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Abstract  The concept of ‘Field’ plays an important role in defining the algebraic structure ‘Linear Space’. Following the
definition of neutrosophic soft field and it's element namely neutrosophic soft scalar introduced in [29], their structural
characteristics have been investigated in the present paper. Then the neutrosophic soft function over a crisp field is defined and
illustrated by suitable examples. In continuation, the nature of neutrosophic soft homomorphic image and pre-image of a
neutrosophic soft field are studied here. Finally, the concept of neutrosophic soft algebra over a neutrosophic soft field has been
proposed along with the establishment of some related theorems.
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1 Introduction

Once upon a time, the uncertainties appearing in several real world problem like in law, medicine, engineering, management,
industrial, IT sector etc were handled by practice of probability theory, theory of fuzzy set, intuitionistic fuzzy set theory, theory of
interval mathematics, rough set theory etc. Because of the insufficiency in the available information situation, evaluation of
membership values and nonmembership values estimated in intuitionistic fuzzy set theory are not always possible. So there exists an
indeterministic part upon which hesitation survives. The Neutrosophic set (NS) theory by Smarandache [16], [17] meets that fact
which is a generalisation of classical set, fuzzy set, intuitionistic fuzzy set. The neutrosophic logic includes the information about the
percentage of truth, indeterminacy and falsity grade which are not available in intuitionistic fuzzy set theory.

Because of the inadequacy of parametrization tools, each of these theories suffers from inherent difficulties. Molodtsov [1]
introduced the concept of soft set theory which is free from the parametrization inadequacy syndrome of different theories dealing
with uncertainty present in most of our real life situation. The parametrization tool of soft set theory makes it very convenient and easy
to apply in practice. The classical algebraic structures were extended over fuzzy set, intuitionistic fuzzy set and soft set by many
authors for instance Rosenfeld [2], Mukherjee and Bhattacharya [3], Sharma [4], Aktas and Cagman [5], Maji et al. [6]-[9],
Augunoglu and Aygun [10], Yaqoob et al. [11], Varol et al. [12], Zhang [13], Nanda [14], Wenxiang and Tu [15] and others.

Maji [18] has brought a combined concept Neutrosophic soft set (NSS) theory. Upon this concept Broumi et al. [19], Cetkin et al.
[20], [21], Deli and Broumi [22], [23], Bera and Mahapatra [24]-[29] and others have designed their research works on some
fundamental algebraic structures. Deli and Broumi [22] also modified the operations related to indeterminacy membership function as
given by Maji [18].

This paper investigates the characteristics of neutrosophic soft field and develops some of it's related properties and theorems. The
organisation of the paper is as follows. Section 2 gives some preliminary useful definitions related to it. In Section 3, the structural
characteristics of neutrosophic soft field have been investigated. Section 4 and Section 5 deal with the Cartesian product of
neutrosophic soft fields and the concept of neutrosophic soft subfield, respectively. The nature of neutrosophic soft homomorphic
image and pre-image of neutrosophic soft fields are studied in Section 6. In Section 7, the concept of neutrosophic soft algebra has
been introduced along with the development of some related theorems. Finally, the conclusion has been drawn in Section 8.

2 Preliminaries
We recall some basic definitions related to fuzzy set, soft set, neutrosophic soft set for the sake of completeness.

2.1 Definition [28]

1. A binary operation *:[0,1] x [0,1] — [0,1] is said to be continuous t - norm if * satisfies the following conditions :
(i) = is commutative and associative.

(if) = is continuous.

(iii) ax1=1xa=a, Va € [0,1].
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(iv) a*b<cxd if a<c,b<d witha,b,cde€|[01].
A few examples of continuous t-normare a *xb = ab, a xb = min{a, b}, a * b = max{a + b — 1,0}.

2. A binary operation :[0,1] x [0,1] — [0,1] is said to be continuous t - conorm (s - norm) if o satisfies the following conditions :
(i) o is commutative and associative.
(if) o is continuous.
(iii) ae0=0¢a=a, Va€e[0,1].
(iv)] aeb<cod if a<cb<d with ab,cde][01].
A few examples of continuous s-normare aeb =a+ b —ab, a o b = max{a, b},a ¢ b = min{a + b, 1}.

2.2 Definition [16]

Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic set A in X is characterized by a
truth-membership function T, an indeterminacy-membership function I, and a falsity-membership function F,. T,(x), I,(x) and
F,(x) are real standard or non-standard subsets of ]70,17[. That is Ty, I,, F4: X —»]0,17[. There is no restriction on the sum of
T (%), [ (%), F4(x) and so, ~0 < supT,(x) + supl,(x) + supF,(x) < 3%.

2.3 Definition [1]
Let U be an initial universe setand E be a set of parameters. Let P(U) denote the power set of U. Then for A € E, apair (F,A) is
called a soft set over U, where F: A — P(U) is a mapping.

2.4 Definition [18]
Let U be an initial universe set and E be a set of parameters. Let NS(U) denote the set of all NSs of U. Then for A € E, a pair
(F,A) is called an NSS over U, where F: A — NS(U) is a mapping.

This concept has been redefined by Deli and Broumi [22] as given below.

2.5 Definition [22]

Let U be aninitial universe setand E be a set of parameters. Let NS(U) denote the set of all NSs of U. Then, a neutrosophic soft set
N over U is a set defined by a set valued function f representing a mapping fy: E — NS(U) where fy is called approximate
function of the neutrosophic soft set N. In other words, the neutrosophic soft set is a parameterized family of some elements of the set
NS(U) and therefore it can be written as a set of ordered pairs : N = {(e, {< x, Ty, &) (%), Iy, (&) (%), Ffp () (x) >:x € U}): € € E}
where  T¢ ey (X)) Iy ey (%), Fry ey (x) €[0,1] ,  respectively called the truth-membership, indeterminacy-membership,
falsity-membership function of fy(e). Since supremum of each T,I,F is 1 so the inequality 0 < Ty, (%) + s, () (x) +
Ff\ (ey(x) < 3 is obvious.

2.5.1 Example
Let U = {hy, h,, h3} beasetof housesand E = {e; (beautiful),e, (wooden),e; (costly) } be aset of parameters with respect to
which the nature of houses are described. Let,

fu(er) = {< hy,(0.5,0.6,0.3) >, < hy, (0.4,0.7,0.6) >, < hs, (0.6,0.2,0.3) >};

fu(ex) = {< hy,(0.6,0.3,0.5) >, < hy,(0.7,0.4,0.3) >, < hs,(0.8,0.1,0.2) >};

fu(es) = {< hy,(0.7,0.4,0.3) >, < hy,(0.6,0.7,0.2) >, < hs,(0.7,0.2,0.5) >};
Then N = {[eq, fv(e1)], [e2, fv(e2)], [es, fy(e3)]} isan NSS over (U, E). The tabular representation of the NSS N is given in Table
1.

Table 1 : Tabular form of NSS N

fn(er) fn(ez) fu(es)
hy (0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3)
h, (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2)
hs (0.6,0.2,0.3) (0.8,0.1,0.2) (0.7,0.2,0.5)

2.5.2 Definition [22]
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The complement of a neutrosophic soft set N is denoted by N¢ and is defined by :
N¢ = {(e, {< X, FfN(e)(x),l - IfN(e)(x), TfN(e)(x) > x € U}) e e E}

2.5.3 Definition [22]
Let N; and N, be two NSSs over the common universe (U, E). Then N; is said to be the neutrosophic soft subset of N, if Ve € E
and vx € U,

Trny @) < Ty, @) Iy @) 2 Iy, 000, Fry @ () 2 Fry, e (%)
We write N; € N, and then N, is the neutrosophic soft superset of Nj.

2.5.4 Definition [22]
Let N; and N, be two NSSs over the common universe (U, E). Then their union is denoted by N; U N, = N5 and is defined as :

N3 = {(e,{< X, Tng(e)(x)’ IfN3(e)(x)!FfN3(e)(x) >ix € U}) e e E}
where Tp ) (0) = Try )0 © Try ) O Iy ) (X) = Ipy (%) * Iy ey (X) @nd
Fry @) (X) = Fryy ) (%) * Fr ey (20

Their intersection is denoted by N; n N, = N, and is defined as :
Ny ={(e,{< x, TfN4(e)(x), IfN4(e)(x),FfN4(e)(x) >:x € U}):e € E}
where Ty, e) (%) = Try, @ (O * Try, 000 Iy, 00 (XD = Iy 003  Ipy, o) (%) and
By 400 = Fry 0)(X) © Fry, ) (%);

2.6 Definition [24]
Let N; and N, be two NSSs over the common universe (U, E). Then their ‘AND’ operation is denoted by N; AN, = Ns and is
defined as :

N5 = {[(a, b), {< X, TfNS(a-b)(x)’ IfN5(a:b)(x)’ Fst(a-b)(x) >ix € U}] (a, b) eEx E}
where  Tr, @) (0) = Try, @ (O * Try, ) Ly @by () = Iy, @) © Jpy, 6y () and
Frygamn®) = Fry, @ (%) © By, ) (X;

Their ‘OR’ operation is denoted by N; vV N, = N, and is defined as :
Ng = {[(a, b),{< x, Tflvﬁ(a,b)(x)'IfNG(a.b)(x)'Ffzv(,(a,b)(x) >:x € U}]:(a,b) EE X E}
where  Tr, @) () = Try, @ () © Tryy, ), iy ay () = Iy @ () * Iy, 0y () and
Frygn) () = Fry @ () * Fry, ) (%)

2.7 Definition [24]
Let g be amapping fromaset X toaset Y. If M and N are two neutrosophic soft sets over X and Y, respectively, then the image
of M under g is defined as a neutrosophic soft set g(M) = {[e, fym)(e)]: e € E} over Y where ng(M)(e)(Y) =T;,0lg )],

Fyan@) = lry@ld 7 O Fr @) = Fry@lg O vy €Y.

The pre-image of N under g is defined as a neutrosophic soft set g~!(N) ={le,fy-1)(e)]: e €E} over X where
ng_l(N)(e)(x) =Try(e)lg(0)], Ifg_1(N)(e)(x) = Iry 0[g(x)], ng_l(N)(e)(x) = Frylg(0)]; vx € X.

2.8 Definition [29]
A neutrosophic set B = {< x, Tg(x), Iz(x), Fp(x) >:x € K} over afield (K, +,-) is called a neutrosophic subfield of (K, +,") if the
followings hold.
Tp(x +y) = Tp(x) * Tp(¥)
@) §Is(x +y) < Ip(x) o Ip(¥)
Fg(x+y) < Fg(x) o Fg(y); V x,y EK.
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Tp(—x) = Tp(x)
@) {Ip(—x) < Ip(x)
Fg(—x) < Fp(x); V x €EK.
Tp(x.y) =2 Tp(x) * T (y)
Ig(x.y) < Ip(x) o Ip(y)
Fp(x.y) < Fg(x) e Fs(¥); V x,y €K.
Tg(x™1) = Tp(x)

() { (™) < Ip(x)
Fg(x 1) < Fz(x); V x(#0) €K.

An NSS N is called a neutrosophic soft field over [(K,+,-), E] if fy(e) is a neutrosophic subfield of the field (K,+,") for each
e€E.

(ii0)

2.8.1 Definition [29]
Each element (e, fy(e)) of the neutrosophic soft field N over [(K, +,"), E] is called a neutrosophic soft scalar and is denoted by é,.

A neutrosophic soft scalar éy € M, M being another neutrosophic soft field over (K,E) if fy(e) < fy(e) i.e.,
Try(e)() = Tryy 000, Try 03 2 Iy 00 (0, Fry o) (%) 2 Fryy o) (%) VX € K.

2.8.2 Example
1. Let us consider the field Z; = {0,1,2} and E = {e;, e, e3, e,} be the set of parameters. We define fy(e,), fy(e2), fu (e3), fi (es)
as given by the Table 2 .

Table 2 : Tabular form of neutrosophic soft field N

fu(er) fu(er) fu(es) fn(es)
0 (0.67,0.39,0.19) (0.85,0.29,0.27) (0.29,0.53,0.41) (0.31,0.21,0.19)
1 (0.55,0.41,0.44) (0.41,0.78,0.32) (0.64,0.42,0.25) (0.72,0.19,0.16)
2 (0.35,0.52,0.28) (0.63,0.52,0.41) (0.59,0.66,0.39) (0.48,0.31,0.27)

Corresponding t-norm (*) and s-norm (o) are definedas a+*b = max{a+ b — 1,0}, a¢b = min{a + b, 1}. Then, N forms a
neutrosophic soft field over [(Z3, +,-), E]. Here, the neutrosophic soft field N consists of four neutrosophic soft scalars viz.,
é1n, éan, €3y, €4y SO, it is a finite neutrosophic soft field over [(Z3,+,), E].

2. Let E = N (the set of natural numbers) be the parametric set and K = (R, +,-) be the field of all real numbers. Define a mapping
fu: N - NS(R) where, forany n € N and x € R,
0 if x is rational

Try o () = {L
3n

1-—
0 if x is irrational.
1

Froon (%) = {E

T 0 if x is irrational.
The t-norm (*) and s-norm (e) are defined as a * b = min{a, b},a ¢ b = max{a, b}. Then, M forms a neutrosophic soft field
over [(R,+,"), N]. Itis obviously an infinite neutrosophic soft field.

if x is irrational.

S |-

if x is rational

I oy (%) = {

if x is rational

3 Neutrosophic soft field
Here, the characteristics of neutrosophic soft field have been investigated along with the development of some related theorems.

3.1 Proposition
Let N be a neutrosophic soft field over [(K, +,-), E]. Then for the additive identity 0, and the multiplicative identity 1, of the field

(K, +,"), the followings hold if a * b = min{a, b} and a ¢ b = max{a, b}.
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(l) TfN(e)(Ok) = TfN(e)(x), IfN(e)(Ok) < IfN(e)(x), FfN(e)(Ok) < FfN(e)(x), Vx € K, Ve € E.
(") Tryve)(Li) = Try ) Ty o) (L) < Iy (%), Frpy o) (L) < Fryey(x), Vx(# 0) EK, Ve EE.
(i) Trpe)(O0r) = Ty ) (L) Iy e (0k) < Iy ey (Li)s Fry ) (0k) < Fr ey (1)

Proof. (i) Vx €K and Ve € E,
Trne)(0k) = Ty (e (X = %) 2 Try () (%) * Tryy () () = Tpy ey (%),
Iy e)(0k) = Ipy ey (X = %) < Ipy (0 (%) © Iy () () = Ipy () (),
Fry)(0k) = Fry ey (x = %) < Frpye) () 0 Fryy(e) (%) = Fpy ) (%);

(if) Vx(#+ 0,) €K and Ve € E,
Try(e) (L) = Try (e (6. X7 = Tpy 09 () * Ty (o) (1) = Ty ey (%),
Iy ) (L) = Iy (o) 06 X7 Sy 0 (0 © Iy 09 () = Iy (9 (1),
Frye) (1) = Fry o) (. X7 < Fry o) () © Fyyy o) (1) = Fryy ey (%)

(iii) By applying (i)
3.2 Proposition

An NSS N over the field [(K,+,"),E] is called a neutrosophic soft field iff followings hold on the assumption that a x b =
min{a, b} and a ¢ b = max{a, b}.

Tryey(X = ¥) 2 Tpy ey (%) * Ty (0 (V) Ty (Y1) 2 Try () () * Try () )
D v X =Y) < Ipye)(X) 0 Iy ey (), (D)3 ) 6™ < Iy o) () © Iy 0y (00,
Fry@ (X =) < Fryey(X) © Fryey(¥)); for x,y €K. Frye(x.y™) S Fryey(%) 0 Fryoy(0); for x,y €K.

Proof. First suppose N is a neutrosophic soft field over [(K,+,-), E]. Then,

Trye) (X =) 2 Trye) (¢ + (=) 2 Try ) () * Try ) (=¥) 2 Try o) () * Ty ) ()
Iy ey =Y) S Irye)(x + (=) < Iy e)(X) 0 Iry o) (=Y) < Iy ) (%) © Ly ey V),
Erye)(x =) < Fryey(x + (=9)) < Fpyye)(X) @ Fry ) (=9) < Fryey(0) @ Fry ) (9)5

Ty ey (% y_ll) 2 Try ) (X) * Ty, (e)(yl_l) 2 Tryy ) (X) * Ty ey (V)
Iy ey (x.y™ 1) Sy () o Iy (0™ )1 < Iy e)(®) ¢ Iy (e (V)
Frye)(x.y7) < Frye)(0) 0 Fry ey (V) < Frye) (%) © By (0 (0D

Conversely, for the additive identity 0, and multiplicative identity 1, in (K, +,"),

Try(e)(=X) = Tryy )0k = X) 2 Ty ey (0k) * Ty ey (X) = Ty 0y (X) * Ty () () = Ty () (%),
Iey ey (=%) = Iy ) Ok = %) < Ip ey (0k) 0 Iy (o) (X)) < Lpy () (%) © Ly () () = Iy ey (%),
Frye)(=%) = Fry ) (0 = %) < Fry(e)(01) © Fy ey (%) < Fpy ey (%) 0 Frpy ey (X) = Frpy ey (X);

Ty (X +3) = Trye)(x = (=¥)) 2 Ty ey () * Ty ) (=¥) 2 Ty ) () * Ty () (0),
Iy (X +3) = Iy ey (X = (=) < Ipy ) (%) 0 Ipy o) (ZY) < Iy () (%) 0 Iy 0 (V)
Frye(x +¥) = Frpey(X = (=) < Frye)(X) 0 Fry(e)(=Y) < Fpy ey (%) 0 Fr ey (0D

TfN(e)(x_ll) =Ty, (e>(1k-x_11) 2 Try o) (i) * Tryy e (X) = Ty (e) () * Ty () () = Ty () (%),
Iy ey (X~ 1) = Ipy ey (Lie-x™ 3 S Tpy ) (L) © Iy ) (0) < Ty ey (X) 0 Iy oy (%) = Ipy () (%),
Frye)(x7) = Fryey(Lie x77) < Fr ey (1i) © Fry ey () < Fry ey (%) © ey (%) = Fpy ey (%)

Ty (9 = Ty - 7)™ 2 Ty (o) (06) * Ty () (V1) = Ty o) () * Ty (o) ),
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Iy () = Iy (e ) ™) S Iry ) (0) 0 Iy (0 ™) < Iy (o) () © Ly (0 00,
Fry) () = Fry (e 7)™ < Fry () © Fry o) (0™ < Fry (%) © Fry (o) (0);

This completes the proof.

3.3 Theorem
Let, N; and N, be two neutrosophic soft fields over [(K,+,-), E]. Then, N; N N, is also a neutrosophic soft field over [(K,+,), E].

Proof. Let, Ny NN, = N3. Now, Vx,y € K and Ve € E,

Trvs@ & +3) =Try @@+ ) * Try, (X +3)
2 [Try, @ (O * Ty, @ D] * Try, () * Try (00 0)]
= [Try, @) * Ty @ D] * [Try, @20 * Try, ()] (as * is commutative)
= Tle(e)(x) * [Tle(e) (y) * Tsz(e)(y)] * Tsz(e)(x) (as = is associative)
= Trny @) * Ty @0 * Ty ) (0
= Tle(e)(x) * Tsz(e)(x) * TfN3(e)(y) (as = is commutative)
= Ty @) * Ty ()

Hence, Tng(e)(x + y) = TfN3(9)(x) * TfN3(€)(y)'

Iy () = Iy @ (x +y) o Iy, (X +¥)
< Upyy @ @) o Iy @y D] 0 Upy, ) () 0 Iy () (D]
= [y, @) 0 ley @] e Upy, () 0 Ipy, ey (X)] (as o is commutative)
= Ile(e)(x) 0 [Ile(e)(y) °If1v2(e)(3’)] 0 Isz(e)(x) (as o is associative)
= Iy, @ @l (@) @ Iy 09 (X)
= Ile(e) (x) o Isz(e)(x) 0 IfN3(e) (y) (as o is commutative)
= Iy e)(0) 0 Iy (V)

Thus, Iy ) + ) < Ipy () 0 Iy, ) O):
Sim“arly, FfN3(e)(x + y) < Fng(e)(x) 4 Fng(e)(y)’ NeXt,

Trnae (%) = Try (%) * Tpy ey (=%) 2 Tpy (00 (0) * Tp o (0) () = Ty o) (XD,
Iy, (=%) = Iy (%) o Ipy (o) (=%) < Tpy ()(0) 0 Ipy (o) (%) = Ipy () (),
S|m||ar|y, FfN3(e)(_x) < Fst(e)(X); NeXt,

Trng@C¥) = Try, @ (¥ * Try o) (2-¥)
2 [Try, X)) * Try D] * [Try )X * Try () (V)]
= [Tle(e)(x) * Tle(e)(y)] * [Tsz(e)(y) * Tsz(e)(x)] (as = is commutative)
= Tle(e)(x) * [Tle(e)(y) * Tsz(e)(y)] * Tsz(e)(x) (as = is associative)
= Trn, @) * Ty ()0 * Try, (e) (%)
= Tle(e)(x) * Ty () (%) * TfN3(e)(J/) (as * is commutative)
= Tryy @) * Ty y (0 )

Hence, TfN3(e)(x.y) > TfN3(e)(x) * TfN3(e)(Y)1 Next,
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Iy @ y) = Iy (% ¥) 0 Iy (o) (X-¥)
S Upy @) o Iy @ O] 0 Uy, ) () © Iy () (V)]
= [Ile(e)(x) 13 Ile(e)(y)] 3 [Isz(e)(y) 3 Isz(e)(x)] (as o is commutative)
=y, @@ Iy @) ¢y (D] 0 Iy, (X)) (@S o is associative)
= Iy, @0 @ Iy, @) @ Iy (00 ()
= Ile(e)(x) 0 Isz(e)(x) ° IfN3(e)(y) (as o is commutative)
= Iy, @0 0 Iy, )

Hence, Ist(e)(x. y) < IfN3(e)(X) 4 IfN3(8)(y)’
Similarly, FfN3(e)(x.y) < Fsz(e)(x) 4 IfN3(€)(y)’ NeXt,

-1y — -1 -1 —
Trns@ ) =Ty @) * Try, () 2 Ty (000 * Ty () (%) = Ty () (),
-1y — -1 -1 —
Ly @) = Iy @) 0 py, (X)) < gy (0 @ Iy, (0 (6) = Iy (0 (%),
Similarly, FfN3(e)(x‘1) < Fry (%)
This completes the theorem.
The theorem is also true for a family of neutrosophic soft fields over a field.

3.3.1 Remark
For two neutrosophic soft fields N; and N, over [(K,+,),E], N; U N, is not generally a neutrosophic soft field over [(K,+,"), E].
It is possible if any one is contained in other.

For example, let, K = (Q,+,"), E = 2Z. Consider two neutrosophic soft fields N; and N, over [(Q,+,"),2Z] as following. For
x€eEQneZ,

1
= if x=2kn3keZ
T, x) = {2 ’
fnq(@2n)
Ve 0 others.
0 if x=2kn3keZ
Iy 2n) (%) =141
Ny " others.
2
= if x=2kn3keZ
F x) = {5 ’
fnq(2n)
M 1 others.
and
2
= if x=3kn3keZ
T, x) = {3 ’
fn,(2n)
Nt 0 others.
0 if x=3kn3keZ
lrnpeny () = {% others .
% if x=3kn3keZ
F (x) =
fa(@n) % others .

The t-norm (*) and s-norm (o) are defined as a * b = min{a, b}, a ¢ b = max{a, b}. Let, N; UN, = N3. Then, for n =2,x =
4,y = 6 we have,
TfN3(4)(4 - 6) = TfN1(4)(_2) 4 TfN2(4)(_2) = maX{0,0} =0 and
Ty () * Try ) (6) = {Try () 0 Tryy, (g (D} * {Tpy (4)(6) © Ty, (9 (6)}
i ! A —mint H =1
= mln[max{g, 03}, max{0, 5}] = m1n(2,3) =3
Hence, Ty, ) (4 = 6) < Tfy, 4)(4) * Ty, (4)(6) i.e., N; UN, isnota neutrosophic soft field, here.
Now, if we define N, over [(Q,+,-),2Z] as follows :
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1
— if x=6kn3keZ
T, (x) = {10 ’
fn,(2n)
Nt 0 others.
0 if x=6kn3ke’Z
Ly 2n) (%) =142
N2 =  others.
if x=6kn3keZ

others .
Then, it can be easily verified that N, € N; and N; U N, is a neutrosophic soft field over [(Q, +,-),2Z].

3
3
Fry,@ny(x) = {51

3.4 Theorem
Let N; and N, be two neutrosophic soft fields over [(K, +,-), E]. Then, N; A N, is also a neutrosophic soft field over [(K, +,-), E].

Proof. Let Ny AN, =N; where fy.(ab)=fy,(a)nfy,(b) for (ab)€EXE.
Since intersection of two neutrosophic subfields is also so, hence N; A N, is a neutrosophic soft field.
The theorem is also true for a family of neutrosophic soft fields over a field.

3.5 Theorem

Let g: K — L be a field isomorphism in classical sense. If M is a neutrosophic soft field over K then g(M) is a neutrosophic soft
field over L.

Proof. Let x;,x, € K; y;,y, € L suchthat y; = g(x1),y, = g(x3). Now,

Tt yon@ 1 +¥2) = Try e 97 (0 + y2)]
=T l9 (1) + 97 ()], as g~ is homomorphism.
=Ty e) (X1 + x2)
= Ty ) X)) * Trpy ) (X2)
=T, )97 O] * Try 0 [97 (02)]
=Tt oy @ 1) * T 1y ) (V2)

Tt yony (e (Y1) = Tty @97 (=YD = Try ) [=97 O0D] = Try 0 (—%1) 2 Trpy0)(X1) = Tr 9 [97 )] = Tt oy (V1)
l.e., ng(M)(e)(_Y1) > ng(M)(e)(Jﬁ); NeXt,

It s @01 +52) = Iy 0 [97 01 + y2)]
=l olg ) + 97 ()], as g~ is homomorphism.
= Iy e (1 +x2)
< Iy o)1) © Iy ey (x2)
=l @9 D] 0 Iy (0 [97 72)]
= Ity oy @) @ Iy 4 ) (V2)

_Ifg(,v,)(e)(—)ﬁ) = Ity 97 (=YD = Iy o [=97 )] = Iy 0 (=%1) < Iy ) (1) = Iy [97 1)1 = INOL64Y;
ey I @y < Ir g (01

Similarly, Fr_ )01 +¥2) < Fr 0001 © Fr ) (V2) Frony@ (Y1) S Fr e (01);

Further, ng(M)(e)(yl'YZ) = TfM(e)[g_l()ﬁ-YZ)]
=Tt l97'01)- 97 (y2)], as g~' is homomorphism
= TfM (e)(xl'x2)
2 Try ) (X1) * Tpyy ey (X2)
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=Tt 09 O] * Ty ) [97 2]
- ng(M)(e)(yl) * ng(M)(e)()’z)

ng(M)(e)(y{l) =Ty l97 02 D] = Ty @@ ) = Try (2D 2 Tpyy 0 (62) = Try (0)[97 (02)] = T, any@) (V2)
e, Tr an@02) 2 Tr @) (02); Next,

Ifg(M)(e)(Jﬁ-yZ) = IfM(e)[g_l(yl.yz)]
= I, g7 )97 (7)), as g~ is homomorphism.
= Ipy () (X1-%2)
< Iy (1) 0 Ipy oy (x2)
= Ity [97 O] © Iy [97 (02)]
= Ifg(M)(e)(yl) ® Ifg(M)(e)(yz)

Ify(M)(e)(yz_l) = IfM(e)[g_l(yz_l)] = IfM(e)[(g_l(YZ))_l] = IfM(e)(xz_l) < Iy e(x2) = IfM(e)[g_l(yZ)] = Ify(M)(e)(yZ)
. 1 .
l.e., Ifg(M)(e)(yz ) < Ifg(M)(e)(yZ)v

Inasimilar fashion,  Fr_ ey 01-¥2) < Fr s 01) © Fr @ 02)s - Fryny @021 < By ) 02):
This proves the theorem.

3.6 Theorem
Let g: K — L be a field homomorphism in classical sense. If N is a neutrosophic soft field over L, then g~1(N) is a neutrosophic
soft field over K. [ Note that g~!(N) is the inverse image of N under the mapping g. Here g~! may not be a mapping.]

Proof. Let y;,y, € L; x1,x; € K sothat y; = g(x1),y, = g(x3). Now,

ng_1(N)(e)(x1 +x3) = Tfy ()9 (X1 + x3)]
=Ty ([g(x1) + g(xz)], as g is homomorphism.
=Tty 01 +32)
= Try ey 1) * Try ) (V2)
=Try @ [9(x1)] * Try o) [ (x2)]
= ng_l(N)(e)(xl) * ng_l(N)(e)(XZ)

Also, ng,l(N)(e)(—xl) =Ty [9(=x)] = Try ) [9 )] = Try ey (1) = TryeyY,) = Try ) [9(x1)] = ng,l(N)(e)(xl)
l1.e., ng—l(N)(e) (_xl) = ng—l(N)(e) (xl); NeXt,

Ifg,l(N)(e)(M +x3) = Iy ey [9(1 + x3)]
=l e[9(x1) + g(x2)], as g is homomorphism.
=l 1 +2)
< Iy 1) o Iry ) (02)
= Iy [9(x)] 0 Iy )[g(x2)]
= 1y @) 0 Iy e (%2)

Also, [fg_1(N)(e)(_x1) = Iy [9(—xD)] = Ity [—9(x1)] = Iy ) (Y1) < Iy e)V1) = Iy [g(x1)] = Ifg—1(N)(e)(x1)
e I @) < Tp e (a);
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Similarly, ng_l(N)(e) (xl + xz) < ng—l(N)(e) (xl) ¢ ng—l(N)(e) (XZ), ng_l(N)(e) (_xl) < ng_l(N)(e) (xl);

Further, ng—l(N)(e)(xl'xZ) = TfN(e) [9(x1.x2)]
=Tf, y[9(x1)-g(xz)], as g is homomorphism.
= TfN(e)(yl'yZ)
= Trye)1) * Try ) (V2)
=Ty @) [9 ()] * Tty () [9 (x2)]
= ngﬂ(,v)(e)(xl) * ng,l(N)(e)(xz)

Also, ng_l(N)(e)(xz_l) = Try@[9(2 D] = Ty [ = Try ()21 2 Tryy () (02) = Tryy (e [9(x2)] = ng_l(N)(e)(xZ)
. -1 .
l.e., ng_l(N)(e) (XZ ) > ng_l(N)(e) (.xz), NeXt,

Ifg—l(N)(e)(xl'xZ) = Iy [9(x1.x2)]
=l e)[9(x1)-g(xz)], as g is homomorphism.
=Iry (e (V1-¥2)
< Irye) 1) o Ipy ) (2)
= Iy @)[gC)] o Iry ) [9 (x2)]
=l 1gy@G) 0 dr ()

Also, Ifg_l(N)(e)(xz_l) = Ity [9(2 D] = Iy [0 = Iy 02 S Iy V2) = Iy [9(x2)] = Ifg_1(N)(e)(x2)
: 1 }
e Ir @@ ) ST e ()
. . -1 .

S|m||ar|y, ngfl(N)(e)(xl.xz) < ngfl(N)(e)(xl) © ngfl(N)(e)(xZ)‘ ngil(N)(e)(xZ ) < ngil(N)(e)(Xz),

Hence, the theorem is proved.

4 Cartesian product of neutrosophic soft fields
In this section the concept of cartesian product of neutrosophic soft fields has been introduced along with a well-known theorem.

4.1 Definition
Let M and N be two neutrosophic soft fields over (K,E) and (L, E), respectively. Then their cartesian product is M X N = P
where fp(a,b) = fy(a) X fy(b) for (a,b) € E x E. Analytically,

fe(a,b) ={< (0,9, Trp ) (6 ) I p 0y (6 ), Frpapy (2, ) >:(x, ¥) € K X L} with

Troap) 0 Y) = Tr ) () * Try 5y (V)
It p by, ¥) = Ipyy @) (%) 0 Ipy ) (V)
Frpap) (6 ¥) = Fryy@y(X) © Fry 5y ().

This definition can be extended for more than two neutrosophic soft fields.

4.2 Theorem

Let N; and N, be two neutrosophic soft fields over (K,E) and (L, E), respectively. Then their cartesian product N; X N, is a
neutrosophic soft field over (K X L,E X E).

Proof. Let N; X N, = N3 where fy,(a,b) = fy,(a) X fy,(b) for (a,b) € E X E. Then for (x1,¥1), (x2,¥,) € K X L,

Trngan) (1, 1) + (02, ¥2)) = Tpy (ap) (X1 + X2, 71 + ¥2)
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=Try @1 +X2) * Tp 5y V1 + ¥2)
2 [Try @) * Try @ 2] * [Try, i V1) * Ty, 6y (02)]
= [Try, @ 1) * Ty iy D] * [Ty (0 (%2) * Ty, 6y (02)]
= Try @by X Y1) * Try o (ap) (X2, ¥2)

Iy by (1, 1) + (X2, ¥2)) = Ipy 00y (%1 + X2, Y1 +¥2)
=y @G +x2) o Ipy iy (V1 + 52)
< Upy @) @ Iy @21 0 [y, 0 (V1) © Iy, ) (92))]
= Upy, @) @ Iy, oy VD] 0 Uy, 0 (X2) © Iy, ) (¥2))]
= lpy @by (XL Y1) © Iy ) (2, 2)

Similarly, Fry_ o5y ((x1,71) + (X2, ¥2)) < Fyyp by (1, Y1) © Fryy by (%2, ¥2)7 Next,

Try@n) [= e YD1 = Ty apy (5% =Y1) = Try @ (5X0) * Try ) (531 2 Try @)X * Try ) 1) = Ty ) (K1, 1)
1.e., TfN3(a,b)[_(x1:y1)] = TfN3(a,b)(x1:yl):

Iy @y [= e YOI = Iy 0p) (X0 =Y1) = Iy @ (5%0) 0 Iy ) (1) < iy @) (1) © Iy, ) (V1) = Ly (ap) (%10 Y1)
e, ey @y [ Y] < Iry ap) (1, 91)

Similarly, Fry a0 [= &1, y1)] < Fry, @by (1, ¥1)7 - Next,

Tryaab) (X1, Y1)- (2, ¥2)) = Tp o (ap) (X1- X2, 1- V2)
= Try @ 1-22) * Ty 0y (V1-72)
2 [Try @1 * Try @ ()] * [Try, 7 V1) * Ty, 6y (V2)]
= [Try @) * Try, oy D] * [Ty, ) (X2) * Tpy 6y (02)]
= Tty @by 1, 1) * Try by (X2, ¥2)

Ity by (1, Y1) (X2, ¥2)) = Iy (a,p) (X1 X2, V12 V2)
= Ipy, @ 1-%2) 0 Iry o ) (91-52)
< Uy @) 0 ey @21 0 Ury, 7 1) © Iy, ) (02)]
= Uy, @) o ey iy D] 0 Uy, @) (X2) © Iy, 6y (V2)]
= Iy @ny XL Y1) © Iy ) (X2, 2)

Similarly,  Fr, by (1, ¥1)- (%2, ¥2)) < Fry a0y (X1, 1) © Fry a5y (X2, ¥2); Next,

TfN3(a,b)[(x2ﬂy2)_l] = Tng(a,b)(xz_l'YZ_l) = Tle(a)(xz_l) * Tsz(b)(J’z_l) 2 Ty, @2 * Try o ) V2) = Ty ) (X2, 52)
Le., TfN3(a,b)[(x2'YZ)_1] 2 Try, by (X2, 2);

IfN3(a,b)[(x2'y2)_1] = IfN3(a,b)(x2_1'YZ_1) = Ile(a)(xz_l) ° Isz(b)(J’z_l) < Iy @ (2) © Iy ) (V2) = Ipy (a0 (%2, Y2)
Le., IfN3(a,b)[(x2'YZ)_1] < Iry, by (X2, ¥2);

Similarly, FfN3(a,b)[(x2vy2)_1] < Fryaan) (%2, ¥2);

Hence, the theorem is proved.
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5 Neutrosophic soft subfield
Here, the neutrosophic soft subfield has been defined and some related theorems have been developed.

5.1 Definition
Let N; and N, be two neutrosophic fields over (K, E). Then N; is neutrosophic soft subfield of N, if Vx € K,Ve € E,
Ty @) = Try, @) Ty 0000 2 Iy, ) (0D, Fry (09 (%) 2 By, (09 (%;

5.2 Theorem

Let N be a neutrosophic soft field over (K,E) and Ny, N, be two neutrosophic soft fields of N. If a x b = min{a, b} and a o b =
max{a, b} then,

(i) N; NN, isaneutrosophic soft subfield of N.
(if) N; A N, is a neutrosophic soft subfield of N A N.

Proof. The intersection(n), AND(A) of two neutrosophic soft fields is also so by Theorems (3.3) and (3.4). Now to complete this
theorem, we only verify the criteria of neutrosophic soft subfield in each case.
(l) Let N3=N10N2FOI’XEK,

Ty () = Try () * Try () (X)) < Try (0 (X) * Ty () (1) = Ty ) (),
Iy, ) =1y () 0 Iy () () 2 Ipy () (%) 0 Iy () (X) = Ipy () (%),
Frya@(®) = Fry () © Fry () (%) 2 Fryye) (%) 0 Fry () (%) = Frpy o) (X);

(i) Let N3 =N; AN, and x € K. Then,
Tryyab) () = Try @) * Tpy ) () < Tpy () (6 * Tryy ) () = Ty (a,0) (),
Iy @by = Iy, @) @ dpy, ) () 2 Iy @) () 0 Iy ) (XD = Ty oty (),
Fryy@my ) = Fry @ () © Fry ) (6) 2 Fryy @) () © Fryan (X)) = Fry oy () (6);

The theorems are also true for a family of neutrosophic soft subfields of N.

5.3 Theorem

Let N; and N, be two neutrosophic soft fields over field (K, E) such that N; is the neutrosophic soft subfield of N,. Let g:K — L

be a field isomorphism in classical sense. Then g(N;) and g(N,) are two neutrosophic soft fields over (L, E). Moreover g(N;) is
the neutrosophic soft subfield of g(N;).

Proof. The 1st part has been already proved in Theorem (3.5).
Let x € K,y € L such that y = g(x). Then,

Trn, () = Try ) (0)
= Tle(e)[g_l W1 =Ty, 97 ]
= Trown@) < Tryup@ )

Slmllarly' [fg(Nl)(e)(y) 2 Ifg(Nz)(e)(y) and ng(Nl)(e)(y) 2 ng(Nz)(E)(y)’

Hence, the theorem is proved.

6 Neutrosophic soft homomorphism
In this section, first we define a neutrosophic soft function, then define image and pre-image of an NSS under a neutrosophic soft
function. In continuation, we introduce the notion of neutrosophic soft homomorphism along with some of it's properties.

6.1 Definition
Let p: K — L and y: E - E' be two crisp functions where K, L are fields and E, E' are parametric sets. Then the pair (¢, ) is
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called a neutrosophic soft function from (K,E) to (L,E"). We write, (@,¥): (K,E) - (L, E").
Consider two NSSs M, N defined over (K, E), (L, E") respectively. Then,

(1) The image of M under (¢,v), denoted by (¢, )(M), is an NSS over (L, E) and is defined as :
(@, vI)M) = {<Y(a), fymy(Y(a)) >:a € E} wherefor x € K,y € L,b € E',
max max [Tr, oy(X)], if x € 1 (y)

T, n(¥) = {¢(X)=y Y(a)=b
Toan®) o , otherwise .

min min [I ), if x€ol
Loy = e, i, Un @@ i x € 0T 0)
fony(®) '

1, otherwise .

min min [F, x)], if x€gp!
B ) = {(p(x):y 0, (Fry @@, if o)
o0 1, otherwise .

(2) The pre-image of N under (¢,v), denoted by (¢,)~1(N), is an NSS over (K, E) and is defined as, Va € Y"1 (E"),Vx € K :
Tr -1 00y @ ) = Try @ (9 ()
It =1 0y @) = Iy @ (@ (X))
Fr 1 0y @) = Fry @ (9 ()
If Y and ¢ isinjective (surjective), then (¢,v) is injective (surjective).

6.1.1 Example
Let E = N (the set of natural numbers) be the parametric set and K = (Zs, +,-) be a field. Define a mapping fy: N = NS(Zs)
where, forany n € N and x € Zs,
0 if x€{1,3}
T = —
) (%) {i if x€f{0,2%)

1 . - =
Ipyy oy () = {1 Tw Yoxed E}_ _

0 if x€{0,2,4}.
1 . - =
Frp (@) = {m lf' x € {1,_3}_ )
0 if x€{0,2,4}.

Now, let ¢:Zs — Zs and y: N — N be given by ¢(x) = 3x + 1 and y(n) = n%. Then for a € N%,y € 3Zs + 1 , the image of
M under (¢@,y) as follows :

. o) {0 if ye€{0,4}
foan@\Y) =71 ; T 573
¢ v 1 if ye {1,_2,_3}.
! o) = 1—\/—5 if ye{0,4}
foan@ Y S—
0 if ye{1,23}
1 . = 7
F ) = |T+a if ye{0,4}
Foan@Y — ==
0 if ye{1,23}

6.2 Theorem
Let N be a neutrosophic soft field over (K,E) and (¢,¥): (K,E) - (L,E") be a neutrosophic soft homomorphism. Then
(o, ¥)(N) is a neutrosophic soft field over (L, E").

Proof. Let b € y(E) and y;,y, € L.
If 7 1(y;) = ¢ or ¢~ 1(y,) = ¢, the proof is straight forward.
So, we assume that there exists x;,x, € K such that ¢(x;) = y1, ¢(x3) = y,. Then,
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Trpum 01 ty) =  max — max [Ty (]

>
Jhax, [Try @) (x1 + x2)]

wr(ne)axb [Try ) (X1) * Try 0y (x2)]

= 5% U Gl Jug, Ty (x2)]

[Try ()] = Juax, [Try () (—x1)] Zwmax [Try ()]

Tty vy (=Y1) = (a)=b

max
@ (x)=—y1 ll)() b

T oy ) V1-¥2) = pcax  max, [Try @) ()]

Z max, [Try @) (x1%2)]

wr(n?Xb [Tey @) 1) * Try () (%2)]

= mnax [Tpy @ @]+ max [Tr, @ ()]

—1N -1
Ty (V2 ) = (p(fcr)li‘;%l Jnax, [Try () ()] = Juax, (Try@@2 )] = Jnax, [Ty @) (x2)]

Since, this inequality is satisfied for each x;,x, € K satisfying ¢ (x;) = y1, ¢(x;) = y, so we have the followings.

Ty 01 +y2) 2 ( max - max [Tp, @) (r)]) * ( max - max, [T, @) (x2)])

Tf‘P(N)(b)(yl) * Tf¢(N)(b)(YZ):

T; . > ( max max [T, X max max [T; X
f(p(N)(b)Oﬁ ¥2) (<p(x1)=y1 Py [ fN(a)( D) * ((ﬂ(xz)_y2 s [ fN(a)( 2D

=Tt D) * Tr 4y ) 02)s

Tt oy (Y1) 2 S8R Max [Try @) X1 = Tr, ) 1)

qu)()v)(b)(yz = ollax max [Try @) (x2)1 = T,y (¥2)5

NeXt, If¢(N)(b)(YI + yz) = (p(X)—}/?‘Fyz lpr(ggnb [IfN(a)(x)]
< wf(%nb Ury @) (1 + x2)]
< o [y @ (61 © Iy @ (%2)]
= min, Iy, @ ()] e min [l @ ()]

A

Ity oy ) (=1) = (p()rcr)lir_lyl wr(%gb Ury)] < Ipr(%gb Ury@(—x1)] < r(ngnb Ury @) (x1)]

oo Or-y2) = min - min [l ) ()]

R
S Uy () (X1%2)]

lpf(ngnb [y @) (1) © Iy () (X2)]

=¢() n Ury @) (x1)] 0 mgn Ury @) (x2)]

1y _
Ity 27) = (I‘f)lly_l wr(%nb Ury @] = wf(ngnb ey @2 D] < 1pr(n5nb Ury (@) (2)]

Since, this inequality is satisfied for each x;,x, € K satisfying ¢(x;) = y1, ¢(x3) = y, so the followings hold.
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I + <( min min [I X o( min min [I X
foay® 1 +¥2) (<p(x1)=y11p(a)=b Ury @)D ((p(xz)zyzw(a):b Ury @ x2)D

= If(p(N)(b)(}ﬁ) ° If¢(N)(b)(y2)v

L . <( min min [I X o( min min [I X
fq,(N)(b)(yl y2) (<p(x1)=y11/1(a)=b [fN(a)( 9l ((p(xz):yzlp(a):b [fN(a)( 2D

= Ifq’(N)(b)(yl) ¢ If(p(N)(b)(J’z).

It ooy (=Y1) < (p(%gyl Jg;ggb Uy @ GO1 = I,y V1),

_1 < . . — .
It oy @2 ) < p(lin i, Uy @ X2)] = It oy ) (V2D

Similarly, we can show that
Fronm 1 +32) < Fp 01 © By inV2)s Fr oy 0 (5Y1) < Fr ) 01
-1 .
Fr oy 01-52) < Fy o (01 © Fr oy i 02)s By iy 0 27) < Fp gy ) (02

This completes the proof.

6.3 Theorem

Let M be a neutrosophic soft field over (L,E") and (¢,¢):(K,E) — (L,E") be a neutrosophic soft homomorphism. Then
(@, )~1(M) is a neutrosophic soft field over (K, E).

Proof. For a € y~1(E") and x;,x, € K, we have,

Tf(p_l(M)(a)(xl +x2) = Tr @) (@ + x2))

= Try @) (@(x1) + @ (x2))
= Tty i@ (@ 1) * Tr ) (@9 (x2))
=Tf 1y @) * Tp @) (x2)

Tf¢_1(M)(a)(_x1) = Tryw@1(@(=x1)) = Tr @) (—0x1) = Try @ (@) = Tf(p—l(M)(a)('xl)

Tf¢—1(M>(a)(x1'x2) = Tru @1 (P(x122))

=Tty @) (@(x1)e(x2))
2 Tr @) (@(x1) * Tr ) (@ (X2))
=T oy @CD) < Tr @ (2)

T 1 @@ ) = Ty @1 @2 ) = Ty i (@)™ 2 Ty an(@02)) =Ty Ly, (@ (*2)

Next, 1f¢_1(M)(a)(x1 +x3) = Iy (@21 + x2))
= Ipy (@) + @ (x2))
< Ity @1 (@(x1) o Iry ) (@(X2))
=l gy @CG) 0 Ty Ly @ (2)
I 100y @ (521) = Iy @ (@(=%1)) = Iy @) (=9 () < Ty (@) =1Ip 4 @)(%1)

If(p_l(M)(a) (1-%2) = Iry o a)) (@ (x1x2))
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= Ity 1y (@ (1) 9 (x2))
< Iy @1 (@) © Iy @ (@ (x2))
=l 1y @) I @) (02)

o1 @@2 ) = Iy @ @@z = Iy @i (@)) ™ < Iypa(0@2) =1 @)

Similarly, Ff(p_1(M)(a)(x1 +x;) < Ff¢_1(M)(a)(x1) ° qu’_1(M)(a)(x2)' Ff¢_1(M)(a)(_x11) < Ffw_1(M)(a)(x1);
Ff(p,l(M)(a)(xrxz) < Ff{p,l(M)(a)(xﬂ ° Ff(p,l(M)(a)(xz), Ffw,l(M)(a)(xz ) < Ff¢,1(M)(a)(x2)§

Thus, the theorem is completed.

7 Neutrosophic soft algebra over a neutrosophic soft field
The concept of neutrosophic soft algebra over a neutrosophic soft field has been brought here. The structural characteristics of it have
been investigated along with the development of some related theorems.

7.1 Definition

Let M be aneutrosophic soft field over (K,E) and U be an algebraover K where K isafieldand E isa set of parameters. Then an
NSS N over (U,E) is called a neutrosophic soft algebra if vx,y € U,Ve € E and 1 € K, the followings hold.

Trne)(*x +5) 2 Try ) (0) * Try ey (V)
D v+ ) < ) () @ Iy ) (V)
Frye) (X +3) < Frye)(X) © Fryy ey ()
Trnee)(A%) 2 Ty e) (D) * Ty o) (%)
@) w0 < Ipye) (D) © Iy ) (%)
Fry ) (AX) < Fy ey () © Fryy (e (%)
Trye)(X-¥) 2 Try ) (0) * Ty o) (V)
(@) {lrne) (- ¥) < Iy e)(X) © Iy ) ()
Frye)(2:¥) < Fryye)(X) © Fryy e (9)-
Tt e) (1) = Ty ) (%)
() Iy (L) < Iy ey (%)
Frye) (L) = Fry ey (%)-

We write, the triplet (N, U, E) is a neutrosophic soft algebra over the triplet (M, K, E), a neutrosophic soft field.

7.1.1 Corollary

If (N,U,E) is a neutrosophic soft algebra over the neutrosophic soft field (M, K, E), then Vx € U,Ve € E and for the additive
identity 0, € K,

T (O0k) 2 Try ) (%) Iy (0)(0k) = Tpy o) (0)r Efyy ey (On) < Fpy ey (%)
Proof. It directly follows from the Proposition [3.1](iii) and from the Definition [7.1](iv);

7.1.2 Corollary

Let a x b = min{a, b} and a ¢ b = max{a, b}. Then (N,U,E) is a neutrosophic soft algebra over the neutrosophic soft field
(M,K,E) where M,N,K,U, E are defined in [7.1] iff forany A,u € K and x,y € U followings hold.
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Ty o) (Ax + 1y) = (Tr,, e)(D) * Try ey () * (Tryy o) (1) * Tr ey ()
D v Ax +uy) < Upy @) (D 0 Iy ) (X)) © Upy ) (1) © Iy (e)(0))
Fry @y (Ax + 1) < (Ffpy ey (A) 0 Fry (e (X)) © (Fppy (09 (1) © Frpy () (0))-
Trne) (2 ¥) 2 Try ey () * Ty ) (V)
@) w6 ) = Iy ey (%) © Iy ey (V)
Erye)(x-¥) < Fryey(X) © Fry o) ()
Tt e) (L) = Tpy o) (%)
(@) o) (i) < Iy ey (%)
Fryye) (1) < Fry ey (%)

Proof. First let (N, U, E) be a neutrosophic soft algebra over the neutrosophic soft field (M, K, E). Then,
@) TryeAx + p1y) = Trp oy (A0) * Try o) (1Y) = (Try, ey (D) * Ty ey (X)) * (Tr 00 () * Ty ey (V)
Iy (Ax + 1Y) < Ipy o) (AX) 0 Iy oy (Y < Upyye)(A) 0 Lpy 09 (%)) © Uy ) (1D © Ipy 09 (V))
Fry o) (Ax + 1y) < Fyy o) (A%) © Fpyy ) (1) = (Fry (9 () © Fry (3 (D) © (Fppy e (W) © Fppy () (0))
(ii) and (iii) from Definition [7.1](iii), (iv);
Conversely, suppose the conditions hold.
(i) ForA=p=1, and x,y € U,
Trve) X +3) = Trye)(Lex + 1Y) = (Try ) (Li) * Try ) ) * (Try ) (Lie) * Ty ) )) = Ty ey (X)) * Try ey (V)
Ly +y) = Iy o) (Lex + 1Y) < Uy 0)(1i) 0 Iry () © Ur ey (L) © Ly V) = Irpyey(X) © Iey () ()
Frye) (e ) = Fry o) (Liex + 1) < (Fry e (L) © Fry (9 (D) © By e (1) © Fry 09 0)) = Epyyey (%) © Fry ey (¥)
(ii) For u =10, and x,y € U,

Try (e)(A%) = Try () (Ax + 0 x)
= (Tryy o)) * Ty () () * (T, ) (Ok) * Ty () (X))
= True) (D * Ty o) (0) * Try o) (%)
= Tty @A) * Ty o) (%)

IfN(e)(Ax) = IfN(e)(AX + OkX)
< Ury@@ 0 Iy ey () © Uy ) (01) 0 Ipy () ()
= Ipy ) (D) 0 Iy @) (X) @ gy (o) (X)
= Iy (D o Iry ) ()

Frye)(A%) = Fy ey (Ax + 0;x)
< (Fry @) © Frye)(0)) © (Fryy ) (01) © Fry ey (X))
= Frye)(A) © Fryye)(X) © Fry ey (%)
= Fry ) (D) © Frye)(%)

(iii) and (iv) hold obviously.

This ends the proof.
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7.2 Theorem

The intersection of two neutrosophic soft algebras over the same neutrosophic soft field is also a neutrosophic soft algebra on the
assumption that a * b = min{a, b} and a ¢ b = max{a, b}.

Proof. Let (Ny,U,E) and (N,,U,E) be two neutrosophic soft algebras over the neutrosophic soft field (M,K,E) and let
(N,U,E) = (N;,U,E)n (N,,U,E). Now for x,y e U, A€ K and Ve € E,

Trye (X +Y) =Try @@+ ) * T ) (x +¥)
2 [Try @) * Try @ OD] * [Try, () * Tr ) (V)]
= [Tle(e)(x) * Tle(e)(y)] * [Tsz(e)(y) * Tsz(e)(x)] (as = is commutative)
= Tle(e)(x) * [Tle(e)(y) * Tsz(e)(y)] * Tsz(e)(x) (as = isassociative)
= Trv @) * Try @ ) * Ty, (%)
= Try @) * Try ) (%) * Tr ey (¥) (s * is commutative)
=Trye) () * Try ) (V).

Iy e+ y) = Iy @ +¥) o Iy, @ (x +¥)
< Upy @) Iy @ D] 0 Hpy, ) (%) 0 Ipy ) (D]
= [Ile(e)(x) 0 Ile(e)(y)] 3 [Isz(e)(y) 13 IfNZ(e)(x)] (as o is commutative)
= Ile(e)(x) 0 [Ile(e)(y) ° IfNZ(e)(y)] o Isz(e)(x) (as o isassociative)
= Iy, @) Iy @) @ Ipy, o) (%)
= Ile(e)(x) 0 IfNZ(e)(x) o IfN(e)(y) (as o is commutative)
= Ity () * Iy &y ),

Similarly, FfN(e)(x + y) < FfN(e)(x) 4 FfN(e)(y), Next,

Trne) (W) = Try () (A%) * Ty (e)(A%)
2 [Ty @)D * Ty @) O] * [Try ) (D) * Try, e)(X)
= [Tr1 00 * Trpy ey (D] * [Tle(e)(x) * szvz(e)(x)] (as * is commutative)
= T * Try ) (0,

Ity ey (A%) = Ipy @ (AX) 0 Ipy (e)(A%)
< @D @ dry @ (O] 0 Uy 9D 0 Iy, ey (0]
= Uy @A) 0 Igy oy (D] © [Ile(e)(x) o IfNZ(e)(x)] (as o is commutative)
= Ity @)D © Iy @) (%),

Similarly, FfN(e)(Ax) < FfM(e)(A) 4 FfN(e)(x); Next,

Trye)(xy) =Tpy @ (x-¥) * Tpy ) (X.¥)
2 [Try @) * Ty @ D] * [Try, ) () * Tr )y ) (V)]
= [Tle(e)(x) * Tle(e)(y)] * [Tsz(e) (y) * Tsz(e)(x)] (as o is commutative)
=Ty @ (x) * [Tle(e)(y) * Tsz(e)(y)] * Tsz(e)(x) (as o is associative)
= Trn, @ () * Ty ) O) * Try, (e)(X)
= Tle(e)(x) * Tsz(e)(x) *True)(¥) (as o is commutative)
= Ty () () * Ty ),
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Iryeyx.y) = Iy @) (x-¥) 0 Iy 0y (x. )
S Upy @ @) o Iy @] 0 Upy, ) () 0 Iy () (D]
= [Ile(e)(x) o Ile(e)(y)] 0 [Ifzvz(e)(y) o IfNZ(e)(x)] (as o is commutative)
= Ile(e)(x) o [Ile(e)(y) o Isz(e)(y)] 0 Isz(e)(x) (as o is commutative)
=iy @) 2 Iy @ ) © Iy, (0 (X)
= Ile(e)(x) oIsz(e)(x) ol () (as o is commutative)
=iy () 2 Iy @ O),

Similarly, FfN(e)(xy) < FfN(e)(x) © FfN(e)(Y)'

Finally, for the multiplicative identity 1, of the field K,
Ty (L) 2 Try () and Ty oy (L) 2 Ty, ) (%)
= Ty (L) * Tryy ) (L) 2 Ty 0) () * Ty, (o) (%)
= Ty (L) 2 Try ) (%),

Iy (L) < Iy () and Iy o) (1) < Ipy) ) ()
= Iy ) (L) @ Iy o) (L) < Ipyy (%) 0 Iy () (%)
= Iy ) (L) < Ippy ey (X)),

Similarly, Fy,, y(1x) < Fr ) (20);

This follows the theorem.
The theorem is also true for a family of neutrosophic soft algebras over a neutrosophic soft field.

7.3 Theorem
Let U,V be two algebras over the field K and (P,K,E) be a neutrosophic soft field. Suppose g:U — V be an algebraic

isomorphism and (M, U, E) be a neutrosophic soft algebra over (P,K,E). Then (g(M),V,E) is also a neutrosophic soft algebra
over (P,K,E).

Proof. Let x;,x, € U and y;,y, € V such that y; = g(x;),y, = g(x,). Then Ve € E and 1 € K,

Tryon @1 +¥2) = Tz o) (97 1 + y2)]
=T, 0lg 1) + 97 ()], as g~ is homomorphism.
=Ty ) (1 + x2)
= Try ) (1) * Tryy ) (2)
=Ty @97 D] * Try (o) l9 7 72)]
=Tt an @D * Tr 4y ) (V2D

It oy @1 T ¥2) = @97 01 + y2)]
=l g7 1) + g7 (y2)], as g~! is homomorphism.
=1l e)(x1 + x2)
< ey (1) o Iey o) (x2)
=l @lg7 D] 0 Iy () [97 2]
= 1Ir,on @01 0 Ir 0@ (V2),

Similarly, Fr_ ey +¥2) < Fr @01 © Fr 0 (72); - Next,
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Tt o Ay2) = Ty, g7 (Ay2)]
= Tr, ([297 (7)), as g~ is homomorphism.
=Tf\ ey (A%2)
2 Trpe) (D) * Ty () (¥2)
= Trp ey * Trpy 0y [97 1 (72)]
= Trp ey (D) * Tr iy (0 V2,

Ity oy (Ay2) = If,, g7 Ay2)]
= It @) [Ag7 (y2)], as g~' is homomorphism.
= Ity ) (Ax2)
< Irpe) (D) 0 Iy o) (x2)
=l e)(D) ¢ Iy [97 (02)]
=lrp@ @ Iy O2),

Similarly, ng(M)(e)(/lyz) S Frpey(A) o ng(M)(e)(}’z); Next,

T o @ 1-y2) = Try ) [97 1-52)]
=T, 97 (1).- 97 (72)], as g~ is homomorphism.
=Tf, () (X1-x2)
= Try ) (1) * Trpy ) (2)
=T, 09 )] * Ty ) [97 72)]
=Tty an@ D * Tr 4y (V2D

Ify(M)(e)(Y1-y2) = IfM(e)[g_l(yryz)]
=1, 97 01)-97 (7)), as g~' is homomorphism.
= lfyy ey (X1-X2)
< Iy e) (1) © Iy ey (X2)
= Iy @97 O] 2 Iy ) lg 7 O2)]
= Ifg(M)(e)(yl) ° Ifg(M)(e)(YZ)’

Similarly,  Fr_ ) V1-¥2) < Fr ) V1) © B 500 (V2);

Finally, for the multiplicative identity 1, of the field K,

Tro(e) (1) = Try ) (%2) = Tfy (0 [97  (02)] = Tt sy (&) (V2

It o)1) S Iy 0)(%2) = Iy ) [97 2] = Ity oy (72D

Froey(1k) S Frpe0)(x2) = Frpy e l9 7 2)] = F o (2);
This completes the theorem.
7.4 Theorem
Let U,V be two algebras over the field K and (P,K,E) be a neutrosophic soft field. Suppose g:U — V be an algebraic
homomorphismand (N, V, E) be a neutrosophic soft algebra over (P, K, E). Then (g~*(N), U, E) is also a neutrosophic soft algebra
over (P,K,E).

Proof. Let x;,x, € U and y;,y, € V suchthat y; = g(x1),y, = g(x;). Then Ve € E and 1 € K,
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ng_1(N)(e)(x1 +x3) = Tfy (0)[9 (1 + x2)]
=Tfy()[9(x1) + g(xz)], as g is homomorphism.
=Ty 1 +¥2)
= Ty ey 1) * Tr o) (V2)
= Try ) [9Cx)] * Try ey [9(x2)]
=Tt 1y @G * Ty ) (%2),

Ifg,l(N)(e)(?ﬁ +X2) = Ipy )[g (21 + x2)]
= If,e)[9(x1) + g(x2)], as g is homomorphism.
=y 1 +2)
< Ity 1) o Iry ) (02)
= Iy [9(x)] 0 Iy )[g(x2)]
=l @G ok Ly (X2)s

Similarly, ng—l(N)(e) (x1 + x2) < ng—l(N)(e) (xl) o ng—l(N)(e) (xz); NeXt,

ng_l(N)(e)(lxz) =Ty ) [9(Ax2)]
=Tfy([Ag(x2)], as g is homomorphism.
= Tty e)(4y2)
2 Trp ey (D) * Try () (02)
=Trpe)(D) * Try () [9 (x2)]
=Trp @D *Tr ) @ (X2),
Ifg_l(N)(e)(lxz) = I\ () [g(Ax2)]
= Iy )[4g(x2)], as g is homomorphism.
= Iy ) (Ay2)
< Irpe)(D 0 Iy e)(v2)
= Ity (D) 0 Iry () [9(x2)]
=lrpe) (D oIy e (x2),

Similarly, ng_l(N)(e) (AXZ) < FfP (e) (/1) 4 ng_l(N)(e) (Xz); NeXt,

Tr -1y @) (1 22) = Tpy 09 [9 (1. X2)]
=T¢,@[9(x1). g(x2)], as g is homomorphism.
=Tty (V1-¥2)
2 Try @) 1) * Ty ) (02)
= Try(e)[g(x1)] * Ty ) [9 (x2)]
= Tf o1y @G * Ty e (2,

Ifg—l(N)(e)(xl'XZ) = Iy [9(x1.x2)]
= Iy [9(x1)-g(x2)], as g is homomorphism.
= IfN(e)(J/1-J/2)
< Ly 1) 0 Iy ey (02)
= Ity [g(x)] 0 Iy ) [g(x2)]
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= Ifg_l(N)(e)(xl) ° Ifg_l(N)(e)(XZ)'
Similarly, ng_l(N)(e)(xl.xz) < ng_l(N)(e)(xl) o ng_l(N)(e)(Xz);
Finally, for the multiplicative identity 1, of the field K,
Trpe) (M) 2 Try ) 02) = Try @9l = Tr e (x2),

Loy (1) < Iy ey 02) = Ipy[g(x2)] = Ifg_l(N)(e)(xZ):
Froey(1k) < Frye)(02) = Frye)lg(x2)] = ng_l(N)(e)(xz):

Hence, the theorem is proved.

8 Conclusion
The effort of the paper is to extend the concept  ‘Neutrosophic soft field” by investigating its structural characteristics. The Cartesian
product of neutrosophic soft fields, neutrosophic soft subfield, neutrosophic soft algebra over neutrosophic soft field have been
defined and some related theorems are established. Moreover the neutrosophic soft function over the crisp fields is defined and
illustrated by suitable examples. The characteristics of neutrosophic soft homomorphic image and pre-image of a neutrosophic soft
field are studied here. We expect the further work in this setting.
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