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                                         1  Introduction 

Once upon a time, the uncertainties appearing in several real world problem like in law, medicine, engineering, management, 

industrial, IT sector etc were handled by practice of probability theory, theory of fuzzy set, intuitionistic fuzzy set theory, theory of 

interval mathematics, rough set theory etc. Because of the insufficiency in the available information situation, evaluation of 

membership values and nonmembership values estimated in intuitionistic fuzzy set theory are not always possible. So there exists an 

indeterministic part upon which hesitation survives. The  Neutrosophic set (NS)  theory by Smarandache [16], [17] meets that fact 

which is a generalisation of classical set, fuzzy set, intuitionistic fuzzy set. The neutrosophic logic includes the information about the 

percentage of truth, indeterminacy and falsity grade which are not available in intuitionistic fuzzy set theory. 

    Because of the inadequacy of parametrization tools, each of these theories suffers from inherent difficulties. Molodtsov [1] 

introduced the concept of soft set theory which is free from the parametrization inadequacy syndrome of different theories dealing 

with uncertainty present in most of our real life situation. The parametrization tool of soft set theory makes it very convenient and easy 

to apply in practice. The classical algebraic structures were extended over fuzzy set, intuitionistic fuzzy set and soft set by many 

authors for instance Rosenfeld [2], Mukherjee and Bhattacharya [3], Sharma [4], Aktas and Cagman [5], Maji et al. [6]-[9], 

Augunoglu and Aygun [10], Yaqoob et al. [11], Varol et al. [12], Zhang [13], Nanda [14], Wenxiang and Tu [15] and others. 

    Maji [18] has brought a combined concept Neutrosophic soft set (NSS) theory. Upon this concept Broumi et al. [19], Cetkin et al. 

[20], [21], Deli and Broumi [22], [23], Bera and Mahapatra [24]-[29] and others have designed their research works on some 

fundamental algebraic structures. Deli and Broumi [22] also modified the operations related to indeterminacy membership function as 

given by Maji [18]. 

    This paper investigates the characteristics of neutrosophic soft field and develops some of it's related properties and theorems. The 

organisation of the paper is as follows. Section 2 gives some preliminary useful definitions related to it. In Section 3, the structural 

characteristics of neutrosophic soft field have been investigated. Section 4 and Section 5 deal with the Cartesian product of 

neutrosophic soft fields and the concept of neutrosophic soft subfield, respectively. The nature of neutrosophic soft homomorphic 

image and pre-image of neutrosophic soft fields are studied in Section 6. In Section 7, the concept of neutrosophic soft algebra has 

been introduced along with the development of some related theorems. Finally, the conclusion has been drawn in Section 8. 
 

                                               2  Preliminaries 

We recall some basic definitions related to fuzzy set, soft set, neutrosophic soft set for the sake of completeness. 

 

2.1  Definition [28] 

1. A binary operation ∗: [0,1] × [0,1] → [0,1] is said to be continuous 𝑡 - norm if ∗ satisfies the following  conditions : 

(i)   ∗ is commutative and associative. 

(ii)  ∗ is continuous. 

(iii)  𝑎 ∗ 1 = 1 ∗ 𝑎 = 𝑎, ∀𝑎 ∈ [0,1]. 
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(iv)  𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑  if  𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑  with 𝑎, 𝑏, 𝑐,𝑑 ∈ [0,1]. 
    A few examples of continuous 𝑡-norm are 𝑎 ∗ 𝑏 = 𝑎𝑏, 𝑎 ∗ 𝑏 = min 𝑎, 𝑏 , 𝑎 ∗ 𝑏 = max{𝑎 + 𝑏 − 1, 0}. 

 

2. A binary operation ⋄: [0,1] × [0,1] → [0,1] is said to be continuous 𝑡 - conorm (𝑠 - norm) if ⋄ satisfies the following conditions : 

(i)   ⋄ is commutative and associative. 

(ii)  ⋄ is continuous. 

(iii)  𝑎 ⋄ 0 = 0 ⋄ 𝑎 = 𝑎, ∀𝑎 ∈ [0,1]. 
(iv)  𝑎 ⋄ 𝑏 ≤ 𝑐 ⋄ 𝑑   if   𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑   with   𝑎, 𝑏, 𝑐,𝑑 ∈ [0,1]. 
     A few examples of continuous 𝑠-norm are 𝑎 ⋄ 𝑏 = 𝑎 + 𝑏 − 𝑎𝑏, 𝑎 ⋄ 𝑏 = max 𝑎, 𝑏 ,𝑎 ⋄ 𝑏 = min{𝑎 + 𝑏, 1}. 

 

2.2  Definition [16] 

Let 𝑋 be a space of points (objects), with a generic element in 𝑋 denoted by 𝑥. A neutrosophic set 𝐴 in 𝑋 is characterized by a 

truth-membership function 𝑇𝐴, an indeterminacy-membership function 𝐼𝐴 and a falsity-membership function 𝐹𝐴. 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 

𝐹𝐴(𝑥) are real standard or non-standard subsets of ]−0, 1+[. That is 𝑇𝐴 , 𝐼𝐴 ,𝐹𝐴:𝑋 →]−0, 1+[. There is no restriction on the sum of 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) and so,  −0 ≤ sup𝑇𝐴(𝑥) + sup𝐼𝐴(𝑥) + sup𝐹𝐴(𝑥) ≤ 3+. 

 

2.3  Definition [1] 

Let 𝑈 be an initial universe set and 𝐸 be a set of parameters. Let 𝑃(𝑈) denote the power set of 𝑈. Then for 𝐴 ⊆ 𝐸, a pair (𝐹,𝐴) is 

called a soft set over 𝑈, where 𝐹:𝐴 → 𝑃(𝑈) is a mapping. 

 

2.4  Definition [18] 

Let 𝑈 be an initial universe set and 𝐸 be a set of parameters. Let 𝑁𝑆(𝑈) denote the set of all NSs of 𝑈. Then for 𝐴 ⊆ 𝐸, a pair 

(𝐹,𝐴) is called an NSS over 𝑈, where 𝐹:𝐴 → 𝑁𝑆(𝑈) is a mapping. 

 

     This concept has been redefined by Deli and Broumi [22] as given below. 

 

2.5  Definition [22] 

Let 𝑈 be an initial universe set and 𝐸 be a set of parameters. Let 𝑁𝑆(𝑈) denote the set of all NSs of 𝑈. Then, a neutrosophic soft set 

𝑁 over 𝑈 is a set defined by a set valued function 𝑓𝑁 representing a mapping 𝑓𝑁:𝐸 → 𝑁𝑆(𝑈) where 𝑓𝑁 is called approximate 

function of the neutrosophic soft set 𝑁. In other words, the neutrosophic soft set is a parameterized family of some elements of the set 

𝑁𝑆(𝑈) and therefore it can be written as a set of ordered pairs :  𝑁 = {(𝑒, {< 𝑥,𝑇𝑓𝑁 (𝑒)(𝑥), 𝐼𝑓𝑁 (𝑒)(𝑥),𝐹𝑓𝑁 (𝑒)(𝑥) >: 𝑥 ∈ 𝑈}): 𝑒 ∈ 𝐸}  

where 𝑇𝑓𝑁 (𝑒)(𝑥), 𝐼𝑓𝑁 (𝑒)(𝑥),𝐹𝑓𝑁 (𝑒)(𝑥) ∈ [0,1] , respectively called the truth-membership, indeterminacy-membership, 

falsity-membership function of 𝑓𝑁(𝑒) . Since supremum of each 𝑇, 𝐼,𝐹  is 1 so the inequality 0 ≤ 𝑇𝑓𝑁 (𝑒)(𝑥) + 𝐼𝑓𝑁 (𝑒)(𝑥) +

𝐹𝑓𝑁 (𝑒)(𝑥) ≤ 3 is obvious. 

 

2.5.1  Example 

Let 𝑈 = {1,2,3} be a set of houses and 𝐸 = {𝑒1 (𝑏𝑒𝑎𝑢𝑡𝑖𝑓𝑢𝑙) , 𝑒2 (𝑤𝑜𝑜𝑑𝑒𝑛) , 𝑒3 (𝑐𝑜𝑠𝑡l𝑦) } be a set of parameters with respect to 

which the nature of houses are described. Let,  

𝑓𝑁(𝑒1) = {< 1, (0.5,0.6,0.3) >, < 2, (0.4,0.7,0.6) >, < 3, (0.6,0.2,0.3) >}; 
𝑓𝑁(𝑒2) = {< 1, (0.6,0.3,0.5) >, < 2, (0.7,0.4,0.3) >, < 3, (0.8,0.1,0.2) >}; 
𝑓𝑁(𝑒3) = {< 1, (0.7,0.4,0.3) >, < 2, (0.6,0.7,0.2) >, < 3, (0.7,0.2,0.5) >}; 

Then   𝑁 =   𝑒1,𝑓𝑁 𝑒1  ,  𝑒2,𝑓𝑁 𝑒2  ,  𝑒3,𝑓𝑁 𝑒3    is an NSS over (𝑈,𝐸). The tabular representation of the NSS 𝑁 is given in Table 

1 .  

  

                     Table 1 : Tabular form of NSS 𝑁 

  𝑓𝑁(𝑒1) 𝑓𝑁(𝑒2) 𝑓𝑁(𝑒3) 

1 (0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3) 

2 (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2) 

3 (0.6,0.2,0.3) (0.8,0.1,0.2) (0.7,0.2,0.5) 

 

2.5.2  Definition [22] 
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The complement of a neutrosophic soft set 𝑁 is denoted by 𝑁𝑐  and is defined by :  

    𝑁𝑐 = {(𝑒, {< 𝑥,𝐹𝑓𝑁 (𝑒)(𝑥),1 − 𝐼𝑓𝑁 (𝑒)(𝑥),𝑇𝑓𝑁 (𝑒)(𝑥) >: 𝑥 ∈ 𝑈}): 𝑒 ∈ 𝐸}  

 

2.5.3  Definition [22] 

Let 𝑁1 and 𝑁2 be two NSSs over the common universe (𝑈,𝐸). Then 𝑁1 is said to be the neutrosophic soft subset of 𝑁2 if ∀𝑒 ∈ 𝐸 

and ∀𝑥 ∈ 𝑈,  

     𝑇𝑓𝑁1 (𝑒)(𝑥) ≤ 𝑇𝑓𝑁2 (𝑒)(𝑥),   𝐼𝑓𝑁1 (𝑒)(𝑥) ≥ 𝐼𝑓𝑁2 (𝑒)(𝑥),   𝐹𝑓𝑁1 (𝑒)(𝑥) ≥ 𝐹𝑓𝑁2 (𝑒)(𝑥).  

We write 𝑁1 ⊆ 𝑁2 and then 𝑁2 is the neutrosophic soft superset of 𝑁1. 

 

2.5.4  Definition [22] 

Let 𝑁1 and 𝑁2 be two NSSs over the common universe (𝑈,𝐸). Then their union is denoted by 𝑁1 ∪ 𝑁2 = 𝑁3 and is defined as :  

       𝑁3 = {(𝑒, {< 𝑥,𝑇𝑓𝑁3 (𝑒)(𝑥), 𝐼f𝑁3 (𝑒)(𝑥),𝐹𝑓𝑁3 (𝑒)(𝑥) >: 𝑥 ∈ 𝑈}): 𝑒 ∈ 𝐸}  

where 𝑇𝑓𝑁3 (𝑒)(𝑥) = 𝑇𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝑇𝑓𝑁2 (𝑒)(𝑥), 𝐼𝑓𝑁3 (𝑒)(𝑥) = 𝐼𝑓𝑁1 (𝑒)(𝑥) ∗ 𝐼𝑓𝑁2 (𝑒)(𝑥) and 

       𝐹𝑓𝑁3 (𝑒)(𝑥) = 𝐹𝑓𝑁1 (𝑒)(𝑥) ∗ 𝐹𝑓𝑁2 (𝑒)(𝑥); 

 

Their intersection is denoted by 𝑁1 ∩ 𝑁2 = 𝑁4 and is defined as :  

 𝑁4 = {(𝑒, {< 𝑥,𝑇𝑓𝑁4 (𝑒)(𝑥), 𝐼𝑓𝑁4 (𝑒)(𝑥),𝐹𝑓𝑁4 (𝑒)(𝑥) >: 𝑥 ∈ 𝑈}): 𝑒 ∈ 𝐸}  

where  𝑇𝑓𝑁4 (𝑒)(𝑥) = 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥), 𝐼𝑓𝑁4 (𝑒)(𝑥) = 𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥) and  

        𝐹𝑓𝑁4 (𝑒)(𝑥) = 𝐹𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁2 (𝑒)(𝑥); 

 

2.6  Definition [24] 

Let 𝑁1 and 𝑁2 be two NSSs over the common universe (𝑈,𝐸). Then their ‘AND’ operation is denoted by 𝑁1 ∧ 𝑁2 = 𝑁5 and is 

defined as :  

        𝑁5 = {[(𝑎, 𝑏), {< 𝑥,𝑇𝑓𝑁5 (𝑎 ,𝑏)(𝑥), 𝐼𝑓𝑁5 (𝑎 ,𝑏)(𝑥),𝐹𝑓𝑁5 (𝑎 ,𝑏)(𝑥) >: 𝑥 ∈ 𝑈}]: (𝑎, 𝑏) ∈ 𝐸 × 𝐸}   

where  𝑇𝑓𝑁5 (𝑎 ,𝑏)(𝑥) = 𝑇𝑓𝑁1 (𝑎)(𝑥) ∗ 𝑇𝑓𝑁2 (𝑏)(𝑥),  𝐼𝑓𝑁5 (𝑎 ,𝑏)(𝑥) = 𝐼𝑓𝑁1 (𝑎)(𝑥) ⋄ 𝐼𝑓𝑁2 (𝑏)(𝑥) and  

        𝐹𝑓𝑁5 (𝑎 ,𝑏)(𝑥) = 𝐹𝑓𝑁1 (𝑎)(𝑥) ⋄ 𝐹𝑓𝑁2 (𝑏)(𝑥); 

 

Their ‘OR’ operation is denoted by N1 ∨ 𝑁2 = 𝑁6 and is defined as :  

         𝑁6 = {[(𝑎, 𝑏), {< 𝑥,𝑇𝑓𝑁6 (𝑎 ,𝑏)(𝑥), 𝐼𝑓𝑁6 (𝑎 ,𝑏)(𝑥),𝐹𝑓𝑁6 (𝑎 ,𝑏)(𝑥) >: 𝑥 ∈ 𝑈}]: (𝑎, 𝑏) ∈ 𝐸 × 𝐸}  

where  𝑇𝑓𝑁6
 𝑎 ,𝑏  𝑥 = 𝑇𝑓𝑁1

 𝑎  𝑥 ⋄ 𝑇𝑓𝑁2
 𝑏  𝑥 , 𝐼𝑓𝑁6 (𝑎 ,𝑏)(𝑥) = 𝐼𝑓𝑁1 (𝑎)(𝑥) ∗ 𝐼𝑓𝑁2 (𝑏)(𝑥) and  

 𝐹𝑓𝑁6 (𝑎 ,𝑏)(𝑥) = 𝐹𝑓𝑁1 (𝑎)(𝑥) ∗ 𝐹𝑓𝑁2 (𝑏)(𝑥); 

 

2.7  Definition [24] 

Let 𝑔 be a mapping from a set 𝑋 to a set 𝑌. If 𝑀 and 𝑁 are two neutrosophic soft sets over 𝑋 and 𝑌, respectively, then the image 

of 𝑀 under 𝑔 is defined as a neutrosophic soft set 𝑔(𝑀) = {[𝑒, 𝑓𝑔(𝑀)(𝑒)]: 𝑒 ∈ 𝐸} over Y where 𝑇𝑓𝑔 𝑀  𝑒 
 𝑦 = 𝑇𝑓𝑀  𝑒  𝑔

−1 𝑦  ,

 𝐼𝑓𝑔 𝑀  𝑒 
 𝑦 = 𝐼𝑓𝑀  𝑒  𝑔

−1 𝑦  ,     𝐹𝑓𝑔(𝑀)(𝑒)(𝑦) = 𝐹𝑓𝑀 (𝑒)[𝑔−1(𝑦)];  ∀𝑦 ∈ 𝑌. 

     

The pre-image of 𝑁  under 𝑔  is defined as a neutrosophic soft set 𝑔−1(𝑁)  = {[𝑒, 𝑓𝑔−1 𝑁 (𝑒)]:   𝑒 ∈ 𝐸}  over X where 

𝑇𝑓
𝑔−1 𝑁 

 𝑒  𝑥 = 𝑇𝑓𝑁  𝑒  𝑔 𝑥  ,   𝐼𝑓
𝑔−1 𝑁 

 𝑒  𝑥 = 𝐼𝑓𝑁  𝑒  𝑔 𝑥  ,   𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥) = 𝐹𝑓𝑁 (𝑒)[𝑔(𝑥)];  ∀𝑥 ∈ 𝑋. 

 

2.8  Definition [29] 

A neutrosophic set 𝐵 = {< 𝑥,𝑇𝐵(𝑥), 𝐼𝐵(𝑥),𝐹𝐵(𝑥) >: 𝑥 ∈ 𝐾} over a field (𝐾, +,⋅) is called a neutrosophic subfield of (𝐾, +,⋅) if the 

followings hold.  

 (𝑖)  

𝑇𝐵(𝑥 + 𝑦) ≥ 𝑇𝐵(𝑥) ∗ 𝑇𝐵(𝑦)

𝐼𝐵(𝑥 + 𝑦) ≤ 𝐼𝐵(𝑥) ⋄ 𝐼𝐵(𝑦)

𝐹𝐵(𝑥 + 𝑦) ≤ 𝐹𝐵(𝑥) ⋄ 𝐹𝐵(𝑦);  ∀  𝑥,𝑦 ∈ 𝐾.
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 (𝑖𝑖)  

𝑇𝐵(−𝑥) ≥ 𝑇𝐵(𝑥)

𝐼𝐵(−𝑥) ≤ 𝐼𝐵(𝑥)

𝐹𝐵(−𝑥) ≤ 𝐹𝐵(𝑥);  ∀  𝑥 ∈ 𝐾.

  

         (𝑖𝑖𝑖)  

𝑇𝐵(𝑥.𝑦) ≥ 𝑇𝐵(𝑥) ∗ 𝑇𝐵(𝑦)

𝐼𝐵(𝑥.𝑦) ≤ 𝐼𝐵(𝑥) ⋄ 𝐼𝐵(𝑦)

𝐹𝐵(𝑥.𝑦) ≤ 𝐹𝐵(𝑥) ⋄ 𝐹𝐵(𝑦);  ∀  𝑥,𝑦 ∈ 𝐾.

  

                  (𝑖𝑣)  

𝑇𝐵(𝑥−1) ≥ 𝑇𝐵(𝑥)

𝐼𝐵(𝑥−1) ≤ 𝐼𝐵(𝑥)

𝐹𝐵(𝑥−1) ≤ 𝐹𝐵(𝑥);  ∀  𝑥(≠ 0) ∈ 𝐾.

  

 An NSS 𝑁 is called a neutrosophic soft field over [(𝐾, +,⋅),𝐸] if 𝑓𝑁(𝑒) is a neutrosophic subfield of the field (𝐾, +,⋅) for each 

𝑒 ∈ 𝐸. 

 

2.8.1  Definition [29] 

Each element (𝑒, 𝑓𝑁(𝑒)) of the neutrosophic soft field 𝑁 over [(𝐾, +,⋅),𝐸] is called a neutrosophic soft scalar and is denoted by 𝑒 𝑁. 

   A neutrosophic soft scalar 𝑒 𝑁 ∈ 𝑀, 𝑀 being another neutrosophic soft field over (𝐾,𝐸) if   𝑓𝑁(𝑒) ≤ 𝑓𝑀(𝑒) i.e.,  

      𝑇𝑓𝑁  𝑒  𝑥 ≤ 𝑇𝑓𝑀  𝑒  𝑥 ,  𝐼𝑓𝑁  𝑒  𝑥 ≥ 𝐼𝑓𝑀  𝑒  𝑥 ,  𝐹𝑓𝑁  𝑒  𝑥 ≥ 𝐹𝑓𝑀  𝑒  𝑥 ;   ∀𝑥 ∈ 𝐾.  

 

2.8.2   Example 

1. Let us consider the field 𝒁3 = {0, 1, 2} and 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4} be the set of parameters. We define 𝑓𝑁(𝑒1),𝑓𝑁(𝑒2),𝑓𝑁(𝑒3),𝑓𝑁(𝑒4) 

as given by the Table 2 .  

 

                       Table 2 : Tabular form of neutrosophic soft field 𝑁 

   𝑓𝑁(𝑒1)  𝑓𝑁(𝑒2)  𝑓𝑁(𝑒3)  𝑓𝑁(𝑒4)  

 0  (0.67,0.39,0.19)  (0.85,0.29,0.27)  (0.29,0.53,0.41)  (0.31,0.21,0.19) 

1  (0.55,0.41,0.44)  (0.41,0.78,0.32)  (0.64,0.42,0.25)  (0.72,0.19,0.16) 

2  (0.35,0.52,0.28)  (0.63,0.52,0.41)  (0.59,0.66,0.39)  (0.48,0.31,0.27) 

  

Corresponding 𝑡-norm (∗) and 𝑠-norm (⋄) are defined as   𝑎 ∗ 𝑏 = max{𝑎 + 𝑏 − 1,0}, 𝑎 ⋄ 𝑏 = min{𝑎 + 𝑏, 1}. Then, 𝑁 forms a 

neutrosophic soft field over [(𝒁3, +,⋅),𝐸]. Here, the neutrosophic soft field 𝑁 consists of four neutrosophic soft scalars 𝑣𝑖𝑧., 
𝑒 1𝑁 , 𝑒 2𝑁 , 𝑒 3𝑁 , 𝑒 4𝑁. So, it is a finite neutrosophic soft field over [(𝒁3, +,⋅),𝐸]. 

   

2. Let 𝐸 = 𝑵 (the set of natural numbers) be the parametric set and 𝐾 = (𝑹, +,⋅) be the field of all real numbers. Define a mapping 

𝑓𝑀 :𝑵 → 𝑁𝑆(𝑹) where, for any 𝑛 ∈ 𝑵 and 𝑥 ∈ 𝑹,  

 𝑇𝑓𝑀 (𝑛)(x) =  
0       𝑖𝑓   𝑥   𝑖𝑠  𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙   
1

3𝑛
      𝑖𝑓   𝑥   𝑖𝑠  𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 .

  

 𝐼𝑓𝑀 (𝑛)(𝑥) =  
1 −

1

𝑛
      𝑖𝑓   𝑥   𝑖𝑠  𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 

0               𝑖𝑓   𝑥   𝑖𝑠  𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 .
  

 𝐹𝑓𝑀 (𝑛)(𝑥) =  

1

1+𝑛
      𝑖𝑓   𝑥   𝑖𝑠  𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 

0           𝑖𝑓   𝑥   𝑖𝑠  𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 .
  

 The 𝑡-norm (∗) and 𝑠-norm (⋄) are defined as 𝑎 ∗ 𝑏 = min{𝑎, 𝑏},𝑎 ⋄ 𝑏 = max{𝑎, 𝑏}. Then, 𝑀 forms a neutrosophic soft field 

over [(𝑹, +,⋅),𝑵]. It is obviously an infinite neutrosophic soft field. 

 

                                        3  Neutrosophic soft field 

Here, the characteristics of neutrosophic soft field have been investigated along with the development of some related theorems. 

 
3.1  Proposition 

Let 𝑁 be a neutrosophic soft field over [(𝐾, +,⋅),𝐸]. Then for the additive identity 0𝑘  and the multiplicative identity 1𝑘  of the field 

(𝐾, +,⋅), the followings hold if 𝑎 ∗ 𝑏 = min{𝑎, 𝑏} and 𝑎 ⋄ 𝑏 = max{𝑎, 𝑏}. 
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(i)   𝑇𝑓𝑁 (𝑒)(0𝑘) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥), 𝐼𝑓𝑁 (𝑒)(0𝑘) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥), 𝐹𝑓𝑁 (𝑒)(0𝑘) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥), ∀𝑥 ∈ 𝐾,∀𝑒 ∈ 𝐸. 

(ii)    𝑇𝑓𝑁  𝑒  1𝑘 ≥ 𝑇𝑓𝑁  𝑒  𝑥 ,   𝐼𝑓𝑁  𝑒  1𝑘 ≤ 𝐼𝑓𝑁  𝑒  𝑥 ,   𝐹𝑓𝑁  𝑒  1𝑘 ≤ 𝐹𝑓𝑁  𝑒  𝑥 , ∀𝑥 ≠ 0𝑘 ∈ 𝐾, ∀𝑒 ∈ 𝐸. 

(iii)  𝑇𝑓𝑁 (𝑒)(0𝑘) ≥ 𝑇𝑓𝑁 (𝑒)(1𝑘), 𝐼𝑓𝑁 (𝑒)(0𝑘) ≤ 𝐼𝑓𝑁 (𝑒)(1𝑘),𝐹𝑓𝑁 (𝑒)(0𝑘) ≤ 𝐹𝑓𝑁 (𝑒)(1𝑘). 

 

Proof.  (i) ∀𝑥 ∈ 𝐾 and ∀𝑒 ∈ 𝐸,  

 𝑇𝑓𝑁 (𝑒)(0𝑘) = 𝑇𝑓𝑁 (𝑒)(𝑥 − 𝑥) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥) = 𝑇𝑓𝑁 (𝑒)(𝑥), 

 𝐼𝑓𝑁 (𝑒)(0𝑘) = 𝐼𝑓𝑁 (𝑒)(𝑥 − 𝑥) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥) = 𝐼𝑓𝑁 (𝑒)(𝑥), 

 𝐹𝑓𝑁 (𝑒)(0𝑘) = 𝐹𝑓𝑁 (𝑒)(𝑥 − 𝑥) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥) = 𝐹𝑓𝑁 (𝑒)(𝑥); 

    

(ii) ∀𝑥(≠ 0𝑘) ∈ 𝐾 and ∀𝑒 ∈ 𝐸,  

 𝑇𝑓𝑁 (𝑒)(1𝑘) = 𝑇𝑓𝑁 (𝑒)(𝑥. 𝑥−1) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥) = 𝑇𝑓𝑁 (𝑒)(𝑥), 

 𝐼𝑓𝑁 (𝑒)(1𝑘) = 𝐼𝑓𝑁 (𝑒)(𝑥. 𝑥−1) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥) = 𝐼𝑓𝑁 (𝑒)(𝑥), 

 𝐹𝑓𝑁 (𝑒)(1𝑘) = 𝐹𝑓𝑁 (𝑒)(𝑥. 𝑥−1) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥) = 𝐹𝑓𝑁 (𝑒)(𝑥); 

 

 (iii) By applying (i) 

 

3.2  Proposition 

An NSS 𝑁  over the field [(𝐾, +,⋅),𝐸] is called a neutrosophic soft field iff followings hold on the assumption that 𝑎 ∗ 𝑏 =
min{𝑎, 𝑏} and 𝑎 ⋄ 𝑏 = max{𝑎, 𝑏}.  

 

(𝑖) 

𝑇𝑓𝑁 (𝑒)(𝑥 − 𝑦) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦),

𝐼𝑓𝑁 (𝑒)(𝑥 − 𝑦) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦),

𝐹𝑓𝑁 (𝑒)(𝑥 − 𝑦) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦));    𝑓𝑜𝑟   𝑥,𝑦 ∈ 𝐾.

 (𝑖𝑖) 

𝑇𝑓𝑁 (𝑒)(𝑥.𝑦−1) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦),

𝐼𝑓𝑁 (𝑒)(𝑥.𝑦−1) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦),

𝐹𝑓𝑁 (𝑒)(𝑥.𝑦−1) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦));    𝑓𝑜𝑟   𝑥,𝑦 ∈ 𝐾.

  

 

Proof. First suppose 𝑁 is a neutrosophic soft field over [(𝐾, +,⋅),𝐸]. Then,  

𝑇𝑓𝑁 (𝑒)(𝑥 − 𝑦) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥 + (−𝑦)) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(−𝑦) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦), 

𝐼𝑓𝑁 (𝑒)(𝑥 − 𝑦) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥 + (−𝑦)) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(−𝑦) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦), 

𝐹𝑓𝑁 (𝑒)(𝑥 − 𝑦) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥 + (−𝑦)) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(−𝑦) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦); 

 

𝑇𝑓𝑁 (𝑒)(𝑥.𝑦−1) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦−1) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦), 

𝐼𝑓𝑁 (𝑒)(𝑥.𝑦−1) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦−1) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦), 

𝐹𝑓𝑁 (𝑒)(𝑥.𝑦−1) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦−1) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦); 

 

Conversely, for the additive identity 0𝑘  and multiplicative identity 1𝑘  in (𝐾, +,⋅),  

 

𝑇𝑓𝑁 (𝑒)(−𝑥) = 𝑇𝑓𝑁 (𝑒)(0𝑘 − 𝑥) ≥ 𝑇f𝑁 (𝑒)(0𝑘) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥) = 𝑇𝑓𝑁 (𝑒)(𝑥), 

𝐼𝑓𝑁 (𝑒)(−𝑥) = 𝐼𝑓𝑁 (𝑒)(0𝑘 − 𝑥) ≤ 𝐼𝑓𝑁 (𝑒)(0𝑘) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥) = 𝐼𝑓𝑁 (𝑒)(𝑥), 

𝐹𝑓𝑁 (𝑒)(−𝑥) = 𝐹𝑓𝑁 (𝑒)(0𝑘 − 𝑥) ≤ 𝐹𝑓𝑁 (𝑒)(0𝑘) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥) = 𝐹𝑓𝑁 (𝑒)(𝑥); 

 

𝑇𝑓𝑁 (𝑒)(𝑥 + 𝑦) = 𝑇𝑓𝑁 (𝑒)(𝑥 − (−𝑦)) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(−𝑦) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦), 

𝐼𝑓𝑁 (𝑒)(𝑥 + 𝑦) = 𝐼𝑓𝑁 (𝑒)(𝑥 − (−𝑦)) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(−𝑦) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦), 

𝐹𝑓𝑁 (𝑒)(𝑥 + 𝑦) = 𝐹𝑓𝑁 (𝑒)(𝑥 − (−𝑦)) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(−𝑦) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦); 

 

𝑇𝑓𝑁 (𝑒)(𝑥−1) = 𝑇𝑓𝑁 (𝑒)(1𝑘 . 𝑥−1) ≥ 𝑇𝑓𝑁 (𝑒)(1𝑘) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥) = 𝑇𝑓𝑁 (𝑒)(𝑥), 

𝐼𝑓𝑁 (𝑒)(𝑥−1) = 𝐼𝑓𝑁 (𝑒)(1𝑘 . 𝑥−1) ≤ 𝐼𝑓𝑁 (𝑒)(1𝑘) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥) = 𝐼𝑓𝑁 (𝑒)(𝑥), 

𝐹𝑓𝑁 (𝑒)(𝑥−1) = 𝐹𝑓𝑁 (𝑒)(1𝑘 . 𝑥−1) ≤ 𝐹𝑓𝑁 (𝑒)(1𝑘) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥) = 𝐹𝑓𝑁 (𝑒)(𝑥); 

 

𝑇𝑓𝑁 (𝑒)(𝑥.𝑦) = 𝑇𝑓𝑁 (𝑒)(𝑥. (𝑦−1)−1) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(y−1) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦), 
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𝐼𝑓𝑁 (𝑒)(𝑥.𝑦) = 𝐼𝑓𝑁 (𝑒)(𝑥. (𝑦−1)−1) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦−1) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦), 

𝐹𝑓𝑁 (𝑒)(𝑥.𝑦) = 𝐹𝑓𝑁 (𝑒)(𝑥. (𝑦−1)−1) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦−1) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦); 

  

   This completes the proof. 

 

3.3  Theorem 

Let, 𝑁1 and 𝑁2 be two neutrosophic soft fields over [(𝐾, +,⋅),𝐸]. Then, 𝑁1 ∩ 𝑁2 is also a neutrosophic soft field over [(𝐾, +,⋅),𝐸]. 
 

 Proof.  Let, 𝑁1 ∩ 𝑁2 = 𝑁3. Now, ∀ 𝑥,𝑦 ∈ 𝐾 and ∀𝑒 ∈ 𝐸,  

 

   𝑇𝑓𝑁3 (𝑒)(𝑥 + 𝑦) = 𝑇𝑓𝑁1 (𝑒)(𝑥 + 𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥 + 𝑦) 

                               ≥ [𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁1 (𝑒)(𝑦)] ∗ [𝑇𝑓𝑁2 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑦)] 

                 = [𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁1 (𝑒)(𝑦)] ∗ [𝑇𝑓𝑁2 (𝑒)(𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥)]   (as ∗  is  commutative) 

                              = 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ [𝑇𝑓𝑁1 (𝑒)(𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑦)] ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥)  (as ∗  is  associative) 

                              = 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁3 (𝑒)(𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥) 

                              = 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁3 (𝑒)(𝑦)  (as ∗  is  commutative) 

                              = 𝑇𝑓𝑁3 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁3 (𝑒)(𝑦) 

  

Hence,  𝑇𝑓𝑁3 (𝑒)(𝑥 + 𝑦) ≥ 𝑇𝑓𝑁3 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁3 (𝑒)(𝑦);  

 

    𝐼𝑓𝑁3 (𝑒)(𝑥 + 𝑦) = 𝐼𝑓𝑁1 (𝑒)(𝑥 + 𝑦) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥 + 𝑦) 

                                ≤ [𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁1 (𝑒)(𝑦)] ⋄ [𝐼𝑓𝑁2 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑦)] 

                                = [𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ I𝑓𝑁1 (𝑒)(𝑦)] ⋄ [𝐼𝑓𝑁2 (𝑒)(𝑦) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥)]  (as ⋄  is  commutative) 

                                = 𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ [𝐼𝑓𝑁1 (𝑒)(𝑦) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑦)] ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥)   (as ⋄  is  associative) 

                                = 𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁3 (𝑒)(𝑦) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥) 

                                = 𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁3 (𝑒)(𝑦)   (as ⋄  is  commutative) 

                                = 𝐼𝑓𝑁3 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁3 (𝑒)(𝑦) 

 

Thus,  𝐼𝑓𝑁3 (𝑒)(𝑥 + 𝑦) ≤ 𝐼𝑓𝑁3 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁3 (𝑒)(𝑦); 

Similarly,     𝐹𝑓𝑁3 (𝑒)(𝑥 + 𝑦) ≤ 𝐹𝑓𝑁3 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁3 (𝑒)(𝑦);   Next,  

 

𝑇𝑓𝑁3 (𝑒)(−𝑥) = 𝑇𝑓𝑁1 (𝑒)(−𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(−𝑥)  ≥ 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥) = 𝑇𝑓𝑁3 (𝑒)(𝑥), 

𝐼𝑓𝑁3
 𝑒  −𝑥 = 𝐼𝑓𝑁1

 𝑒  −𝑥 ⋄ 𝐼𝑓𝑁2
 𝑒  −𝑥 ≤ 𝐼𝑓𝑁1

 𝑒  𝑥 ⋄ 𝐼𝑓𝑁2
 𝑒  𝑥 = 𝐼𝑓𝑁3

 𝑒  𝑥 , 

Similarly,  𝐹𝑓𝑁3 (𝑒)(−𝑥) ≤ 𝐹𝑓𝑁3 (𝑒)(𝑥);   Next,  

 

     𝑇𝑓𝑁3 (𝑒)(𝑥.𝑦) = 𝑇𝑓𝑁1 (𝑒)(𝑥.𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥.𝑦) 

                             ≥ [𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁1 (𝑒)(𝑦)] ∗ [𝑇𝑓𝑁2 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑦)] 

                             = [𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁1 (𝑒)(𝑦)] ∗ [𝑇𝑓𝑁2 (𝑒)(𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥)]   (as ∗  is  commutative) 

                             = 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ [𝑇𝑓𝑁1 (𝑒)(𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑦)] ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥)   (as ∗  is  associative) 

                            = 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁3 (𝑒)(𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥) 

                            = 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁3 (𝑒)(𝑦)  (as ∗  is  commutative) 

                            = 𝑇𝑓𝑁3 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁3 (𝑒)(𝑦) 

 

Hence,  𝑇𝑓𝑁3 (𝑒)(𝑥.𝑦) ≥ 𝑇𝑓𝑁3 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁3 (𝑒)(𝑦);   Next, 
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    𝐼𝑓𝑁3 (𝑒)(𝑥.𝑦) = 𝐼𝑓𝑁1 (𝑒)(𝑥.𝑦) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥.𝑦) 

                            ≤ [𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁1 (𝑒)(𝑦)] ⋄ [𝐼𝑓𝑁2 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑦)] 

                            = [𝐼f𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁1 (𝑒)(𝑦)] ⋄ [𝐼𝑓𝑁2 (𝑒)(𝑦) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥)]   (as ⋄  is  commutative) 

                            = 𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ [𝐼𝑓𝑁1 (𝑒)(𝑦) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑦)] ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥)   (as ⋄  is  associative) 

                            = 𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁3 (𝑒)(𝑦) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥) 

               = 𝐼𝑓𝑁1
 𝑒  𝑥 ⋄ 𝐼𝑓𝑁2

 𝑒  𝑥 ⋄ 𝐼𝑓𝑁3
 𝑒  𝑦      (as ⋄  is  commutative) 

                           = 𝐼𝑓𝑁3 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁3 (𝑒)(𝑦) 

 

Hence,   𝐼𝑓𝑁3 (𝑒)(𝑥.𝑦) ≤ 𝐼𝑓𝑁3 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁3 (𝑒)(𝑦); 

Similarly,  𝐹𝑓𝑁3 (𝑒)(𝑥.𝑦) ≤ 𝐹𝑓𝑁3 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁3 (𝑒)(𝑦);   Next, 

 

𝑇𝑓𝑁3 (𝑒)(𝑥−1) = 𝑇𝑓𝑁1 (𝑒)(𝑥−1) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥−1)  ≥ 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥) = 𝑇𝑓𝑁3 (𝑒)(𝑥), 

𝐼𝑓𝑁3 (𝑒)(𝑥−1) = 𝐼𝑓𝑁1 (𝑒)(𝑥−1) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥−1)  ≤ 𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥) = 𝐼𝑓𝑁3 (𝑒)(𝑥), 

Similarly,  𝐹𝑓𝑁3 (𝑒)(𝑥−1) ≤ 𝐹𝑓𝑁3 (𝑒)(𝑥);  

This completes the theorem. 

The theorem is also true for a family of neutrosophic soft fields over a field. 

 

3.3.1   Remark 

For two neutrosophic soft fields 𝑁1 and 𝑁2 over [(𝐾, +,⋅),𝐸], 𝑁1 ∪ 𝑁2 is not generally a neutrosophic soft field over [(𝐾, +,⋅),𝐸]. 
It is possible if any one is contained in other. 

   For example, let, 𝐾 = (𝑸, +,⋅), 𝐸 = 2𝒁. Consider two neutrosophic soft fields 𝑁1 and 𝑁2 over [(𝑸, +,⋅), 2𝒁] as following. For 

𝑥 ∈ 𝑸,𝑛 ∈ 𝒁,  

 𝑇𝑓𝑁1 (2𝑛)(𝑥) =  
1

2
        𝑖𝑓   𝑥 = 2𝑘𝑛,∃𝑘 ∈ 𝒁

0       𝑜𝑡𝑒𝑟𝑠 .

  

 𝐼𝑓𝑁1 (2𝑛)(𝑥) =  
0        𝑖𝑓   𝑥 = 2𝑘𝑛,∃𝑘 ∈ 𝒁
1

4
        𝑜𝑡𝑒𝑟𝑠 .

  

 𝐹𝑓𝑁1 (2𝑛)(𝑥) =  
2

5
        𝑖𝑓   𝑥 = 2𝑘𝑛,∃𝑘 ∈ 𝒁

1       𝑜𝑡𝑒𝑟𝑠 .

  

 and  

 𝑇𝑓𝑁2 (2𝑛)(𝑥) =  
2

3
        𝑖𝑓   𝑥 = 3𝑘𝑛,∃𝑘 ∈ 𝒁

0       𝑜𝑡𝑒𝑟𝑠 .

  

 𝐼𝑓𝑁2 (2𝑛)(𝑥) =  
0        𝑖𝑓   𝑥 = 3𝑘𝑛,∃𝑘 ∈ 𝒁
1

5
       𝑜𝑡𝑒𝑟𝑠 .

  

 𝐹𝑓𝑁2 (2𝑛)(𝑥) =  

1

6
        𝑖𝑓   𝑥 = 3𝑘𝑛,∃𝑘 ∈ 𝒁

1

3
       𝑜𝑡𝑒r𝑠 .

  

The 𝑡-norm (∗) and 𝑠-norm (⋄) are defined as  𝑎 ∗ 𝑏 = min{𝑎, 𝑏},𝑎 ⋄ 𝑏 = max{𝑎, 𝑏}. Let, 𝑁1 ∪ 𝑁2 = 𝑁3. Then, for 𝑛 = 2, 𝑥 =
4,𝑦 = 6  we have, 

 𝑇𝑓𝑁3 (4)(4 − 6) = 𝑇𝑓𝑁1 (4)(−2) ⋄ 𝑇𝑓𝑁2 (4)(−2) = max{0,0} = 0    and  

  𝑇𝑓𝑁3 (4)(4) ∗ 𝑇𝑓𝑁3 (4)(6) = {𝑇𝑓𝑁1 (4)(4) ⋄ 𝑇𝑓𝑁2 (4)(4)} ∗ {𝑇𝑓𝑁1 (4)(6) ⋄ 𝑇𝑓𝑁2 (4)(6)} 

                 = min[max{
1

2
, 0}, max{0,

2

3
}] = min(

1

2
,

2

3
) =

1

2
 

 

Hence, 𝑇𝑓𝑁3 (4)(4 − 6) < 𝑇𝑓𝑁3 (4)(4) ∗ 𝑇𝑓𝑁3 (4)(6)  i.e.,  𝑁1 ∪ 𝑁2 is not a neutrosophic soft field, here. 

Now, if we define 𝑁2 over [(𝑸, +,⋅),2𝒁] as follows :  
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 𝑇𝑓𝑁2 (2𝑛)(𝑥) =  
1

10
        𝑖𝑓   𝑥 = 6𝑘𝑛,∃𝑘 ∈ 𝒁

0         𝑜𝑡𝑒𝑟𝑠 .

  

 𝐼𝑓𝑁2 (2𝑛)(𝑥) =  
0        𝑖𝑓   𝑥 = 6𝑘𝑛,∃𝑘 ∈ 𝒁
2

3
      𝑜𝑡𝑒𝑟𝑠 .

  

 𝐹𝑓𝑁2 (2𝑛)(𝑥) =  
3

5
        𝑖𝑓   𝑥 = 6𝑘𝑛,∃𝑘 ∈ 𝒁

1       𝑜𝑡𝑒𝑟𝑠 .

  

 Then, it can be easily verified that 𝑁2 ⊆ 𝑁1 and 𝑁1 ∪ 𝑁2 is a neutrosophic soft field over [(𝑸, +,⋅),2𝒁]. 
 

3.4  Theorem 

Let 𝑁1 and 𝑁2 be two neutrosophic soft fields over [(𝐾, +,⋅),𝐸]. Then, 𝑁1 ∧ 𝑁2 is also a neutrosophic soft field over [(𝐾, +,⋅),𝐸]. 
 

Proof.  Let 𝑁1 ∧ 𝑁2 = 𝑁3   where   𝑓𝑁3
(𝑎, 𝑏) = 𝑓𝑁1

(𝑎) ∩ 𝑓𝑁2
(𝑏)   for   (𝑎, 𝑏) ∈ 𝐸 × 𝐸. 

Since intersection of two neutrosophic subfields is also so, hence 𝑁1 ∧ 𝑁2 is a neutrosophic soft field. 

   The theorem is also true for a family of neutrosophic soft fields over a field. 

 

3.5  Theorem 

Let 𝑔:𝐾 → 𝐿 be a field isomorphism in classical sense. If 𝑀 is a neutrosophic soft field over 𝐾 then 𝑔(𝑀) is a neutrosophic soft 

field over 𝐿. 

 

Proof.  Let 𝑥1, 𝑥2 ∈ 𝐾;  𝑦1,𝑦2 ∈ 𝐿 such that 𝑦1 = 𝑔(𝑥1),𝑦2 = 𝑔(𝑥2). Now,  

 

       𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦1 + 𝑦2) = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦1 + 𝑦2)] 

        = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦1) + 𝑔−1(𝑦2)],   as  𝑔−1 is homomorphism. 

      = 𝑇𝑓𝑀 (𝑒)(𝑥1 + 𝑥2) 

        ≥ 𝑇𝑓𝑀 (𝑒)(x1) ∗ 𝑇𝑓𝑀 (𝑒)(𝑥2) 

        = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦1)] ∗ 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] 

       = 𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦1) ∗ 𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦2) 

 

𝑇𝑓𝑔(𝑀 )(𝑒)(−𝑦1) = 𝑇𝑓𝑀 (𝑒)[𝑔−1(−𝑦1)] = 𝑇𝑓𝑀 (𝑒)[−𝑔−1(𝑦1)] = 𝑇𝑓𝑀 (𝑒)(−𝑥1) ≥ 𝑇𝑓𝑀 (𝑒)(𝑥1) = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦1)] = 𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦1)    

i.e.,   𝑇𝑓𝑔(𝑀 )(𝑒)(−𝑦1) ≥ 𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦1);   Next, 

 

      𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦1 + 𝑦2) = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦1 + 𝑦2)] 

      = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦1) + 𝑔−1(𝑦2)],   as  𝑔−1 is homomorphism. 

      = 𝐼𝑓𝑀 (𝑒)(𝑥1 + 𝑥2) 

      ≤ 𝐼𝑓𝑀 (𝑒)(𝑥1) ⋄ 𝐼𝑓𝑀 (𝑒)(𝑥2) 

    = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦1)] ⋄ 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] 

      = 𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦1) ⋄ 𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦2) 

 

𝐼𝑓𝑔(𝑀 )(𝑒)(−𝑦1) = 𝐼𝑓𝑀 (𝑒)[𝑔−1(−𝑦1)] = 𝐼𝑓𝑀 (𝑒)[−𝑔−1(𝑦1)] = 𝐼𝑓𝑀 (𝑒)(−𝑥1) ≤ 𝐼𝑓𝑀 (𝑒)(𝑥1) = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦1)] = 𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦1)    

i.e.,   𝐼𝑓𝑔(𝑀 )(𝑒)(−𝑦1) ≤ 𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦1);  

   

Similarly,  𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦1 + 𝑦2) ≤ 𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦1) ⋄ 𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦2),     𝐹𝑓𝑔(𝑀 )(𝑒)(−𝑦1) ≤ 𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦1); 

 

Further,    𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦1.𝑦2) = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦1.𝑦2)] 

                 = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦1).𝑔−1(𝑦2)],    as  𝑔−1 is homomorphism 

                 = 𝑇𝑓𝑀 (𝑒)(𝑥1. 𝑥2) 

               ≥ 𝑇𝑓𝑀 (𝑒)(𝑥1) ∗ 𝑇𝑓𝑀 (𝑒)(𝑥2) 
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      = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦1)] ∗ 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] 

       = 𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦1) ∗ 𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦2) 

 

𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦2
−1) = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦2

−1)] = 𝑇𝑓𝑀 (𝑒)[(𝑔−1(𝑦2))−1] = 𝑇𝑓𝑀 (𝑒)(𝑥2
−1) ≥ 𝑇𝑓𝑀 (𝑒)(𝑥2) = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] = 𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦2)    

i.e.,   𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦2
−1) ≥ 𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦2);   Next, 

  

          𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦1 .𝑦2) = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦1.𝑦2)] 

      = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦1).𝑔−1(𝑦2)],    as  𝑔−1 is homomorphism. 

      = 𝐼𝑓𝑀 (𝑒)(𝑥1. 𝑥2) 

      ≤ 𝐼𝑓𝑀 (𝑒)(𝑥1) ⋄ 𝐼𝑓𝑀 (𝑒)(𝑥2) 

      = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦1)] ⋄ 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] 

      = 𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦1) ⋄ 𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦2) 

 

𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦2
−1) = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦2

−1)] = 𝐼𝑓𝑀 (𝑒)[(𝑔−1(𝑦2))−1] = 𝐼𝑓𝑀 (𝑒)(𝑥2
−1) ≤ 𝐼𝑓𝑀 (𝑒)(𝑥2) = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] = 𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦2)    

i.e.,  𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦2
−1) ≤ 𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦2); 

   

In a similar fashion,   𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦1.𝑦2) ≤ 𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦1) ⋄ 𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦2),  𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦2
−1) ≤ 𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦2); 

  

 This proves the theorem. 

 

3.6  Theorem 

Let 𝑔:𝐾 → 𝐿 be a field homomorphism in classical sense. If 𝑁 is a neutrosophic soft field over 𝐿, then 𝑔−1(𝑁) is a neutrosophic 

soft field over 𝐾.  [ Note that 𝑔−1(𝑁) is the inverse image of 𝑁 under the mapping 𝑔. Here 𝑔−1 may not be a mapping.] 
 

Proof.   Let 𝑦1, 𝑦2 ∈ 𝐿; 𝑥1, 𝑥2 ∈ 𝐾 so that 𝑦1 = 𝑔(𝑥1),𝑦2 = 𝑔(𝑥2). Now,  

 

       𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1 + 𝑥2) = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1 + 𝑥2)] 

            = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1) + 𝑔(𝑥2)],    as 𝑔  is  homomorphism. 

            = 𝑇𝑓𝑁 (𝑒)(𝑦1 + 𝑦2) 

        ≥ 𝑇𝑓𝑁 (𝑒)(𝑦1) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦2) 

            = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1)] ∗ 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥2)] 

            = 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ∗ 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2) 

 

Also, 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(−𝑥1) = 𝑇𝑓𝑁 (𝑒)[𝑔(−𝑥1)] = 𝑇𝑓𝑁 (𝑒)[−𝑔(𝑥1)] = 𝑇𝑓𝑁 (𝑒)(−𝑦1) ≥ 𝑇𝑓𝑁 (𝑒)(y
1

) = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1)] = 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1)   

 i.e.,   𝑇𝑓
𝑔−1(𝑁)

(𝑒)(−𝑥1) ≥ 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1);   Next, 

 

       𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1 + 𝑥2) = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥1 + 𝑥2)] 

            = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥1) + 𝑔(𝑥2)],   as 𝑔  is  homomorphism. 

            = 𝐼𝑓𝑁 (𝑒)(𝑦1 + 𝑦2) 

             ≤ 𝐼𝑓𝑁 (𝑒)(𝑦1) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦2) 

            = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥1)] ⋄ 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥2)] 

            = 𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ⋄ 𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2) 

 

Also,   𝐼𝑓
𝑔−1(𝑁)

(𝑒)(−𝑥1) = 𝐼𝑓𝑁 (𝑒)[𝑔(−𝑥1)] = 𝐼𝑓𝑁 (𝑒)[−𝑔(𝑥1)] = 𝐼𝑓𝑁 (𝑒)(−𝑦1) ≤ 𝐼𝑓𝑁 (𝑒)(𝑦1) = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥1)] = I𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1)   

 i.e.,   𝐼𝑓
𝑔−1(𝑁)

(𝑒)(−𝑥1) ≤ 𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1); 
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Similarly,  𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1 + 𝑥2) ≤ 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ⋄ 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2),  𝐹𝑓
𝑔−1(𝑁)

(𝑒)(−𝑥1) ≤ 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1); 

 

Further,    𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1. 𝑥2) = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1. 𝑥2)] 

                     = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1).𝑔(𝑥2)],    as 𝑔  is  homomorphism. 

                     = 𝑇𝑓𝑁 (𝑒)(𝑦1.𝑦2) 

                     ≥ 𝑇𝑓𝑁 (𝑒)(𝑦1) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦2) 

                     = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1)] ∗ 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥2)] 

                     = 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ∗ 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2) 

 

Also,  𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2
−1) = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥2

−1)] = 𝑇𝑓𝑁 (𝑒)[(𝑔(𝑥2))−1] = 𝑇𝑓𝑁 (𝑒)(𝑦2
−1) ≥ 𝑇𝑓𝑁 (𝑒)(𝑦2) = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥2)] = 𝑇𝑓

𝑔−1(𝑁)
(𝑒)(𝑥2)   

i.e., 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2
−1) ≥ 𝑇𝑓

𝑔−1(𝑁)
(𝑒)(𝑥2);    Next, 

 

          𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1. 𝑥2) = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥1. 𝑥2)] 

         = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥1).𝑔(𝑥2)],    as 𝑔  is  homomorphism. 

          = 𝐼𝑓𝑁 (𝑒)(𝑦1.𝑦2) 

      ≤ 𝐼𝑓𝑁 (𝑒)(𝑦1) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦2) 

          = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥1)] ⋄ 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥2)] 

          = 𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ⋄ 𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2) 

 

Also,   𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2
−1) = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥2

−1)] = 𝐼𝑓𝑁 (𝑒)[(𝑔(𝑥2))−1] = 𝐼𝑓𝑁 (𝑒)(𝑦2
−1) ≤ 𝐼𝑓𝑁 (𝑒)(𝑦2) = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥2)] = 𝐼𝑓

𝑔−1(𝑁)
(𝑒)(𝑥2)   

 i.e.,  𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2
−1) ≤ 𝐼𝑓

𝑔−1(𝑁)
(𝑒)(𝑥2); 

Similarly,  𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1. 𝑥2) ≤ 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ⋄ 𝐹𝑓
𝑔−1(𝑁)

(e)(𝑥2),   𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2
−1) ≤ 𝐹𝑓

𝑔−1(𝑁)
(𝑒)(𝑥2); 

   

Hence,  the theorem is proved. 

 
                            4  Cartesian product of neutrosophic soft fields 

In this section the concept of cartesian product of neutrosophic soft fields has been introduced along with a well-known theorem. 

 

4.1  Definition 

Let 𝑀 and 𝑁 be two neutrosophic soft fields over (𝐾,𝐸) and (𝐿,𝐸), respectively. Then their cartesian product is 𝑀 × 𝑁 = 𝑃 

where 𝑓𝑃(𝑎, 𝑏) = 𝑓𝑀(𝑎) × 𝑓𝑁(𝑏) for  𝑎, 𝑏 ∈ 𝐸 × 𝐸. Analytically, 

    𝑓𝑃(𝑎, 𝑏) = {< (𝑥,𝑦),𝑇𝑓𝑃 (𝑎 ,𝑏)(𝑥,𝑦), 𝐼𝑓𝑃 (𝑎 ,𝑏)(𝑥,𝑦),𝐹𝑓𝑃 (𝑎 ,𝑏)(𝑥,𝑦) >: (𝑥,𝑦) ∈ 𝐾 × 𝐿} with 

 

  

𝑇𝑓𝑃 (𝑎 ,𝑏)(𝑥,𝑦) = 𝑇𝑓𝑀 (𝑎)(𝑥) ∗ 𝑇𝑓𝑁 (𝑏)(𝑦)

𝐼𝑓𝑃 (𝑎 ,𝑏)(𝑥,𝑦) = 𝐼𝑓𝑀 (a)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑏)(𝑦)

𝐹𝑓𝑃 (𝑎 ,𝑏)(𝑥,𝑦) = 𝐹𝑓𝑀 (𝑎)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑏)(𝑦).

   

 

 This definition can be extended for more than two neutrosophic soft fields. 

 

4.2  Theorem 

Let 𝑁1 and 𝑁2 be two neutrosophic soft fields over (𝐾,𝐸) and (𝐿,𝐸), respectively. Then their cartesian product 𝑁1 × 𝑁2  is a 

neutrosophic soft field over (𝐾 × 𝐿,𝐸 × 𝐸). 

 

Proof.  Let 𝑁1 × 𝑁2 = 𝑁3 where 𝑓𝑁3
(𝑎, 𝑏) = 𝑓𝑁1

(𝑎) × 𝑓𝑁2
(𝑏) for (𝑎, 𝑏) ∈ 𝐸 × 𝐸. Then for (𝑥1,𝑦1), (𝑥2,𝑦2) ∈ 𝐾 × 𝐿,  

 

      𝑇𝑓𝑁3 (𝑎 ,𝑏)((𝑥1, 𝑦1) + (𝑥2,𝑦2)) = 𝑇𝑓𝑁3 (𝑎 ,𝑏)(𝑥1 + 𝑥2,𝑦1 + 𝑦2) 
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                           = 𝑇𝑓𝑁1 (𝑎)(𝑥1 + 𝑥2) ∗ 𝑇𝑓𝑁2 (𝑏)(𝑦1 + 𝑦2) 

                           ≥ [𝑇𝑓𝑁1 (𝑎)(𝑥1) ∗ 𝑇𝑓𝑁1 (𝑎)(𝑥2)] ∗ [𝑇𝑓𝑁2 (𝑏)(𝑦1) ∗ 𝑇𝑓𝑁2 (𝑏)(𝑦2)] 

                           = [𝑇𝑓𝑁1 (𝑎)(𝑥1) ∗ 𝑇𝑓𝑁2 (𝑏)(𝑦1)] ∗ [𝑇𝑓𝑁1 (𝑎)(𝑥2) ∗ 𝑇𝑓𝑁2 (𝑏)(𝑦2)] 

                           = T𝑓𝑁3 (𝑎 ,𝑏)(𝑥1,𝑦1) ∗ 𝑇𝑓𝑁3 (𝑎 ,𝑏)(𝑥2,𝑦2) 

 

      𝐼𝑓𝑁3 (𝑎 ,𝑏)((𝑥1,𝑦1) + (𝑥2,𝑦2)) = 𝐼𝑓𝑁3 (𝑎 ,𝑏)(𝑥1 + 𝑥2,𝑦1 + 𝑦2) 

                          = 𝐼𝑓𝑁1 (𝑎)(𝑥1 + 𝑥2) ⋄ 𝐼𝑓𝑁2 (𝑏)(𝑦1 + 𝑦2) 

                          ≤ [𝐼𝑓𝑁1 (𝑎)(𝑥1) ⋄ 𝐼𝑓𝑁1 (𝑎)(𝑥2)] ⋄ [𝐼𝑓𝑁2 (𝑏)(𝑦1) ⋄ 𝐼𝑓𝑁2 (𝑏)(𝑦2)] 

                          = [𝐼𝑓𝑁1 (𝑎)(𝑥1) ⋄ 𝐼𝑓𝑁2 (𝑏)(𝑦1)] ⋄ [𝐼𝑓𝑁1 (𝑎)(𝑥2) ⋄ 𝐼𝑓𝑁2 (𝑏)(𝑦2)] 

                          = 𝐼𝑓𝑁3 (𝑎 ,𝑏)(𝑥1,𝑦1) ⋄ 𝐼𝑓𝑁3 (𝑎 ,𝑏)(𝑥2,𝑦2) 

 

Similarly,  𝐹𝑓𝑁3 (𝑎 ,𝑏)((𝑥1,𝑦1) + (𝑥2,𝑦2)) ≤ 𝐹𝑓𝑁3 (𝑎 ,𝑏)(𝑥1,𝑦1) ⋄ 𝐹𝑓𝑁3 (𝑎 ,𝑏)(𝑥2,𝑦2);   Next, 

 

𝑇𝑓𝑁3 (𝑎 ,𝑏)[−(𝑥1,𝑦1)] = 𝑇𝑓𝑁3 (𝑎 ,𝑏)(−𝑥1,−𝑦1) = 𝑇𝑓𝑁1 (𝑎)(−𝑥1) ∗ 𝑇𝑓𝑁2 (𝑏)(−𝑦1) ≥ 𝑇𝑓𝑁1 (𝑎)(𝑥1) ∗ 𝑇𝑓𝑁2 (𝑏)(𝑦1) = 𝑇𝑓𝑁3 (𝑎 ,𝑏)(𝑥1,𝑦1)   

 i.e.,   𝑇𝑓𝑁3 (𝑎 ,𝑏)[−(𝑥1,𝑦1)] ≥ 𝑇𝑓𝑁3 (𝑎 ,𝑏)(𝑥1,𝑦1), 

 

𝐼𝑓𝑁3 (𝑎 ,𝑏)[−(𝑥1,𝑦1)] = 𝐼𝑓𝑁3 (𝑎 ,𝑏)(−𝑥1,−𝑦1) = 𝐼𝑓𝑁1 (𝑎)(−𝑥1) ⋄ 𝐼𝑓𝑁2 (𝑏)(−𝑦1) ≤ 𝐼f𝑁1 (𝑎)(𝑥1) ⋄ 𝐼𝑓𝑁2 (𝑏)(𝑦1) = 𝐼𝑓𝑁3 (𝑎 ,𝑏)(𝑥1,𝑦1)    

 i.e.,  𝐼𝑓𝑁3 (𝑎 ,𝑏)[−(𝑥1,𝑦1)] ≤ 𝐼𝑓𝑁3 (𝑎 ,𝑏)(𝑥1,𝑦1) 

 

Similarly,  𝐹𝑓𝑁3 (𝑎 ,𝑏)[−(𝑥1,𝑦1)] ≤ 𝐹𝑓𝑁3 (𝑎 ,𝑏)(𝑥1,𝑦1);   Next,  

 

     𝑇𝑓𝑁3 (𝑎 ,𝑏)((𝑥1,𝑦1). (𝑥2,𝑦2)) = 𝑇𝑓𝑁3 (𝑎 ,𝑏)(𝑥1. 𝑥2,𝑦1.𝑦2) 

                       = 𝑇𝑓𝑁1 (𝑎)(𝑥1. 𝑥2) ∗ 𝑇𝑓𝑁2 (𝑏)(𝑦1.𝑦2) 

             ≥ [𝑇𝑓𝑁1 (𝑎)(𝑥1) ∗ 𝑇𝑓𝑁1 (𝑎)(𝑥2)] ∗ [𝑇𝑓𝑁2 (𝑏)(𝑦1) ∗ 𝑇𝑓𝑁2 (𝑏)(𝑦2)] 

                      = [𝑇𝑓𝑁1 (𝑎)(𝑥1) ∗ 𝑇𝑓𝑁2 (𝑏)(𝑦1)] ∗ [𝑇𝑓𝑁1 (𝑎)(𝑥2) ∗ 𝑇𝑓𝑁2 (𝑏)(𝑦2)] 

                      = 𝑇𝑓𝑁3 (𝑎 ,𝑏)(𝑥1,𝑦1) ∗ 𝑇𝑓𝑁3 (𝑎 ,𝑏)(𝑥2,𝑦2) 

 

      𝐼𝑓𝑁3 (𝑎 ,𝑏)((𝑥1,𝑦1). (𝑥2,𝑦2)) = 𝐼𝑓𝑁3 (𝑎 ,𝑏)(𝑥1. 𝑥2,𝑦1.𝑦2) 

                      = 𝐼𝑓𝑁1 (𝑎)(𝑥1. 𝑥2) ⋄ 𝐼𝑓𝑁2 (𝑏)(𝑦1.𝑦2) 

                      ≤ [𝐼𝑓𝑁1 (𝑎)(𝑥1) ⋄ 𝐼𝑓𝑁1 (𝑎)(𝑥2)] ⋄ [𝐼𝑓𝑁2 (𝑏)(𝑦1) ⋄ 𝐼𝑓𝑁2 (𝑏)(𝑦2)] 

                      = [𝐼𝑓𝑁1 (𝑎)(𝑥1) ⋄ 𝐼𝑓𝑁2 (𝑏)(𝑦1)] ⋄ [𝐼𝑓𝑁1 (𝑎)(𝑥2) ⋄ 𝐼𝑓𝑁2 (𝑏)(𝑦2)] 

                      = I𝑓𝑁3 (𝑎 ,𝑏)(𝑥1,𝑦1) ⋄ 𝐼𝑓𝑁3 (𝑎 ,𝑏)(𝑥2,𝑦2) 

 

 Similarly,   𝐹𝑓𝑁3 (𝑎 ,𝑏)((𝑥1,𝑦1). (𝑥2,𝑦2)) ≤ 𝐹𝑓𝑁3 (𝑎 ,𝑏)(𝑥1,𝑦1) ⋄ 𝐹𝑓𝑁3 (𝑎 ,𝑏)(𝑥2,𝑦2);   Next,  

 

𝑇𝑓𝑁3 (𝑎 ,𝑏)[(𝑥2,𝑦2)−1] = 𝑇𝑓𝑁3 (𝑎 ,𝑏)(𝑥2
−1,𝑦2

−1) = 𝑇𝑓𝑁1 (𝑎)(𝑥2
−1) ∗ 𝑇𝑓𝑁2 (𝑏)(𝑦2

−1) ≥ 𝑇𝑓𝑁1 (𝑎)(𝑥2) ∗ 𝑇𝑓𝑁2 (𝑏)(𝑦2) = 𝑇𝑓𝑁3 (𝑎 ,𝑏)(𝑥2,𝑦2)    

i.e.,   𝑇𝑓𝑁3 (𝑎 ,𝑏)[(𝑥2,𝑦2)−1] ≥ 𝑇𝑓𝑁3 (𝑎 ,𝑏)(𝑥2,𝑦2); 

 

𝐼𝑓𝑁3 (𝑎 ,𝑏)[(𝑥2,𝑦2)−1] = 𝐼𝑓𝑁3 (𝑎 ,𝑏)(𝑥2
−1,𝑦2

−1) = 𝐼𝑓𝑁1 (𝑎)(𝑥2
−1) ⋄ 𝐼𝑓𝑁2 (𝑏)(𝑦2

−1) ≤ 𝐼𝑓𝑁1 (𝑎)(𝑥2) ⋄ 𝐼𝑓𝑁2 (𝑏)(𝑦2) = 𝐼𝑓𝑁3 (𝑎 ,b)(𝑥2,𝑦2)    

i.e.,   𝐼𝑓𝑁3 (𝑎 ,𝑏)[(𝑥2,𝑦2)−1] ≤ 𝐼𝑓𝑁3 (𝑎 ,𝑏)(𝑥2,𝑦2); 

 

Similarly,   𝐹𝑓𝑁3 (𝑎 ,𝑏)[(𝑥2,𝑦2)−1] ≤ 𝐹𝑓𝑁3 (𝑎 ,𝑏)(𝑥2,𝑦2); 

   

Hence,  the theorem is proved. 
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                                     5  Neutrosophic soft subfield 

Here, the neutrosophic soft subfield has been defined and some related theorems have been developed. 

 

5.1  Definition 

Let 𝑁1 and 𝑁2 be two neutrosophic fields over (𝐾,𝐸). Then 𝑁1 is neutrosophic soft subfield of 𝑁2 if ∀𝑥 ∈ 𝐾,∀𝑒 ∈ 𝐸,  

      𝑇𝑓𝑁1
 𝑒  𝑥 ≤ 𝑇𝑓𝑁2

 𝑒  𝑥 ,  𝐼𝑓𝑁1
 𝑒  𝑥 ≥ 𝐼𝑓𝑁2

 𝑒  𝑥 , 𝐹𝑓𝑁1 (𝑒)(𝑥) ≥ 𝐹𝑓𝑁2 (𝑒)(𝑥);  

 

5.2  Theorem 

Let 𝑁 be a neutrosophic soft field over (𝐾,𝐸) and 𝑁1,𝑁2 be two neutrosophic soft fields of 𝑁. If 𝑎 ∗ 𝑏 = min{𝑎, 𝑏} and 𝑎 ⋄ 𝑏 =
max{𝑎, 𝑏} then, 

(i)   𝑁1 ∩ 𝑁2 is a neutrosophic soft subfield of 𝑁. 

(ii)  𝑁1 ∧ 𝑁2 is a neutrosophic soft subfield of 𝑁 ∧ 𝑁.  

 

Proof. The intersection(∩), AND(∧) of two neutrosophic soft fields is also so by Theorems (3.3) and (3.4). Now to complete this 

theorem, we only verify the criteria of neutrosophic soft subfield in each case. 

(i)  Let 𝑁3 = 𝑁1 ∩ 𝑁2. For 𝑥 ∈ 𝐾,  

         𝑇𝑓𝑁3
 𝑒  𝑥 = 𝑇𝑓𝑁1

 𝑒  𝑥 ∗ 𝑇𝑓𝑁2
 𝑒  𝑥 ≤ 𝑇𝑓𝑁  𝑒  𝑥 ∗ 𝑇𝑓𝑁  𝑒  𝑥 = 𝑇𝑓𝑁  𝑒  𝑥 , 

          𝐼𝑓𝑁3
 𝑒  𝑥 = 𝐼𝑓𝑁1

 𝑒  𝑥 ⋄ 𝐼𝑓𝑁2
 𝑒  𝑥 ≥ 𝐼𝑓𝑁  𝑒  𝑥 ⋄ 𝐼𝑓𝑁  𝑒  𝑥 = 𝐼𝑓𝑁  𝑒  𝑥 , 

         𝐹𝑓𝑁3
 𝑒  𝑥 = 𝐹𝑓𝑁1

 𝑒  𝑥 ⋄ 𝐹𝑓𝑁2
 𝑒  𝑥 ≥ 𝐹𝑓𝑁  𝑒  𝑥 ⋄ 𝐹𝑓𝑁  𝑒  𝑥 = 𝐹𝑓𝑁  𝑒  𝑥 ; 

 

 (ii)  Let 𝑁3 = 𝑁1 ∧ 𝑁2 and 𝑥 ∈ 𝐾. Then,  

         𝑇𝑓𝑁3
 𝑎 ,𝑏  𝑥 = 𝑇𝑓𝑁1

 𝑎  𝑥 ∗ 𝑇𝑓𝑁2
 𝑏  𝑥 ≤ 𝑇𝑓𝑁  𝑎  𝑥 ∗ 𝑇𝑓𝑁  𝑏  𝑥 = 𝑇𝑓𝑁∧𝑁  𝑎 ,𝑏  𝑥 , 

          𝐼𝑓𝑁3
 𝑎 ,𝑏  𝑥 = 𝐼𝑓𝑁1

 𝑎  𝑥 ⋄ 𝐼𝑓𝑁2
 𝑏  𝑥 ≥ 𝐼𝑓𝑁  𝑎  𝑥 ⋄ 𝐼𝑓𝑁  𝑏  𝑥 = 𝐼𝑓𝑁∧𝑁  𝑎 ,𝑏  𝑥 , 

          𝐹𝑓𝑁3
 𝑎 ,𝑏  𝑥 = 𝐹𝑓𝑁1

 𝑎  𝑥 ⋄ 𝐹𝑓𝑁2
 𝑏  𝑥 ≥ 𝐹𝑓𝑁  𝑎  𝑥 ⋄ F𝑓𝑁  𝑏  𝑥 = 𝐹𝑓𝑁∧𝑁  𝑎 ,𝑏  𝑥 ; 

 

 The theorems are also true for a family of neutrosophic soft subfields of 𝑁. 

 

5.3  Theorem 

Let 𝑁1 and 𝑁2 be two neutrosophic soft fields over field (𝐾,𝐸) such that 𝑁1 is the neutrosophic soft subfield of 𝑁2. Let 𝑔:𝐾 → 𝐿 

be a field isomorphism in classical sense. Then 𝑔(𝑁1) and 𝑔(𝑁2) are two neutrosophic soft fields over (𝐿,𝐸). Moreover 𝑔(𝑁1) is 

the neutrosophic soft subfield of 𝑔(𝑁2). 

   

Proof.  The 1st part has been already proved in Theorem (3.5). 

Let 𝑥 ∈ 𝐾,𝑦 ∈ 𝐿 such that 𝑦 = 𝑔(𝑥). Then,  

     𝑇𝑓𝑁1 (𝑒)(𝑥) ≤ 𝑇𝑓𝑁2 (𝑒)(𝑥) 

 ⇒ 𝑇𝑓𝑁1 (𝑒)[𝑔−1(𝑦)] ≤ 𝑇𝑓𝑁2 (𝑒)[𝑔−1(𝑦)] 

 ⇒ 𝑇𝑓𝑔(𝑁1)(𝑒)(𝑦) ≤ 𝑇𝑓𝑔(𝑁2)(𝑒)(𝑦) 

 

Similarly, 𝐼𝑓𝑔(𝑁1)(𝑒)(𝑦) ≥ 𝐼𝑓𝑔(𝑁2)(𝑒)(𝑦)   and   F𝑓𝑔(𝑁1)(𝑒)(𝑦) ≥ 𝐹𝑓𝑔(𝑁2)(𝑒)(𝑦); 

 

Hence,  the theorem is proved. 
 

                                   6  Neutrosophic soft homomorphism 

In this section, first we define a neutrosophic soft function, then define image and pre-image of an NSS under a neutrosophic soft 

function. In continuation, we introduce the notion of neutrosophic soft homomorphism along with some of it's properties. 

 

6.1  Definition 

Let 𝜑:𝐾 → 𝐿 and 𝜓:𝐸 → 𝐸′ be two crisp functions where 𝐾, 𝐿 are fields and 𝐸,𝐸′ are parametric sets. Then the pair (𝜑,𝜓) is 
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called a neutrosophic soft function from (𝐾,𝐸) to (𝐿,𝐸′). We write,   (𝜑,𝜓): (𝐾,𝐸) → (𝐿,𝐸′). 

Consider two NSSs 𝑀,𝑁 defined over (𝐾,𝐸), (𝐿,𝐸′) respectively. Then,  

 

(1) The image of 𝑀 under (𝜑,𝜓), denoted by (𝜑,𝜓)(𝑀), is an NSS over (𝐿,𝐸) and is defined as : 

 (𝜑,𝜓)(𝑀) = {< 𝜓(𝑎), 𝑓𝜑(𝑀)(𝜓(𝑎)) >: 𝑎 ∈ 𝐸} where for 𝑥 ∈ 𝐾,𝑦 ∈ 𝐿, 𝑏 ∈ 𝐸′,  

 𝑇𝑓𝜑 (𝑀 )(𝑏)(𝑦) =  
max
𝜑(𝑥)=𝑦

 max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑀 (𝑎)(𝑥)],    𝑖𝑓   𝑥 ∈ 𝜑−1(𝑦)

0     ,        𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒 .

  

 𝐼𝑓𝜑 (𝑀 )(𝑏)(𝑦) =  
min

𝜑(𝑥)=𝑦
 min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑀 (𝑎)(𝑥)],    𝑖𝑓   𝑥 ∈ 𝜑−1(𝑦)

1     ,        𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒 .

  

 𝐹𝑓𝜑 (𝑀 )(𝑏)(𝑦) =  
min

𝜑(𝑥)=𝑦
 min
𝜓(𝑎)=𝑏

 [𝐹𝑓𝑀 (𝑎)(𝑥)],    𝑖𝑓   𝑥 ∈ 𝜑−1(𝑦)

1     ,        𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒 .

  

  

(2) The pre-image of 𝑁 under (𝜑,𝜓), denoted by (𝜑,𝜓)−1(𝑁), is an NSS over (𝐾,𝐸) and is defined as, ∀𝑎 ∈ 𝜓−1(𝐸′),∀𝑥 ∈ 𝐾 :  

 𝑇𝑓
𝜑−1(𝑁)

(𝑎)(𝑥) = 𝑇𝑓𝑁 [𝜓(𝑎)](𝜑(𝑥)) 

 𝐼𝑓
𝜑−1(𝑁)

(𝑎)(𝑥) = 𝐼𝑓𝑁 [𝜓(𝑎)](𝜑(𝑥)) 

 𝐹𝑓
𝜑−1(𝑁)

(𝑎)(𝑥) = 𝐹𝑓𝑁 [𝜓(𝑎)](𝜑(𝑥)) 

 If 𝜓 and 𝜑 is injective (surjective), then (𝜑,𝜓) is injective (surjective). 

 

6.1.1  Example 

Let 𝐸 = 𝑵 (the set of natural numbers) be the parametric set and 𝐾 = (𝒁5, +,⋅) be a field. Define a mapping 𝑓𝑀 :𝑵 → 𝑁𝑆(𝒁5) 

where, for any 𝑛 ∈ 𝑵 and 𝑥 ∈ 𝒁5,  

 𝑇𝑓𝑀 (𝑛)(𝑥) =  
0          𝑖𝑓   𝑥 ∈ {1, 3}
1

3𝑛
       𝑖𝑓   𝑥 ∈ {0, 2, 4}.

  

 𝐼𝑓𝑀 (𝑛)(𝑥) =  
1 −

1

𝑛
     𝑖𝑓   x ∈ {1, 3}

0                 𝑖𝑓   𝑥 ∈ {0, 2, 4}.

  

 𝐹𝑓𝑀 (𝑛)(𝑥) =  

1

𝑛+1
          𝑖𝑓   𝑥 ∈ {1, 3}

0                 𝑖𝑓   𝑥 ∈ {0, 2, 4}.

  

 Now, let 𝜑:𝒁5 → 𝒁5 and 𝜓:𝑵 → 𝑵 be given by 𝜑(𝑥) = 3𝑥 + 1 and 𝜓(𝑛) = 𝑛2. Then for 𝑎 ∈ 𝑵2,𝑦 ∈ 3𝒁5 + 1 , the image of 

𝑀 under (𝜑,𝜓) as follows :  

 𝑇𝑓𝜑 (𝑀 )(𝑎)(𝑦) =  
0             𝑖𝑓   𝑦 ∈ {0, 4}

1

3 𝑎
       𝑖𝑓   𝑦 ∈ {1, 2, 3}.

  

 𝐼𝑓𝜑 (𝑀 )(𝑎)(𝑦) =  
1 −

1

 𝑎
     𝑖𝑓   𝑦 ∈ {0, 4}

0                   𝑖𝑓   𝑦 ∈ {1, 2, 3}.

  

 𝐹𝑓𝜑 (𝑀 )(𝑎)(𝑦) =  

1

1+ 𝑎
      𝑖𝑓   𝑦 ∈ {0, 4}

0               𝑖𝑓   𝑦 ∈ {1, 2, 3}.

  

 

6.2  Theorem 

Let 𝑁  be a neutrosophic soft field over (𝐾,𝐸)  and (𝜑,𝜓): (𝐾,𝐸) → (L,𝐸′)  be a neutrosophic soft homomorphism. Then 

(𝜑,𝜓)(𝑁) is a neutrosophic soft field over (𝐿,𝐸′). 

 

Proof.  Let 𝑏 ∈ 𝜓(𝐸) and 𝑦1,𝑦2 ∈ 𝐿.  

If 𝜑−1(𝑦1) = 𝜙 or 𝜑−1(𝑦2) = 𝜙, the proof is straight forward. 

So, we assume that there exists 𝑥1, 𝑥2 ∈ 𝐾 such that 𝜑(𝑥1) = 𝑦1,𝜑(𝑥2) = 𝑦2. Then,  
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     𝑇𝑓𝜑 (𝑁)(𝑏)(𝑦1 + 𝑦2) = max
𝜑(𝑥)=𝑦1+𝑦2

 max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥)] 

       ≥ max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥1 + 𝑥2)] 

       ≥ max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥1) ∗ 𝑇𝑓𝑁 (𝑎)(𝑥2)] 

      = max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥1)] ∗ max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥2)] 

 

          𝑇𝑓𝜑 (𝑁)(𝑏)(−𝑦1) = max
𝜑(𝑥)=−𝑦1

 max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥)] ≥ max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(−𝑥1)]  ≥ max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥1)] 

 

         𝑇𝑓𝜑 (𝑁)(𝑏)(𝑦1 .𝑦2) = max
𝜑(𝑥)=𝑦1𝑦2

 max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥)] 

       ≥ max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥1𝑥2)] 

       ≥ max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥1) ∗ 𝑇𝑓𝑁 (𝑎)(𝑥2)] 

    = max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥1)] ∗ max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥2)] 

 

           𝑇𝑓𝜑 (𝑁)(𝑏)(𝑦2
−1) = max

𝜑(𝑥)=𝑦2
−1

 max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥)] ≥ max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥2
−1)] ≥ max

𝜓(𝑎)=𝑏
 [𝑇𝑓𝑁 (𝑎)(𝑥2)] 

 

Since, this inequality is satisfied for each 𝑥1, 𝑥2 ∈ 𝐾 satisfying 𝜑(𝑥1) = 𝑦1,𝜑(𝑥2) = 𝑦2 so we have the followings.  

 

      𝑇𝑓𝜑 𝑁  𝑏 (𝑦1 + 𝑦2) ≥ ( max
𝜑 𝑥1 =𝑦1

  max
𝜓 𝑎 =𝑏

 [𝑇𝑓𝑁  𝑎 (𝑥1)]) ∗ ( max
𝜑 𝑥2 =𝑦2

  max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥2)]) 

       = 𝑇𝑓𝜑 (𝑁)(𝑏)(𝑦1) ∗ 𝑇𝑓𝜑 (𝑁)(𝑏)(𝑦2), 

 

         𝑇𝑓𝜑 𝑁  𝑏 (𝑦1 .𝑦2) ≥ ( max
𝜑 𝑥1 =𝑦1

  max
𝜓 𝑎 =𝑏

 [𝑇𝑓𝑁  𝑎 (𝑥1)]) ∗ ( max
𝜑 𝑥2 =𝑦2

  max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥2)]) 

       = 𝑇𝑓𝜑 (𝑁)(𝑏)(𝑦1) ∗ 𝑇𝑓𝜑 (𝑁)(𝑏)(𝑦2), 

 

             𝑇𝑓𝜑 𝑁  𝑏  −𝑦1 ≥ max
𝜑 𝑥1 =𝑦1

 max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥1)] = 𝑇𝑓𝜑 (𝑁)(𝑏)(𝑦1), 

             𝑇𝑓𝜑 𝑁  𝑏  𝑦2
−1 ≥ max

𝜑 𝑥2 =𝑦2

 max
𝜓(𝑎)=𝑏

 [𝑇𝑓𝑁 (𝑎)(𝑥2)] = 𝑇𝑓𝜑 (𝑁)(𝑏)(𝑦2); 

 

 Next,       𝐼𝑓𝜑 (𝑁)(𝑏)(𝑦1 + 𝑦2) = min
𝜑(𝑥)=𝑦1+𝑦2

 min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥)] 

                    ≤ min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥1 + 𝑥2)] 

                    ≤ min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥1) ⋄ 𝐼𝑓𝑁 (𝑎)(𝑥2)] 

                    = min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥1)] ⋄ min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥2)] 

 

    𝐼𝑓𝜑 (𝑁)(𝑏)(−𝑦1) = min
𝜑(𝑥)=−𝑦1

 min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥)]    ≤ min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(−𝑥1)]  ≤ min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥1)] 

 

                    𝐼𝑓𝜑 (𝑁)(𝑏)(𝑦1.𝑦2) = min
𝜑(𝑥)=𝑦1𝑦2

 min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥)] 

                 ≤ min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥1𝑥2)] 

                 ≤ min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥1) ⋄ 𝐼𝑓𝑁 (𝑎)(𝑥2)] 

            = min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥1)] ⋄ min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥2)] 

 

 𝐼𝑓𝜑 (𝑁)(𝑏)(𝑦2
−1) = min

𝜑(𝑥)=𝑦2
−1

 min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥)]   ≤ min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥2
−1)] ≤ min

𝜓(𝑎)=𝑏
 [𝐼𝑓𝑁 (𝑎)(𝑥2)] 

          
Since, this inequality is satisfied for each 𝑥1, 𝑥2 ∈ 𝐾 satisfying 𝜑(𝑥1) = 𝑦1,𝜑(𝑥2) = 𝑦2 so the followings hold.  
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        𝐼𝑓𝜑 𝑁  𝑏 (𝑦1 + 𝑦2) ≤ ( min
𝜑 𝑥1 =𝑦1

 min
𝜓 𝑎 =𝑏

 [𝐼𝑓𝑁  𝑎 (𝑥1)]) ⋄ ( min
𝜑 𝑥2 =𝑦2

 min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥2)]) 

        = 𝐼𝑓𝜑 (𝑁)(𝑏)(𝑦1) ⋄ 𝐼𝑓𝜑 (𝑁)(𝑏)(𝑦2), 

 

             𝐼𝑓𝜑 𝑁  𝑏 (𝑦1.𝑦2) ≤ ( min
𝜑 𝑥1 =𝑦1

 min
𝜓 𝑎 =𝑏

 [𝐼𝑓𝑁  𝑎 (𝑥1)]) ⋄ ( min
𝜑 𝑥2 =𝑦2

 min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥2)]) 

          = 𝐼𝑓𝜑 (𝑁)(𝑏)(𝑦1) ⋄ 𝐼𝑓𝜑 (𝑁)(𝑏)(𝑦2), 

 

                 𝐼𝑓𝜑 𝑁  𝑏  −𝑦1 ≤ min
𝜑 𝑥1 =𝑦1

 min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥1)] = 𝐼𝑓𝜑 (𝑁)(𝑏)(𝑦1), 

                  𝐼𝑓𝜑 𝑁  𝑏  𝑦2
−1 ≤ min

𝜑 𝑥2 =𝑦2
 min
𝜓(𝑎)=𝑏

 [𝐼𝑓𝑁 (𝑎)(𝑥2)] = 𝐼𝑓𝜑 (𝑁)(𝑏)(𝑦2); 

 

 Similarly, we can show that 

𝐹𝑓𝜑 (𝑁)(𝑏)(𝑦1 + 𝑦2) ≤ 𝐹𝑓𝜑 (𝑁)(𝑏)(𝑦1) ⋄ 𝐹𝑓𝜑 (𝑁)(𝑏)(𝑦2),   𝐹𝑓𝜑 (𝑁)(𝑏)(−𝑦1) ≤ 𝐹𝑓𝜑 (𝑁)(𝑏)(𝑦1); 

  𝐹𝑓𝜑 (𝑁)(𝑏)(𝑦1.𝑦2) ≤ 𝐹𝑓𝜑 (𝑁)(𝑏)(𝑦1) ⋄ 𝐹𝑓𝜑 (𝑁)(𝑏)(𝑦2),   𝐹𝑓𝜑 (𝑁)(𝑏)(𝑦2
−1) ≤ 𝐹𝑓𝜑 (𝑁)(𝑏)(𝑦2);  

   

 This completes the proof. 

 

6.3  Theorem 

Let 𝑀  be a neutrosophic soft field over (𝐿,𝐸′)  and (𝜑,𝜓): (𝐾,𝐸) → (𝐿,𝐸′)  be a neutrosophic soft homomorphism. Then 

(𝜑,𝜓)−1(𝑀) is a neutrosophic soft field over (𝐾,𝐸). 

 

Proof.  For 𝑎 ∈ 𝜓−1(𝐸′) and 𝑥1, 𝑥2 ∈ 𝐾, we have,  

 

              𝑇𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥1 + 𝑥2) = 𝑇𝑓𝑀 [𝜓(𝑎)](φ(𝑥1 + 𝑥2)) 

                    = 𝑇𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥1) + 𝜑(𝑥2)) 

                     ≥ 𝑇𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥1)) ∗ 𝑇𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥2)) 

                     = 𝑇𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥1) ∗ 𝑇𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥2) 

 

     𝑇𝑓
𝜑−1(𝑀 )

(𝑎)(−𝑥1) = 𝑇𝑓𝑀 [𝜓(𝑎)](𝜑(−𝑥1)) = 𝑇𝑓𝑀 [𝜓(𝑎)](−𝜑(𝑥1))  ≥ 𝑇𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥1))  = 𝑇𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥1)  

       
                   𝑇𝑓

𝜑−1(𝑀 )
(𝑎)

(𝑥1. 𝑥2) = 𝑇𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥1𝑥2)) 

                     = 𝑇𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥1)𝜑(𝑥2)) 

                     ≥ 𝑇𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥1)) ∗ 𝑇𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥2)) 

                     = 𝑇𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥1) ∗ 𝑇𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥2) 

 

      𝑇𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥2
−1) = 𝑇𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥2

−1)) = 𝑇𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥2))−1  ≥ 𝑇𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥2)) = 𝑇𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥2) 

  

Next,    𝐼𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥1 + 𝑥2) = 𝐼𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥1 + 𝑥2)) 

                     = 𝐼𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥1) + 𝜑(𝑥2)) 

                  ≤ 𝐼𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥1)) ⋄ 𝐼𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥2)) 

                   = 𝐼𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥1) ⋄ 𝑇𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥2) 

 

           𝐼𝑓
𝜑−1(𝑀 )

(𝑎)(−𝑥1) = 𝐼𝑓𝑀 [𝜓(𝑎)](𝜑(−𝑥1)) = 𝐼𝑓𝑀 [𝜓(𝑎)](−𝜑(𝑥1)  ≤ 𝐼𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥1))  = 𝐼𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥1) 

 

                      𝐼𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥1. 𝑥2) = 𝐼𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥1𝑥2)) 
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                       = 𝐼𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥1)𝜑(𝑥2)) 

                       ≤ 𝐼𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥1)) ⋄ 𝐼𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥2)) 

             = 𝐼𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥1) ⋄ 𝐼𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥2) 

  

            𝐼𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥2
−1) = 𝐼𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥2

−1)  = 𝐼𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥2))−1 ≤ 𝐼𝑓𝑀 [𝜓(𝑎)](𝜑(𝑥2))  = 𝐼𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥2) 

 

 Similarly,   𝐹𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥1 + 𝑥2) ≤ 𝐹𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥1) ⋄ 𝐹f
𝜑−1(𝑀 )

(𝑎)(𝑥2), 𝐹𝑓
𝜑−1(𝑀 )

(𝑎)(−𝑥1) ≤ 𝐹𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥1); 

                            𝐹𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥1. 𝑥2) ≤ 𝐹𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥1) ⋄ 𝐹𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥2), 𝐹𝑓
𝜑−1(𝑀 )

(𝑎)(𝑥2
−1) ≤ 𝐹𝑓

𝜑−1(𝑀 )
(𝑎)(𝑥2); 

 

     Thus,  the theorem is completed. 

 
                         7  Neutrosophic soft algebra over a neutrosophic soft field 

The concept of neutrosophic soft algebra over a neutrosophic soft field has been brought here. The structural characteristics of it have 

been investigated along with the development of some related theorems. 

 

7.1  Definition 

Let 𝑀 be a neutrosophic soft field over (𝐾,𝐸) and 𝑈 be an algebra over 𝐾 where 𝐾 is a field and 𝐸 is a set of parameters. Then an 

NSS 𝑁 over (𝑈,𝐸) is called a neutrosophic soft algebra if ∀𝑥,𝑦 ∈ 𝑈,∀𝑒 ∈ 𝐸 and 𝜆 ∈ 𝐾, the followings hold.  

 

 (𝑖)  

𝑇𝑓𝑁 (𝑒)(𝑥 + 𝑦) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦)

𝐼𝑓𝑁 (𝑒)(𝑥 + 𝑦) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦)

𝐹𝑓𝑁 (𝑒)(𝑥 + 𝑦) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦).

  

 (𝑖𝑖)  

𝑇𝑓N(𝑒)(𝜆𝑥) ≥ 𝑇𝑓𝑀 (𝑒)(𝜆) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥)

𝐼𝑓𝑁 (𝑒)(𝜆𝑥) ≤ 𝐼𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥)

𝐹𝑓𝑁 (𝑒)(𝜆𝑥) ≤ 𝐹𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥).

  

 (𝑖𝑖𝑖)  

𝑇𝑓𝑁 (𝑒)(𝑥.𝑦) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦)

𝐼𝑓𝑁 (𝑒)(𝑥.𝑦) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦)

𝐹𝑓𝑁 (𝑒)(𝑥.𝑦) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦).

  

 (𝑖𝑣)  

𝑇𝑓𝑀 (𝑒)(1𝑘) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥)

𝐼𝑓𝑀 (𝑒)(1𝑘) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥)

𝐹𝑓𝑀 (𝑒)(1𝑘) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥).

  

 

We write, the triplet (𝑁,𝑈,𝐸) is a neutrosophic soft algebra over the triplet (𝑀,𝐾,𝐸), a neutrosophic soft field. 

 

7.1.1  Corollary 

If (𝑁,𝑈,𝐸) is a neutrosophic soft algebra over the neutrosophic soft field (𝑀,𝐾,𝐸), then ∀𝑥 ∈ 𝑈,∀𝑒 ∈ 𝐸 and for the additive 

identity 0𝑘 ∈ 𝐾, 

 𝑇𝑓𝑀 (𝑒)(0𝑘) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥),   𝐼𝑓𝑀 (𝑒)(0𝑘) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥),   𝐹𝑓𝑀 (𝑒)(0𝑘) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥);  

 

Proof.  It directly follows from the Proposition [3.1](iii) and from the Definition [7.1](𝑖𝑣); 

 

7.1.2  Corollary 

Let 𝑎 ∗ 𝑏 = min{𝑎, 𝑏}  and 𝑎 ⋄ b = max{𝑎, 𝑏} . Then (𝑁,𝑈,𝐸)  is a neutrosophic soft algebra over the neutrosophic soft field 

(𝑀,𝐾,𝐸) where 𝑀,𝑁,𝐾,𝑈,𝐸 are defined in [7.1] iff for any 𝜆, 𝜇 ∈ 𝐾 and 𝑥,𝑦 ∈ 𝑈 followings hold.  
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 (𝑖)  

𝑇𝑓𝑁 (𝑒)(𝜆𝑥 + 𝜇𝑦) ≥ (𝑇𝑓𝑀 (𝑒)(𝜆) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥)) ∗ (𝑇𝑓𝑀 (𝑒)(𝜇) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦))

𝐼𝑓𝑁 (𝑒)(𝜆𝑥 + 𝜇𝑦) ≤ (𝐼𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥)) ⋄ (𝐼𝑓𝑀 (𝑒)(𝜇) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦))

𝐹𝑓𝑁 (𝑒)(𝜆𝑥 + 𝜇𝑦) ≤ (𝐹𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥)) ⋄ (𝐹𝑓𝑀 (𝑒)(𝜇) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦)).

  

 (𝑖𝑖)  

𝑇𝑓𝑁 (𝑒)(𝑥.𝑦) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦)

𝐼𝑓𝑁 (𝑒)(𝑥.𝑦) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦)

𝐹𝑓𝑁 (𝑒)(𝑥.𝑦) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦).

  

 (𝑖𝑖𝑖)  

𝑇𝑓𝑀 (𝑒)(1𝑘) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥)

𝐼𝑓𝑀 (𝑒)(1𝑘) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥)

𝐹𝑓𝑀 (𝑒)(1𝑘) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥).

  

  

Proof. First let (𝑁,𝑈,𝐸) be a neutrosophic soft algebra over the neutrosophic soft field (𝑀,𝐾,𝐸). Then, 

  

     (𝑖)    𝑇𝑓𝑁 (𝑒)(𝜆𝑥 + 𝜇𝑦) ≥ 𝑇𝑓𝑁 (𝑒)(𝜆𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝜇𝑦)  ≥ (𝑇𝑓𝑀 (𝑒)(𝜆) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥)) ∗ (𝑇𝑓𝑀 (𝑒)(𝜇) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦)) 

 

               𝐼𝑓𝑁 (𝑒)(𝜆𝑥 + 𝜇𝑦) ≤ 𝐼𝑓𝑁 (𝑒)(𝜆𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝜇𝑦 ≤ (𝐼𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥)) ⋄ (𝐼𝑓𝑀 (𝑒)(𝜇) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦)) 

 

                𝐹𝑓𝑁 (𝑒)(𝜆𝑥 + 𝜇𝑦) ≤ 𝐹𝑓𝑁 (𝑒)(𝜆𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝜇𝑦)  ≤ (𝐹𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥)) ⋄ (𝐹𝑓𝑀 (𝑒)(𝜇) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦)) 

 

        (𝑖𝑖) and (𝑖𝑖𝑖) from Definition [7.1](𝑖𝑖𝑖), (𝑖𝑣); 

Conversely, suppose the conditions hold. 

    (𝑖) For 𝜆 = 𝜇 = 1𝑘  and 𝑥,𝑦 ∈ 𝑈,  

 

      𝑇𝑓𝑁 (𝑒)(𝑥 + 𝑦) = 𝑇𝑓𝑁 (𝑒)(1𝑘𝑥 + 1𝑘𝑦) ≥ (𝑇𝑓𝑀 (𝑒)(1𝑘) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥)) ∗ (𝑇𝑓𝑀 (𝑒)(1𝑘) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦))  = 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦) 

 

       𝐼𝑓𝑁 (𝑒)(𝑥 + 𝑦) = 𝐼𝑓𝑁 (e)(1𝑘𝑥 + 1𝑘𝑦) ≤ (𝐼𝑓𝑀 (𝑒)(1𝑘) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥)) ⋄ (𝐼𝑓𝑀 (𝑒)(1𝑘) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦))   = 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦) 

 

       𝐹𝑓𝑁 (𝑒)(𝑥 + 𝑦) = 𝐹𝑓𝑁 (𝑒)(1𝑘𝑥 + 1𝑘𝑦) ≤ (𝐹𝑓𝑀 (𝑒)(1𝑘) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥)) ⋄ (𝐹𝑓𝑀 (𝑒)(1𝑘) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦)) = 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(y) 

 

 (𝑖𝑖)  For 𝜇 = 0𝑘  and 𝑥,𝑦 ∈ 𝑈,  

 

                      𝑇𝑓𝑁 (𝑒)(𝜆𝑥) = 𝑇𝑓𝑁 (𝑒)(𝜆𝑥 + 0𝑘𝑥) 

          ≥ (𝑇𝑓𝑀 (𝑒)(𝜆) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥)) ∗ (𝑇𝑓𝑀 (𝑒)(0𝑘) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥)) 

          = 𝑇𝑓𝑀 (𝑒)(𝜆) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥) 

           = 𝑇𝑓𝑀 (𝑒)(𝜆) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥) 

 

                        𝐼𝑓𝑁 (𝑒)(𝜆𝑥) = 𝐼𝑓𝑁 (𝑒)(𝜆x + 0𝑘𝑥) 

          ≤ (𝐼𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥)) ⋄ (𝐼𝑓𝑀 (𝑒)(0𝑘) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥)) 

          = 𝐼𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥) 

          = 𝐼𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥) 

 

                       𝐹𝑓𝑁 (𝑒)(𝜆𝑥) = 𝐹𝑓𝑁 (𝑒)(𝜆𝑥 + 0𝑘𝑥) 

           ≤ (𝐹𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥)) ⋄ (𝐹𝑓𝑀 (𝑒)(0𝑘) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥)) 

           = 𝐹𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥) 

           = 𝐹𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥) 

               
               (𝑖𝑖𝑖) and (𝑖𝑣) hold obviously.   

  

       This ends the proof. 
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7.2  Theorem 

The intersection of two neutrosophic soft algebras over the same neutrosophic soft field is also a neutrosophic soft algebra on the 

assumption that 𝑎 ∗ 𝑏 = min{𝑎, 𝑏} and 𝑎 ⋄ 𝑏 = max{𝑎, 𝑏}. 

 

Proof. Let (𝑁1,𝑈,𝐸)  and (𝑁2,𝑈,𝐸)  be two neutrosophic soft algebras over the neutrosophic soft field (𝑀,𝐾,𝐸)  and let 

(𝑁,𝑈,𝐸) = (𝑁1,𝑈,𝐸) ∩ (𝑁2,𝑈,𝐸). Now for 𝑥,𝑦 ∈ 𝑈, 𝜆 ∈ 𝐾 and ∀𝑒 ∈ 𝐸,  

 

         𝑇𝑓𝑁 (𝑒)(𝑥 + 𝑦) = 𝑇𝑓𝑁1 (𝑒)(𝑥 + 𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥 + 𝑦) 

                                   ≥ [𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁1 (𝑒)(𝑦)] ∗ [𝑇𝑓𝑁2 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑦)] 

                                =  𝑇𝑓𝑁1
 𝑒  𝑥 ∗ 𝑇𝑓𝑁1

 𝑒  𝑦  ∗  𝑇𝑓𝑁2
 𝑒  𝑦 ∗ 𝑇𝑓𝑁2

 𝑒  𝑥     ( as  ∗  is commutative) 

                                   = 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ [𝑇𝑓𝑁1 (𝑒)(𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑦)] ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥)   ( as  ∗  is associative) 

                                   = 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥) 

                                   = 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦)  ( as  ∗  is commutative) 

                                   = 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦), 

  

          𝐼𝑓𝑁 (𝑒)(𝑥 + 𝑦) = 𝐼𝑓𝑁1 (𝑒)(𝑥 + 𝑦) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥 + 𝑦) 

                                    ≤ [𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁1 (𝑒)(𝑦)] ⋄ [𝐼𝑓𝑁2 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑦)] 

                                    = [𝐼𝑓𝑁1
 𝑒 (𝑥) ⋄ 𝐼𝑓𝑁1

 𝑒 (𝑦)] ⋄ [𝐼𝑓𝑁2
 𝑒 (𝑦) ⋄ 𝐼𝑓𝑁2

 𝑒 (𝑥)]    ( as  ⋄   is  commutative) 

                                    = 𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ [𝐼𝑓𝑁1 (𝑒)(𝑦) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑦)] ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥)     ( as  ⋄   is associative) 

                                    = 𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥) 

                                    = 𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦)    ( as  ⋄   is  commutative) 

                                    = 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦), 

 

 Similarly,  𝐹𝑓𝑁 (𝑒)(𝑥 + 𝑦) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦);   Next,  

 

       𝑇𝑓𝑁 (𝑒)(𝜆𝑥) = 𝑇𝑓𝑁1 (𝑒)(𝜆𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(𝜆𝑥) 

                            ≥ [𝑇𝑓𝑀  𝑒 (𝜆) ∗ 𝑇𝑓𝑁1
 𝑒 (𝑥)] ∗ [𝑇𝑓𝑀  𝑒 (𝜆) ∗ 𝑇𝑓𝑁2

 𝑒 (𝑥) 

                            = [𝑇𝑓𝑀 (𝑒)(𝜆) ∗ 𝑇𝑓𝑀 (𝑒)(𝜆)] ∗ [𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥)]     ( as  ∗   is  commutative) 

                           = 𝑇𝑓𝑀 (𝑒)(𝜆) ∗ 𝑇𝑓𝑁 (𝑒)(𝑥), 

 

        𝐼𝑓𝑁 (𝑒)(𝜆𝑥) = 𝐼𝑓𝑁1 (𝑒)(𝜆x) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝜆𝑥) 

                            ≤ [𝐼𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐼𝑓𝑁1 (𝑒)(𝑥)] ⋄ [𝐼𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥)] 

                            = [𝐼𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐼𝑓𝑀 (𝑒)(𝜆)] ⋄ [𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥)]   ( as  ⋄   is  commutative) 

                            = 𝐼𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑥), 

  

Similarly,  𝐹𝑓𝑁 (𝑒)(𝜆𝑥) ≤ 𝐹𝑓𝑀 (𝑒)(𝜆) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑥);   Next,  

 

        𝑇𝑓𝑁 (𝑒)(𝑥.𝑦)  = 𝑇𝑓𝑁1 (𝑒)(𝑥.𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥.𝑦) 

                                ≥ [𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁1 (𝑒)(𝑦)] ∗ [𝑇𝑓𝑁2 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑦)] 

                                = [𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁1 (𝑒)(𝑦)] ∗ [𝑇𝑓𝑁2 (𝑒)(𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥)]    ( as  ⋄   is  commutative) 

                                = 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ [𝑇𝑓𝑁1 (𝑒)(𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑦)] ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥)  ( as  ⋄  is  associative) 

                                = 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥) 

                                = 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦)    ( as  ⋄   is  commutative) 

                                = 𝑇𝑓𝑁 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦), 
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         𝐼𝑓𝑁 (𝑒)(𝑥.𝑦)  = 𝐼𝑓𝑁1 (𝑒)(𝑥.𝑦) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥.𝑦) 

                               ≤ [𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁1 (𝑒)(𝑦)] ⋄ [𝐼𝑓𝑁2 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑦)] 

                                = [𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁1 (𝑒)(𝑦)] ⋄ [𝐼𝑓𝑁2 (𝑒)(y) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥)]   ( as  ⋄   is  commutative) 

                              = 𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ [𝐼𝑓𝑁1 (𝑒)(𝑦) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑦)] ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥)   ( as  ⋄   is  commutative) 

                                  = 𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥) 

                                 = 𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦)    ( as  ⋄   is  commutative) 

                                 = 𝐼𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦), 

 

Similarly,   𝐹𝑓𝑁 (𝑒)(𝑥.𝑦) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥) ⋄ 𝐹𝑓𝑁 (𝑒)(𝑦); 

 

Finally, for the multiplicative identity 1𝑘  of the field 𝐾,  

𝑇𝑓𝑀 (𝑒)(1𝑘) ≥ 𝑇𝑓𝑁1 (𝑒)(𝑥)      and  𝑇𝑓𝑀 (𝑒)(1𝑘) ≥ 𝑇𝑓𝑁2 (𝑒)(𝑥) 

          ⇒ 𝑇𝑓𝑀 (𝑒)(1𝑘) ∗ 𝑇𝑓𝑀 (𝑒)(1𝑘) ≥ 𝑇𝑓𝑁1 (𝑒)(𝑥) ∗ 𝑇𝑓𝑁2 (𝑒)(𝑥) 

         ⇒ 𝑇𝑓𝑀 (𝑒)(1𝑘) ≥ 𝑇𝑓𝑁 (𝑒)(𝑥), 

 

𝐼𝑓𝑀 (𝑒)(1𝑘) ≤ 𝐼𝑓𝑁1 (𝑒)(𝑥)    and   𝐼𝑓𝑀 (𝑒)(1𝑘) ≤ 𝐼𝑓𝑁2 (𝑒)(𝑥) 

          ⇒ 𝐼𝑓𝑀 (𝑒)(1𝑘) ⋄ 𝐼𝑓𝑀 (𝑒)(1𝑘) ≤ 𝐼𝑓𝑁1 (𝑒)(𝑥) ⋄ 𝐼𝑓𝑁2 (𝑒)(𝑥) 

         ⇒ 𝐼𝑓𝑀 (𝑒)(1𝑘) ≤ 𝐼𝑓𝑁 (𝑒)(𝑥), 

 

Similarly,  𝐹𝑓𝑀 (𝑒)(1𝑘) ≤ 𝐹𝑓𝑁 (𝑒)(𝑥); 

 

This follows the theorem.  

The theorem is also true for a family of neutrosophic soft algebras over a neutrosophic soft field. 

 

7.3  Theorem 

Let 𝑈,𝑉  be two algebras over the field 𝐾  and (𝑃,𝐾,𝐸)  be a neutrosophic soft field. Suppose 𝑔:𝑈 → 𝑉  be an algebraic 

isomorphism and (𝑀,𝑈,𝐸) be a neutrosophic soft algebra over (𝑃,𝐾,𝐸). Then (𝑔(𝑀),𝑉,𝐸) is also a neutrosophic soft algebra 

over (𝑃,𝐾,𝐸). 

  

Proof. Let 𝑥1, 𝑥2 ∈ 𝑈 and 𝑦1,𝑦2 ∈ 𝑉 such that 𝑦1 = 𝑔(𝑥1),𝑦2 = 𝑔(𝑥2). Then ∀𝑒 ∈ 𝐸 and 𝜆 ∈ 𝐾,  

 

        𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦1 + 𝑦2) = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦1 + 𝑦2)] 

          = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦1) + 𝑔−1(𝑦2)],   as  𝑔−1 is homomorphism. 

          = 𝑇𝑓𝑀 (𝑒)(𝑥1 + 𝑥2) 

          ≥ 𝑇𝑓𝑀 (𝑒)(𝑥1) ∗ 𝑇𝑓𝑀 (𝑒)(𝑥2) 

         = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦1)] ∗ 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] 

         = 𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦1) ∗ 𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦2), 

 

         𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦1 + 𝑦2) = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦1 + 𝑦2)] 

         = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦1) + 𝑔−1(𝑦2)],    as  𝑔−1 is homomorphism. 

         = 𝐼𝑓𝑀 (𝑒)(𝑥1 + 𝑥2) 

         ≤ 𝐼𝑓𝑀 (𝑒)(𝑥1) ⋄ 𝐼𝑓𝑀 (𝑒)(𝑥2) 

         = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦1)] ⋄ 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] 

       = 𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦1) ⋄ 𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦2), 

 

 Similarly,  𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦1 + 𝑦2) ≤ 𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦1) ⋄ 𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦2);   Next,  
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           𝑇𝑓𝑔(𝑀 )(𝑒)(𝜆𝑦2) = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝜆𝑦2)] 

      = 𝑇𝑓𝑀 (𝑒)[𝜆𝑔−1(𝑦2)],  as  𝑔−1 is homomorphism. 

      = 𝑇𝑓𝑀 (𝑒)(𝜆𝑥2) 

      ≥ 𝑇𝑓𝑃 (𝑒)(𝜆) ∗ 𝑇𝑓𝑀 (𝑒)(𝑥2) 

      = 𝑇𝑓𝑃 (𝑒)(𝜆) ∗ 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] 

      = 𝑇𝑓𝑃 (𝑒)(𝜆) ∗ 𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦2), 

 

            𝐼𝑓𝑔(𝑀 )(𝑒)(𝜆𝑦2) = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝜆𝑦2)] 

      = 𝐼𝑓𝑀 (𝑒)[𝜆𝑔−1(𝑦2)],   as  𝑔−1 is homomorphism. 

      = 𝐼𝑓𝑀 (𝑒)(𝜆𝑥2) 

      ≤ 𝐼𝑓𝑃 (𝑒)(𝜆) ⋄ 𝐼𝑓𝑀 (𝑒)(𝑥2) 

      = 𝐼𝑓𝑃 (𝑒)(𝜆) ⋄ 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] 

      = 𝐼𝑓𝑃 (e)(𝜆) ⋄ 𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦2), 

 

 Similarly,  𝐹𝑓𝑔(𝑀 )(𝑒)(𝜆𝑦2) ≤ 𝐹𝑓𝑃 (𝑒)(𝜆) ⋄ 𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦2);   Next,  

 

         𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦1 .𝑦2) = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦1.𝑦2)] 

       = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦1).𝑔−1(𝑦2)],   as  𝑔−1 is homomorphism. 

       = 𝑇𝑓𝑀 (𝑒)(𝑥1. 𝑥2) 

       ≥ 𝑇𝑓𝑀 (𝑒)(𝑥1) ∗ 𝑇𝑓𝑀 (𝑒)(𝑥2) 

       = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦1)] ∗ 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] 

       = 𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦1) ∗ 𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦2), 

 

          𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦1 .𝑦2) = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦1.𝑦2)] 

       = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦1).𝑔−1(𝑦2)],   as  𝑔−1 is homomorphism. 

       = 𝐼𝑓𝑀 (𝑒)(𝑥1. 𝑥2) 

       ≤ 𝐼𝑓𝑀 (𝑒)(𝑥1) ⋄ 𝐼𝑓𝑀 (𝑒)(𝑥2) 

        = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦1)] ⋄ 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] 

        = 𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦1) ⋄ 𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦2), 

 

Similarly,   𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦1.𝑦2) ≤ 𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦1) ⋄ 𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦2); 

 

Finally, for the multiplicative identity 1𝑘  of the field 𝐾,  

            𝑇𝑓𝑃 (𝑒)(1𝑘) ≥ 𝑇𝑓𝑀 (𝑒)(𝑥2) = 𝑇𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] = 𝑇𝑓𝑔(𝑀 )(𝑒)(𝑦2), 

            𝐼𝑓𝑃 (𝑒)(1𝑘) ≤ 𝐼𝑓𝑀 (𝑒)(𝑥2) = 𝐼𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] = 𝐼𝑓𝑔(𝑀 )(𝑒)(𝑦2), 

           𝐹𝑓𝑃 (𝑒)(1𝑘) ≤ 𝐹𝑓𝑀 (𝑒)(𝑥2) = 𝐹𝑓𝑀 (𝑒)[𝑔−1(𝑦2)] = 𝐹𝑓𝑔(𝑀 )(𝑒)(𝑦2); 

  

This completes the theorem. 

 

7.4  Theorem 

Let 𝑈,𝑉  be two algebras over the field 𝐾  and (𝑃,𝐾,𝐸)  be a neutrosophic soft field. Suppose 𝑔:𝑈 → 𝑉  be an algebraic 

homomorphism and (𝑁,𝑉,𝐸) be a neutrosophic soft algebra over (𝑃,𝐾,𝐸). Then (𝑔−1(𝑁),𝑈,𝐸) is also a neutrosophic soft algebra 

over (𝑃,𝐾,𝐸). 

 

Proof. Let 𝑥1, 𝑥2 ∈ 𝑈 and 𝑦1,𝑦2 ∈ 𝑉 such that 𝑦1 = 𝑔(𝑥1),𝑦2 = 𝑔(𝑥2). Then ∀𝑒 ∈ 𝐸 and 𝜆 ∈ 𝐾,  
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           𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1 + 𝑥2) = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1 + 𝑥2)] 

                = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1) + 𝑔(𝑥2)],   as 𝑔  is homomorphism. 

                = 𝑇𝑓𝑁 (𝑒)(𝑦1 + 𝑦2) 

                ≥ 𝑇𝑓𝑁 (𝑒)(𝑦1) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦2) 

                = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1)] ∗ 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥2)] 

                = 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ∗ 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2), 

 

       𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1 + x2) = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥1 + 𝑥2)] 

           = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥1) + 𝑔(𝑥2)],    as 𝑔  is homomorphism. 

           = 𝐼𝑓𝑁 (𝑒)(𝑦1 + 𝑦2) 

           ≤ 𝐼𝑓𝑁 (𝑒)(𝑦1) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦2) 

           = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥1)] ⋄ 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥2)] 

           = 𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ⋄ 𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2), 

 

 Similarly,  𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1 + 𝑥2) ≤ 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ⋄ 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2);   Next,  

 

                      𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝜆𝑥2) = 𝑇𝑓𝑁 (𝑒)[𝑔(𝜆𝑥2)] 

                   = 𝑇𝑓𝑁 (𝑒)[𝜆𝑔(𝑥2)],    as 𝑔  is homomorphism.  

           = 𝑇𝑓𝑁 (𝑒)(𝜆𝑦2) 

           ≥ 𝑇𝑓𝑃 (𝑒)(𝜆) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦2) 

                   = 𝑇𝑓𝑃 (𝑒)(𝜆) ∗ 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥2)] 

                   = 𝑇𝑓𝑃 (𝑒)(𝜆) ∗ 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2), 

 

                      𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝜆𝑥2) = 𝐼𝑓𝑁 (𝑒)[𝑔(𝜆𝑥2)] 

                    = 𝐼𝑓𝑁 (𝑒)[𝜆𝑔(𝑥2)],   as 𝑔  is homomorphism.    

                    = 𝐼𝑓𝑁 (𝑒)(𝜆𝑦2) 

                    ≤ 𝐼𝑓𝑃 (𝑒)(𝜆) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦2) 

                    = 𝐼f𝑃 (𝑒)(𝜆) ⋄ 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥2)] 

                    = 𝐼𝑓𝑃 (𝑒)(𝜆) ⋄ 𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2), 

 

 Similarly,  𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝜆𝑥2) ≤ 𝐹𝑓𝑃 (𝑒)(𝜆) ⋄ 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2);   Next,  

 

         𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1. 𝑥2) = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1. 𝑥2)] 

          = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1).𝑔(𝑥2)],    as 𝑔  is homomorphism. 

          = 𝑇𝑓𝑁 (𝑒)(𝑦1.𝑦2) 

          ≥ 𝑇𝑓𝑁 (𝑒)(𝑦1) ∗ 𝑇𝑓𝑁 (𝑒)(𝑦2) 

      = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1)] ∗ 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥2)] 

           = 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ∗ 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2), 

 

          𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1. 𝑥2) = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥1. 𝑥2)] 

          = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥1).𝑔(𝑥2)],    as 𝑔  is homomorphism. 

           = 𝐼𝑓𝑁 (𝑒)(𝑦1.𝑦2) 

           ≤ 𝐼𝑓𝑁 (𝑒)(𝑦1) ⋄ 𝐼𝑓𝑁 (𝑒)(𝑦2) 

           = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥1)] ⋄ 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥2)] 
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            = 𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ⋄ 𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2), 

 

Similarly,  𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1. 𝑥2) ≤ 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ⋄ 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2); 

 

Finally, for the multiplicative identity 1𝑘  of the field 𝐾,  

  𝑇𝑓𝑃 (𝑒)(1𝑘) ≥ 𝑇𝑓𝑁 (𝑒)(𝑦2) = 𝑇𝑓𝑁 (𝑒)[𝑔(𝑥2)] = 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2), 

   𝐼𝑓𝑃 (𝑒)(1𝑘) ≤ 𝐼𝑓𝑁 (𝑒)(𝑦2) = 𝐼𝑓𝑁 (𝑒)[𝑔(𝑥2)] = 𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2), 

   𝐹𝑓𝑃 (𝑒)(1𝑘) ≤ 𝐹𝑓𝑁 (𝑒)(𝑦2) = 𝐹𝑓𝑁 (𝑒)[𝑔(𝑥2)] = 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2); 

 

Hence,  the theorem is proved. 
 

                                               8  Conclusion 

The effort of the paper is to extend the concept  ‘Neutrosophic soft field’  by investigating its structural characteristics. The Cartesian 

product of neutrosophic soft fields, neutrosophic soft subfield, neutrosophic soft algebra over neutrosophic soft field have been 

defined and some related theorems are established. Moreover the neutrosophic soft function over the crisp fields is defined and 

illustrated by suitable examples. The characteristics of neutrosophic soft homomorphic image and pre-image of a neutrosophic soft 

field are studied here. We expect the further work in this setting. 

 

                                    Acknowledgements 
The authors are very much grateful to the referees and editor for their valuable suggestions and comments that helped in improving this 
paper. 

 

                                                 References 
 

[1]  D. Molodtsov, Soft set theory- First results, Computer and Mathematics with Applications, 37(4-5), 19-31, (1999). 

 

[2]  A. Rosenfeld, Fuzzy groups, Journal of mathematical analysis and applications, 35, 512-517, (1971). 

 

[3]  N. P. Mukherjee and P. Bhattacharya, Fuzzy groups: Some group -Theoretic analogs, Information sciences, 39, 247-268, (1986). 

 

[4]  P. K. Sharma, Intuitionistic fuzzy groups, IFRSA International journal of data warehousing and mining, 1(1), 86-94, (2011). 

 

[5]  H. Aktas and N. Cagman, Soft sets and soft groups, Information sciences, 177, 2726-2735, (2007). 

 

[6]  P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, The journal of fuzzy mathematics, 9(3), 589-602, (2001). 

 

[7]  P. K. Maji, R. Biswas and A. R. Roy, Intuitionistic fuzzy soft sets, The journal of fuzzy mathematics, 9(3), 677-692, (2001). 

 

[8]  P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Computer and Mathematics with Applications, 45, 555-562, (2003). 

 

[9]  P. K. Maji, R. Biswas and A. R. Roy, On intuitionistic fuzzy soft sets, The journal of fuzzy mathematics, 12(3), 669-683, (2004). 

 

[10]  A. Aygunoglu and H. Aygun, Introduction to fuzzy soft groups, Computer and Mathematics with Applications, 58, 1279-1286,   

      (2009). 

 

[11]  N. Yaqoob, Md. Akram and Md. Aslam, Intuitionistic fuzzy soft groups induced by (t,s) norm, Indian Journal of Science and  

      Technology, 6(4), 4282-4289, (2013). 

 

[12]  B. P. Varol, A. Aygunoglu and H. Aygun, On fuzzy soft rings, Journal of Hyperstructures, 1(2), 1-15, (2012). 

 

[13]  Z. Zhang, Intuitionistic fuzzy soft rings , International Journal of Fuzzy Systems, 14(3), 420-431, (2012). 

 

[14]  S. Nanda, Fuzzy algebras over fuzzy fields, Fuzzy Sets and Systems, 37, 99-103, (1990). 

 

[15]  G. Wenxiang and L. Tu, Fuzzy algebras over fuzzy fields redefined, Fuzzy Sets and Systems, 53, 105-107, (1993). 

 

[16]  F. Smarandache, Neutrosophy, Neutrosophic Probability, Set and Logic, Amer. Res. Press, Rehoboth, USA., (1998), p. 105,  

      http://fs.gallup.unm.edu/eBook-neutrosophics4.pdf (fourth version). 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 56 Issue 7- April - 2018 

 

ISSN: 2231-5373                      http://www.ijmttjournal.org   Page 494 
 

 

[17]  F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Inter. J. Pure Appl. Math., 24, (2005),  

      287-297. 

 

[18]  P. K. Maji, Neutrosophic soft set, Annals of Fuzzy Mathematics and Informatics, 5(1), 157-168, (2013). 

 

[19]  S. Broumi, F. Smarandache and P. K. Maji, Intuitionistic neutrosophic soft set over rings, Mathematics and Statistics 2(3),  

      120-126, (2014), DOI: 10.13189/ms.2014.020303. 

 

[20]  V. Cetkin and H. Aygun, An approach to neutrosophic subgroup and its fundamental properties, J. of Intelligent and Fuzzy  

      Systems 29, 1941-1947, (2015). 

 

[21]  V. Cetkin and H. Aygun, A note on neutrosophic subrings of a ring, 5th international eurasian conference on mathematical  

      sciences and applications, 16-19 August 2016, Belgrad-Serbia. 

 

[22]  I. Deli and S. Broumi, Neutrosophic Soft Matrices and NSM-decision Making, Journal of Intelligent and Fuzzy Systems, 28(5),  

      2233-2241, (2015). 

 

[23]  I. Deli and S. Broumi, Neutrosophic soft relations and some properties, Annals of Fuzzy Mathematics and Informatics, 9(1),  

      169-182, (2015). 

 

[24]  T. Bera and N. K. Mahapatra, Introduction to neutrosophic soft groups, Neutrosophic Sets and Systems, 13, 118-127, (2016),  

      doi.org/10.5281/zenodo.570845. 

 

[25]  T. Bera and N. K. Mahapatra, (𝛼,𝛽, 𝛾)-cut of neutrosophic soft set and it's application to neutrosophic soft groups, Asian  

      Journal of Math. and Compt. Research, 12(3), 160-178, (2016). 

 

[26]  T. Bera and N. K. Mahapatra, On neutrosophic soft rings, OPSEARCH, 1-25, (2016), DOI 10.1007/ s12597-016-0273-6. 

 

[27]  T. Bera and N. K. Mahapatra, On neutrosophic normal soft groups, Int. J. Appl. Comput. Math., 2(4), (2016), DOI  

      10.1007/s40819-016-0284-2. 

 

[28]  T. Bera and N. K. Mahapatra, Introduction to neutrosophic soft topological spaces, OPSEARCH, (March, 2017), DOI  

      10.1007/s12597-017-0308-7. 

 

[29]  T. Bera and N. K. Mahapatra, On neutrosophic soft linear spaces, Fuzzy Information and Engineering, 9, 299-324, (2017). 

 

 

 


