})+\frac{\mu 1 \mathrm{p}_{12}}{X}\left[\mathrm{~F}_{\mathrm{n}_{2}-1.0}(\mathrm{X})-\mathrm{P}_{0 . \mathrm{n}_{2}-1.0}\right]+\mu_{2} \mathrm{p}_{21} \quad \mathrm{X}$ $\mathrm{F}_{\mathrm{n}_{2}+1.0}(\mathrm{X})+\mu_{3} \mathrm{~F}_{\mathrm{n}_{2} .0}(\mathrm{X})$
$\operatorname{for}\left(\mathrm{n}_{1} \geq \mathrm{b}_{1, \mathrm{n}_{2}}<\mathrm{b}_{2}, \mathrm{n}_{3}=0\right)$
Multiplying equation (24) \& (30) by $X^{\mathrm{n}_{1}}$ and taking summation over n_{1} from b_{1} to ∞ and 0 to b_{1} and making use of equations (36) \& (38), we obtain:
$\left(\lambda_{1}+\lambda_{2}+\mu_{1}\right) \mathrm{F}_{0.0}(\mathrm{X})-\mu_{1} \mathrm{P}_{0.0 .0}=\lambda_{1} \mathrm{X}^{\mathrm{b}_{1}} \mathrm{~F}_{0.0}(\mathrm{X})+\mu_{2} \mathrm{p}_{21} \mathrm{X} \mathrm{F}_{1.0}(\mathrm{X})+\mu_{3} \mathrm{~F}_{0.1}(\mathrm{X})$
(45)
$\operatorname{for}\left(\mathrm{n}_{1} \geq \mathrm{b}_{1,} \mathrm{n}_{2}=0, \mathrm{n}_{3}=0\right)$
Multiplying equation (40) \& (41) by $\mathrm{Y}^{\mathrm{n}_{2}}$ and taking summation over n_{2} from b_{2} to ∞ and 1 to $\mathrm{b}_{2}-1$ making use of equations (42) \& (38), we obtain

$$
\begin{align*}
& \left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}+\mu_{3}\right) \mathrm{F}_{\mathrm{n}_{3}}(\mathrm{X}, \mathrm{Y})-\mu_{1} \mathrm{~F}_{0 . \mathrm{n}_{3}}(\mathrm{Y})-\mu_{2} \mathrm{~F}_{0 . \mathrm{n}_{3}}(\mathrm{X}) \\
& =\lambda_{1} X^{\mathrm{b}_{1}} \mathrm{~F}_{\mathrm{n}_{3}}(\mathrm{X}, \mathrm{Y})+\lambda_{2} \mathrm{Y}^{\mathrm{b}_{2}} \mathrm{~F}_{\mathrm{n}_{3}}(\mathrm{X}, \mathrm{Y})+\frac{\mu 1 \mathrm{p}_{12}}{X} \mathrm{Y}\left[\mathrm{~F}_{\mathrm{n}_{3}}(\mathrm{X}, \mathrm{Y})-\mathrm{F}_{0 . \mathrm{n}_{3}}(\mathrm{Y})\right] \\
& \quad+\frac{\mu 1 \mathrm{p}_{13}}{X}\left[\mathrm{~F}_{\mathrm{n}_{3}-1}(\mathrm{X}, \mathrm{Y})-\mathrm{F}_{0 . \mathrm{n}_{3}-1}(\mathrm{Y})\right]+\frac{\mu_{2} \mathrm{p}_{21}}{Y} \mathrm{X}\left[\mathrm{~F}_{\mathrm{n}_{3}}(\mathrm{X}, \mathrm{Y})-\mathrm{F}_{0 . \mathrm{n}_{3}}(\mathrm{X})\right] \\
& \quad+\frac{\mu_{2} \mathrm{p}_{23}}{Y}\left[\mathrm{~F}_{\mathrm{n}_{3}-1}(\mathrm{X}, \mathrm{Y})-\mathrm{F}_{0 . \mathrm{n}_{3}-1}(\mathrm{X})\right]+\mu_{3} \mathrm{~F}_{\mathrm{n}_{3}+1}(\mathrm{X}, \mathrm{Y}) \tag{46}
\end{align*}
$$

for $\left(n_{2} \geq b_{2,} n_{3}>0\right)$
Multiplying equation (43) \& (44) by $\mathrm{Y}^{\mathrm{n}_{2}}$ and taking summation over n_{2} from b_{2} to ∞ and 1 to $\mathrm{b}_{2}-1$ making use of equations (45) \& (38), we obtain

$$
\begin{align*}
&\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}\right) \mathrm{F}_{0}(\mathrm{X}, \mathrm{Y})-\mu_{1} \mathrm{~F}_{0.0}(\mathrm{Y})-\mu_{2} \mathrm{~F}_{0.0}(\mathrm{X}) \\
&=\lambda_{1} \mathrm{X}^{\mathrm{b}_{1}} \mathrm{~F}_{0}(\mathrm{X}, \mathrm{Y})+\lambda_{2} \mathrm{Y}^{\mathrm{b}_{2}} \mathrm{~F}_{0}(\mathrm{X}, \mathrm{Y})+\frac{\mu 1 \mathrm{p}_{12}}{X} \mathrm{Y}\left[\mathrm{~F}_{0}(\mathrm{X}, \mathrm{Y})-\mathrm{F}_{0.0}(\mathrm{Y})\right] \\
&+\frac{\mu_{2} \mathrm{p}_{21}}{Y} \mathrm{X}\left[\mathrm{~F}_{0}(\mathrm{X}, \mathrm{Y})-\mathrm{F}_{0.0}(\mathrm{X})\right]+\mu_{3} \mathrm{~F}_{1}(\mathrm{X}, \mathrm{Y}) \tag{47}
\end{align*}
$$

Multiplying equation (46) by $\mathrm{Z}^{\mathrm{n}_{2}}$ and taking summation over n_{3} from 0 to ∞ and making use of equations $(47) \&(38,39)$, we obtain
$\left(\lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2}+\mu_{3}\right) F(X, Y, Z)-\mu_{1} F_{0}(Y, Z)-\mu_{2} \quad F_{0}(X, Z)-\mu_{3} \quad F_{0}(X, Y)$

$$
\begin{align*}
& =\lambda_{1} X^{\mathrm{b}_{1}} \mathrm{~F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})+\lambda_{2} \mathrm{Y}^{\mathrm{b}_{2}} \mathrm{~F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})+\frac{\mu 1 \mathrm{p}_{12}}{X} \mathrm{Y}\left[\mathrm{~F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})-\mathrm{F}_{0}(\mathrm{Y}, \mathrm{Z})\right] \\
& +\frac{\mu 1 \mathrm{p}_{13}}{X} \mathrm{Z}\left[\mathrm{~F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})-\mathrm{F}_{0}(\mathrm{Y}, \mathrm{Z})\right]+\frac{\mu_{2} \mathrm{p}_{21}}{Y} \mathrm{X}\left[\mathrm{~F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})-\mathrm{F}_{0}(\mathrm{X}, \mathrm{Z})\right] \\
& +\frac{\mu_{2} \mathrm{p}_{23}}{Y} \mathrm{Z}\left[\mathrm{~F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})-\mathrm{F}_{0}(\mathrm{X}, \mathrm{Z})\right]+\frac{\mu_{3}}{Z}\left[\mathrm{~F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})-\mathrm{F}_{0}(\mathrm{X}, \mathrm{Y})\right] \tag{48}
\end{align*}
$$

After simplifying equation (48), we get:
$\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=$

$$
\frac{\mu_{1}\left(1-\frac{p_{12} Y}{X}-\frac{p_{13} Z}{X}\right) \mathrm{F}_{0}(\mathrm{Y}, \mathrm{Z})+\mu_{2}\left(1-\frac{p_{21} X}{Y}-\frac{p_{23} Z}{Y}\right) \mathrm{F}_{0}(\mathrm{X}, \mathrm{Z})+\mu_{3}\left(1-\frac{1}{Z}\right) \mathrm{F}_{0}(\mathrm{X}, \mathrm{Y})}{\lambda_{1}\left(1-\mathrm{X}^{\mathrm{b}_{1}}\right)+\lambda_{2}\left(1-\mathrm{Y}^{\mathrm{b}_{2}}\right)+\mu_{1}\left(1-\frac{p_{12} Y}{X}-\frac{p_{13} Z}{X}\right)+\mu_{2}\left(1-\frac{p_{21} X}{Y}-\frac{p_{23} Z}{Y}\right)+\mu_{3}\left(1-\frac{1}{Z}\right)}
$$

For convenience, we define
$\mathrm{F}_{0}(\mathrm{Y}, \mathrm{Z})=\mathrm{F}_{1}, \mathrm{~F}_{0}(\mathrm{X}, \mathrm{Z})=\mathrm{F}_{2}, \mathrm{~F}_{0}(\mathrm{X}, \mathrm{Y})=\mathrm{F}_{3}$
For $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=1, \& \mathrm{~F}(1,1,1)=1$,
The above equation (49) reduces to indeterminate form ($\left(\frac{0}{0}\right)$.
Therefore by using L’Hospital Rule for Limits the following results are obtained from equations (49) \& (50).

1) When $Y=Z=1$, and taking $X \rightarrow 1$, we get

$$
\begin{equation*}
-\lambda_{1} \mathrm{~b}_{1}+\mu_{1}-\mu_{2} \mathrm{p}_{21}=\mu_{1} \mathrm{~F}_{1}-\mu_{2} \mathrm{p}_{21} \quad \mathrm{~F}_{2} \tag{51}
\end{equation*}
$$

2) When $X=Z=1$, and taking $Y \rightarrow 1$, we get

$$
\begin{equation*}
-\lambda_{2} \mathrm{~b}_{2}-\mu_{1} \mathrm{p}_{12}+\mu_{21}=-\mu_{1} \mathrm{p}_{12} \mathrm{~F}_{1}+\mu_{2} \mathrm{~F}_{2} \tag{52}
\end{equation*}
$$

3) When $X=Y=1$, and taking $Z \rightarrow 1$, we get

$$
\begin{equation*}
-\mu_{1} \mathrm{p}_{13}-\mu_{2} \mathrm{p}_{23}+\mu_{3}=-\mu_{1} \mathrm{p}_{13} \mathrm{~F}_{1}-\mu_{2} \mathrm{p}_{23} \mathrm{~F}_{2}+\mu_{3} \mathrm{~F}_{3} \tag{53}
\end{equation*}
$$

On solving these equations for $\mathrm{F}_{1}, \mathrm{~F}_{2} \& \mathrm{~F}_{3}$, we obtain the following results -$\mathrm{F}_{1}=1-\frac{\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{p}_{21}}{\mu_{1}\left(1-p_{12} p_{21}\right)}=1-\rho_{1}$
$\mathrm{F}_{2}=1-\frac{\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}}{\mu_{2}\left(1-p_{12} p_{2}{ }_{1}\right)}=1-\rho_{2}$
$\left.\begin{array}{l}\mathrm{F}_{3}=1-\left\{\frac{\mu_{1}}{\mu_{2}\left(\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{p}_{21}\right) \mathrm{p}_{13}}\right. \\ \mu_{3}\left(1-p_{12} p_{21}\right)\end{array}+\frac{\left(\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}\right) \mathrm{p}_{23}}{\mu_{3}\left(1-p_{12} p_{21}\right)}\right\}=1-\rho_{3}$

$$
\begin{equation*}
\mathrm{P}_{\mathrm{n}_{1} . \mathrm{n}_{2} . \mathrm{n}_{3}}=\rho_{1}{ }^{n_{1}} \rho_{2}^{n_{2}} \rho_{3}{ }^{n_{3}}\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)\left(1-\rho_{3}\right) \tag{54}
\end{equation*}
$$

Where

$$
\begin{align*}
\rho_{1} & =\frac{\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{p}_{21}}{\mu_{1}\left(1-\mathrm{p}_{12} p_{21}\right)} \\
\rho_{2} & =\frac{\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}}{\mu_{2}\left(1-\mathrm{p}_{12} p_{21}\right)} \\
\rho_{3} & =\frac{\left(\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{p}_{21}\right) \mathrm{p}_{13}}{\mu_{3}\left(1-p_{122} p_{21}\right)}+\frac{\left(\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}\right) \mathrm{p}_{23}}{\mu_{3}\left(1-p_{12} p_{21}\right)} \tag{55}
\end{align*}
$$

C. QUEUE CHARACTERISTICS

From the equation (54), and (55) mean queue length can be obtained as follows:
Mean queue length (L)
$\mathrm{L}=\mathrm{L}_{\mathrm{q}_{1}}+\mathrm{L}_{\mathrm{q}_{2}}+\mathrm{L}_{\mathrm{q}_{3}}$
Where
$\mathrm{L}_{\mathrm{q}_{1}}=\frac{\rho_{1}}{1-\rho_{1}}=\frac{\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{p}_{21}}{\mu_{1}\left(1-p_{1}{ }_{2} p_{21}\right)-\left(\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{p}_{21}\right)}$
$\mathrm{L}_{\mathrm{q}_{2}}=\frac{\rho_{2}}{1-\rho_{2}}=\frac{\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}}{\mu_{2}\left(1-p_{12} p_{21}\right)-\left(\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}\right)}$
$\mathrm{L}_{\mathrm{q}_{3}}=\frac{\rho_{3}}{1-\rho_{3}}=\frac{\left(\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{P}_{21}\right) \mathrm{P}_{13}+\left(\lambda_{1} \mathrm{~b}_{1} \mathrm{P}_{12}+\lambda_{2} \mathrm{~b}_{2}\right) \mathrm{P}_{23}}{\mu_{3}\left(1-P_{12} P_{21}\right)-\left(\left(\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{P}_{21}\right) \mathrm{P}_{13}+\left(\lambda_{1} \mathrm{~b}_{1} \mathrm{P}_{12}+\lambda_{2} \mathrm{~b}_{2}\right) \mathrm{P}_{23}\right)}$

$$
\begin{align*}
\therefore \mathrm{L}= & \frac{\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{p}_{21}}{\mu_{1}\left(1-p_{12} p_{21}\right)-\left(\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{p}_{21}\right)}+\frac{\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}}{\mu_{2}\left(1-p_{12} p_{21}\right)-\left(\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}\right.} \\
& +\frac{\left(\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{p}_{21}\right) \mathrm{p}_{13}+\left(\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}\right) \mathrm{p}_{23}}{\mu_{3}\left(1-p_{12} p_{21}\right)-\left[\left(\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{p}_{21}\right) \mathrm{p}_{13}+\left(\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}\right) \mathrm{p}_{23}\right]} \tag{56}
\end{align*}
$$

III. VALIDITY of MODEL

To check the validity of model we consider the following particular cases:-
(1) We consider
$\lambda_{2}=\mathbf{0}, \mathbf{b}_{1}=\mathbf{b}_{\mathbf{2}}=\mathbf{1}, \mathbf{p}_{12}=\mathbf{1}$ and $\mathbf{p}_{21}=\mathbf{p}_{13}=\mathbf{p}_{23}=\mathbf{0}$, from the above result (56), then we get
$\mathrm{L}=\frac{\lambda_{1}}{\mu_{1}-\lambda_{1}}+\frac{\lambda_{1}}{\mu_{2}-\lambda_{1}}$
This coincides with that of Jackson R.R.P. [3].
(2) We consider
$\mathbf{b}_{\mathbf{1}}=\mathbf{b}_{\mathbf{2}}=\mathbf{1}, \mathbf{p}_{\mathbf{1 3}}=\mathbf{p}_{\mathbf{2 3}}=\mathbf{0}$ the above result (56) becomes
$\mathrm{L}=\frac{\lambda_{1}+\lambda_{2} \mathrm{p}_{21}}{\mu_{1}\left(1-\mathrm{p}_{12} p_{21}\right)-\left(\lambda_{1}+\lambda_{2} \mathrm{p}_{21}\right)}+\frac{\lambda_{1} \mathrm{p}_{12}+\lambda_{2}}{\mu_{2}\left(1-\mathrm{p}_{12} p_{21}\right)-\left(\lambda_{1} \mathrm{p}_{12}+\lambda_{2}\right)}$
In that case the result resembles with Maggu [6].
(3) When we consider $\mathbf{p}_{13}=\mathbf{p}_{23}=\mathbf{0}$ the above result (56) becomes
$\mathrm{L}=\frac{\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{P}_{21}}{\mu_{1}\left(1-P_{12} P_{21}\right)-\left(\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{P}_{21}\right)}+\frac{\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}}{\mu_{2}\left(1-P_{12} P_{21}\right)-\left(\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}\right)}$
In that case the result matches with the Hafiz Noor Mohammad et al. [9].
Thus all the above results (1), (2) \& (3), shows the validity of model under consideration.

IV. NUMERICAL ILLUSTRATION

Consider the problem with the following data:-

$\mathrm{b}_{1}=2$			
$\mathrm{~b}_{2}=4$	$\lambda_{1}=5$	$\mu_{1}=21$	$\mathrm{p}_{12}=0.7$,
	$\lambda_{2}=3$	$\mu_{2}=28$	$\mathrm{p}_{1}{ }_{3} \quad=$
		$\mu_{3}=25$	0.3
		$\mathrm{p}_{2} 1_{1}=0.4$,	
$\mathrm{p}_{2} 3=0.6$			

Find the average /mean queue length.

A. Solution Process:

In the given problem the customer enters into the system with

$$
\text { Batch sizes } \quad \mathrm{b}_{1}=2, \mathrm{~b}_{2}=4 \text {, }
$$

Mean Arrival rates $\lambda_{1}=5, \lambda_{2}=3$,
Mean Service rates $\mu_{1}=21, \mu_{2}=28, \mu_{3}=25$, and
Probabilities
$\mathrm{p}_{12}=0.7, \mathrm{p}_{13}=0.3 \mathrm{p}_{2_{1}}=0.4, \mathrm{p}_{2_{3}}=0.6$
Such that $\mathrm{p}_{1_{2}}+\mathrm{p}_{1_{3}}=1 \& \mathrm{p}_{2_{1}}+\mathrm{p}_{23}=1$.
Mean queue length is obtained by putting these values in the equation (56),
$\mathrm{L}=\mathrm{L}_{\mathrm{q}_{1}}+\mathrm{L}_{\mathrm{q}_{2}}+\mathrm{L}_{\mathrm{q}_{3}}$

$$
\begin{aligned}
= & \frac{\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{p}_{21}}{\mu_{1}\left(1-p_{12} p_{21}\right)-\left(\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{p}_{21}\right)}+\frac{\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}}{\mu_{2}\left(1-p_{12} p_{21}\right)-\left(\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}\right)} \\
& \quad+\frac{\left(\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{p}_{21}\right) \mathrm{p}_{13}+\left(\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}\right) \mathrm{p}_{23}}{\mu_{3}\left(1-p_{12} p_{21}\right)-\left[\left(\lambda_{1} \mathrm{~b}_{1}+\lambda_{2} \mathrm{~b}_{2} \mathrm{p}_{21}\right) \mathrm{p}_{13}+\left(\lambda_{1} \mathrm{~b}_{1} \mathrm{p}_{12}+\lambda_{2} \mathrm{~b}_{2}\right) \mathrm{p}_{23}\right]} \\
= & \frac{14.8}{0.32}+\frac{19}{1.6}+\frac{15.84}{2.16} \\
= & 68.54 \text { units }
\end{aligned}
$$

V. CONCLUDING REMARKS

Most of the existing study in the field of queuing theory discussed the behavior of the model using either single arrival or batch arrival. Our model differs in the sense that we develop and design the model using the combination of both type of arrivals (i.e. single and batch) in stochastic environment with practical situation. Mean queue length of the model is obtained with the help of generating function technique. Other performance measures can be found by using Little's Formulae. Validity of the model is checked by considering the particular cases like, Jackson [3], Maggu [6] and Hafiz Noor Mohammad, Tahir Hussain \& Mohammad Ikram [9]. The concept is new and one can extend the research work by including more parameters.

REFERENCES

[1] Erlang, A.K., "The theory of probability and telephone congestion", Nyt Tidsskrift for Mathematics Ser b. Vol. 20, 33-39, 1909.
[2] Pandey, P.C., "Multi input Sources with Simultaneous Arrival", Industrial Engineering \& Management Today, Vol. 2, 17-21, 1976.
[3] Jackson R.R.P, "Queueing system with phase type service", O.R., Quarterly, Vol.5, 109-120, 1954
[4] O`Brien, G.G., "The solution of some queuing problems", J. Soc. Ind. Appl. Math, Vol. 2, 33-142,1954
[5] Suzuki, T., "Batch arrival queuing problem", J. Op. Res. Soc., Japan, Vol. 4, 137-184, 1963.
[6] Maggu P.L., "On certain type of queues, Statistica Neerlandica", Vol. 24, 89-97, 1970(a).
[7] Maggu P.L., "Phase type service queues with two server in biseries", J.Op. Res.Sco. Japan ,Vol. 13(1) , 1970(b).
[8] Maggu P.L. and Lal M.M., "Transient Analysis on Certain type of queues in service with service parameters constraints", Ricerca Operativa N. Vol. 19, 57-61,1981
[9] Hafiz Noor Mohammad, Tahir Hussain and Mohammad Ikram, "Two Biseries Queues With Batch Arrival at Each Stage", Pure and Applied Mathematika Sciences, Vol. 17, 1-2, 1983.
[10] Singh T.P., Kumar Vinod \& Kumar Rajender,"On transient behaviour of a queuing network with parallel biserial queues", JMASS Vol.1(2),2005.
[11] Singh T.P., \& Gupta Deepak, "Analysis of a network queue model comprised of biserial \& parallel channel linked with a common server", Ultra scientist of physical sciences, 407-417, 2007
[12] Singh T.P., Mittal Meenu and Gupta Deepak, "Threshold effect on a fuzzy queue model with batch arrival", Aryabhatta Journal of Mathematics \& Informatics, Vol. 7(1), 109-118, 2015.
[13] Singh T.P., Mittal Meenu and Gupta Deepak "Priority queue model along intermediate queue under fuzzy environment with application", International Journal in Physical \& Applied Sciences, Vol. 3(4), 2016.
[14] Singh T.P., Kusum \& Gupta Deepak, "Feedback queue model assumed service rate propotional to queue numbers", Aryabhatta Journal of Mathematics \& Informatics, Vol. 2(1), 103-110, 2010.

