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Abstract:  The forgotten index F(G) is defined as the sum of cubes of the degrees of the vertices of the graph G. 

In this paper we establish some new upper bounds for the Forgotten Topological index involving the number of 

vertices, the number of edges and the maximum and minimum vertex degree. 
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1. INTRODUCTION 

In 1972, Gutman and Trinajsti'c [2,3] made the study on total  -electron energy of the molecular structure 

and introduced two vertex degree-based graph variants. These variants are defined as 
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In Chemical literature M1 and M2 are named as first and second Zagreb indices [6]. The Zagreb indices are 

used by various researchers in the studies of quantitative structure property relationships (QSPR) and 

quantitative structure activity relationship (QSAR).  These indices are also viewed as a molecular structure-

descriptors [6,7]. Various results on its chemical applications and mathematical properties are identified in 

[8,9,11,12]. These papers contain also a review of the usage of Zagreb indices as well as a survey of literature 

over these indices. 

 

In 2015, Furtula and Gutman [5] reinvestigated this index and they showed that the predictive ability of this 

index is almost similar to that of first Zagreb index and for the entropy and acentric factor, both of them yield 

correlation coefficients greater than 0.95. They named this index as  forgotten topological index or F-index, 

denoted by F(G). 
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Some bounds for the  forgotten topological index are seen in [4,5] and the  extremal values of  F-index for 

trees are seen in [1]. 

2. PRELIMINARIES 

All graphs under discussion are finite, undirected and simple. Let G=(V,E) be a simple graph with n vertices 

and m edges. Denote  by  uv  the  edge  of  G,  connecting  the  vertices u  and  v.  A line  graph  L(G) obtained 

from G in  which  ( ) ( ),V L G E G where two vertices of L(G)  are adjacent if and only if they are adjacent 

edges of G.   As usual ( )G   and ( )G  are the maximum and minimum degree of G, respectively.  

The symbols Pn, K1,n-1, Cn also denote the path, star, and cycle graphs on n vertices.  A Bigreed graph is a graph 

in which each vertex is of degree either  or  . 

3. MAIN RESULTS 

In 2010, Bo Zhou and Trinajsti'c [13] have used the equivalent index for F(G)  and presented the following 

relation  

 
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The same authors gave the relation between F(G) and M2(G), the identity for the forgotten topological index. 
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which is equivalent to 

   
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which is mentioned as equation  (7) in [5]. 

Proposition 3.1. Let G be a graph with m edges. Then 

   
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Proposition 3.2. Let G be a graph on n vertices and 1m   edges. Then 3.1 

 
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Later in 2012,  Illi'c and Bo Zhou [10] proposed a new lower bound for 
3

1
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Proposition 3.3. If G is a connected graph, then 
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In 2009, Bo Zhou, Trinajsti'c [19] obtained the bounds for the general sum-connectivity index. 

 

Proposition 3.4. Let G be a tree with 4n  vertices. Then 
2
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with left (right, respectively) equality if and only if G = Pn (G = Sn, respectively). 
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Proposition 3.5. Let G be a triangle-free graph with n vertices and edges. Then 
2
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with equality if and only if G is a complete bipartite graph. 

 

Theorem 3.6. Let G be a simple graph of with n vertices and m edges. Then 
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Where 
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, where [x] denotes integer part of a real number x and equality holds if and 

only if G is regular. 

Proof: Let 
1 2 n

a a a   and 
1 2 n

b b b   be real numbers for which there exist real constants a, b, 

A and B, so that for each i, i = 1,2, ..., n, 
i

a a A   and 
i

b b B  . 

 Then the following inequality is valid [17] 
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 and equality holds if and only if 
1 2 n

a a a   and 

1 2
.

n
b b b   By setting 

2
( ) , ( ) ,

i i
a d v b d v  we have 

2 2
, ,A a    which completes our claim. 

For   R and G be a simple graph. Then 
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equality holds if and only if G is regular. 

Proof: In order to obtain (3.3), we use Cassel’s inequality [18]. Let 
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    and 
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b b b  be sequences of positive real numbers and 
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Then one has the inequality 
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The equality holds when 
1 2 1

1 1 1

1 1
, , 0 ,

n
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
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By setting the values   , 1
i i i

a d v b   and the weight  i i
w d v , we have  
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Put m  and M   completes the proof. The equality holds for regular graphs. 
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