On $\#\alpha$ -Regular Generalized Closed In **Topological Spaces** S. Thilaga Leelavathi ^{#1} and M. Mariasingam^{*2}

[#] Assistant Professor, Department of Mathematics, Pope's College, Sawyerpuram, Thoothukudi, Tamilnadu – 628 251, India. * Head and Associate Professor (Rtd), Post Graduate and Research Department of Mathematics, V.O.Chidambaram College, Thoothukudi, Tamilnadu – 628 008, India.

ABSTRACT: In this paper we introduce a new class of sets called $\#\alpha$ - regular generalized closed (briefly, #arg-closed) sets in topological space. We prove that this class lies between #rg-closed sets and αg -closed sets. We discuss some basic properties of # regular generalized closed sets.

Keywords: rw-open sets, #rg-closed sets, #arg-closed sets

1.INTRODUCTION

Regular open sets and strong regular open sets have been introduced and investigated by Stone [18] and Tong [20] respectively. Levine [8,9]. Biswas[3], Cameron[4], Sundaram and Sheik John [17], Bhattacharyya and Lahiri [2], Nagaveni [12], Pushpalatha [16], Gnanambal [6], gnanambal and balachandran [7], Palaniappan and Rao [13], Maki Devi and Balachandra [10], and Benchalli and Wali [1], Syed Ali Fathima[19] introduced and investigated semi open sets, generalized closed sets, regular semi open sets, weakly closed sets, semi generalized closed sets, weakly generalized closed sets, strongly generalized closed sets, generalized pre-regular closed sets, regular generalized closed sets, α -generalized closed sets, Rw-closed sets and #regular generalized closed sets respectively.

We introduce a new class of sets called $\#\alpha$ -regular generalized closed sets which is properly placed in between the class of #regular generalized closed sets and the class of ag-closed sets.

2.PRELIMINARIES

Throughout this paper (X,τ) represents a non-empty topological space on which no separation axiom is assumed unless otherwise mentioned. For a subset A of a topological space X, cl(A) and int(A) denote the closure of A and the interior of A respectively. $X \land A$ denotes the complement of A in X. We recall the following definition and results.

Definition: 2.1. A Subset A of a space X is called

- (1) a preopen set [11] if $A \subseteq int(cl(A))$ and a preclosed set if $cl(int(A)) \subseteq A$
- (2) a semiopen set [8] if $A \subseteq cl(int(A))$ and a semiclosed set if $int(cl(A) \subseteq A)$
- (3) an α -open set [21] if A \subseteq int(cl(int(A))) and an α -closed set []if cl(int(cl(A))) \subseteq A
- (4) a regular open set [13] if A=int(cl (A))and a regular closed set if A=cl(int (A))
- (5) a π -open set [1] if A is a finite union of regular open sets.
- (6) regular semi open [15] if there is a regular open U such $U \subseteq A \subseteq cl(U)$

Definition 2.2. A subset A of a topological space (X,τ) is called.

(1) an *a-generalized* closed set (briefly ag-closed)[14] if $acl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(2) a generalized pre closed set (briefly gp-closed) [14] if pcl(A) \subseteq U whenever A \subseteq U and U is open (X, τ)

(3) a generalized semi pre closed set (briefly gsp-closed) [14] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is a open (X,τ)

(4) a generalized α --closed (i.e., g α --closed) set [21] if α cl(A) \subseteq U whenever A \subseteq U and U is open set in X.

3. BASIC PROPERTIES OF # α--**REGULAR GENERALIZED CLOSED SETS**

We introduce the following definition

Definition 3.1

A subset A of a topological space X is called $\#\alpha$ -regular generalized closed (briefly $\#\alpha$ rg-closed)set if α cl(A) \subseteq U whenever A \subseteq U and U is rw-open .We denote the set of all $\#\alpha$ rg-closed sets in X is denoted by $\#\alpha$ rgc(X).

First we prove that the class of $\#\alpha$ --regular generalized closed sets properly lies between the class of #rg-closed sets and the class of αg -closed sets.

Theorem 3.2

Every #rg-closed sets are $\#\alpha$ rg-closed sets but not conversely.

Proof.

Let A be #rg-closed set. To prove A is #arg-closed. Let $A \subseteq U$ and U is rw-open. To prove $acl(A) \subseteq U$. We know that $acl(A) \subseteq cl(A)$. Since A is #rg-closed, $cl(A) \subseteq U$. Therefore we have $acl(A) \subseteq cl(A) \subseteq U$. This implies $acl(A) \subseteq U$. Hence A is #arg-closed.

The converse of the theorem need not be true as seen from the following example.

Example 3.3

Let X={a,b,c,d} be with topology $\tau = \{X, \emptyset, \{a,b\}\}$ then the set {c} is $\#\alpha rg$ -closed but not #rg-closed set in X.

Corollary 3.4

Every regular closed set is $\#\alpha rg$ -closed but not conversely.

Proof.

Follows from s.syed Ali Fathima [19] theorem 2.1

Corollary 3.5

Every δ - closed set is #arg-closed but not conversely.

Proof.

Follows from s.syed Ali Fathima [19] theorem 2.1

Corollary 3.6

Every θ - closed set is #arg-closed but not conversely.

Proof.

Follows from s.syed Ali Fathima [19] theorem 2.1

Corollary3.7

Every π - closed set is #arg-closed but not conversely.

Proof.

Follows from s.syed Ali Fathima [19] theorem 2.1

Theorem 3.8

If a subset A of a topological space(X, τ) is closed then it is #arg-closed but not conversely.

Proof:

Let A be a closed set in X. We assume that $A \subseteq U$ where U is rw-open in X.. Then $\alpha cl(A) \subseteq cl(A) \subseteq U$ as A is closed. Hence A is $\#\alpha rg$ -closed in (X, τ) .

The converse of the theorem need not be true as seen in the following example.

Example 3.9

Let X={a,b,c,} be with topology $\tau = \{X, \emptyset, \{a\}, \{a,c\}\}$ then the set {c} is #arg-closed but not closed set in X.

Theorem 3.10

If a subset A of a topological space(x, τ) is α - closed then it is $\# \alpha rg$ -closed but not conversely.

Proof:

Let A be a α -closed set in X. Then α cl(A)=A. Therefore the result follows from the definition. The converse of the theorem need not be true as seen in the following example.

Example 3.11

Let X={a,b,c,d} be with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$ then the set {a,b,c} is #arg-closed but not a-closed set in X.

Theorem 3.12

Every $\#\alpha rg$ -closed set is gp-closed but not conversely.

Proof.

Let A be a #arg-closed set in X. Suppose $A \subseteq U$ and U is open in X. By the theorem "Every open set is rw-open set" $A \subseteq U$ and U is rw- open in X. Since A is #arg-closed, $\alpha cl(A) \subseteq U$. We have $pcl(A) \subseteq \alpha cl(A) \subseteq U$. pcl(A) $\subseteq U$. Hence A is gp-closed in X.

The converse of the above theorem need not be true as seen in the following example.

Example 3.13

Let X= {a,b,c} be with topology $\tau = \{X, \emptyset, \{a,b\}\}$ then the set {a,b} and {b,c} are gp-closed but not $\#\alpha$ rg-closed.

Theorem 3.14

Every $\#\alpha rg$ -closed set is αg -closed but not conversely.

Proof.

Let A be a # α rg-closed set in X.Suppose A \subseteq U and U is open in X.By the theorem "Every open set is rw-open set". Since A is # α rg-closed, α cl(A) \subseteq U. Hence A is α g--closed in X.

The converse of the above theorem need not be true as seen in the following example.

Example 3.15

Let X= {a,b,c,d} be with topology $\tau = \{X, \emptyset, \{a,b\}\}$ then the set {b,c} is αg -- closed but not $\# \alpha r g$ -closed.

Theorem 3.16

Every $\#\alpha rg$ -closed set is gsp-closed but not conversely.

Proof.

Let A be a #arg-closed set in X.Suppose $A \subseteq U$ and U is open in X. Since every open set in X is pre open in X. We have U is pre open in X. Thus we get $\alpha cl(A) \subseteq U$. This implies A is αg -closed in X. Hence A is gsp-closed set in X.

The converse of the above theorem need not be true as seen in the following example.

Example 3.17

Let $X = \{a,b,c,d\}$ be with topology $\tau = \{X, \emptyset, \{a,b\}\}$ then the set $\{b,c,d\}$ is gsp-closed but not $\#\alpha rg$ -closed.

Remark 3.18

g-closed and $\#\alpha$ rg-closed sets are independent as seen in the following example.

Example 3.19

Let X= {a,b,c,} be with topology $\tau = \{X, \emptyset, \{c\} \{c,a\}\}$ then the set {a} is $\#\alpha rg$ -closed but not g-closed. Also {b,c} is g-closed set but not $\#\alpha rg$ -closed.

Theorem 3.20

The Union of two $\#\alpha rg$ -closed subset of X is also $\#\alpha rg$ -closed subset of X.

Proof.

Assume that A and B are $\#\alpha rg$ -closed set in X. Let U be rw-open in X such that $A \cup B \subseteq U$. Then $A \subseteq U$ and $B \subseteq U$ Since A and B are $\#\alpha rg$ -closed, $\alpha cl(A) \subseteq U$ and $\alpha cl(B) \subseteq U$. Since $\alpha cl(A \cup B) = \alpha cl(A) \cup \alpha cl(B)$. $\alpha cl(A \cup B) \subseteq U$. Therefore $A \cup B$ is $\#\alpha rg$ -closed set in X.

Remark 3.21

The intersection of two $\#\alpha rg$ -closed set in X is not $\#\alpha rg$ -closed set in X as seen in the following

example.

Example 3.22

Let X= {a,b,c,d} be with topology $\tau = \{X, \emptyset, \{c\}, \{a,b\}, \{a,b,c\}\}$ Here {b,c,d} and {a,b,d} are $\#\alpha rg$ -closed but {b,d} is not $\#\alpha rg$ -closed

Theorem 3.23

Let A be a #arg-closed set in X then $acl(A) \setminus A$ does not contain any non-empty rw-closed set.

Proof.

Let F be a non-empty rw-closed subset of $\alpha cl(A) \setminus A$. Then $A \subseteq X \setminus F$ Where A is $\# \alpha rg$ -closed and $X \setminus F$

is rw-open. Then $\alpha cl(A) \subseteq X \setminus F$. For equivalently $F \subseteq X \setminus \alpha cl(A)$. Since by assumption $F \subseteq \alpha cl(A)$. We get a contradiction.

The Converse of the above theorem need not be true as seen from the following example.

Example 3.24

If $\alpha cl(A) \setminus A$ contains no non-emply rw-closed subset in X then A need not be $\# \alpha rg$ -closed set.

Let X= {a,b,c,d} be with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$. Let A={b,c} then $\alpha cl(A) \setminus A = \{b,c,d\} - \{b,c\} = \{d\}$ does not contain non-empty rw-closed set in X but A is not # α rg-closed.

Corollary 3.25

If a subset A of X is $\#\alpha rg$ -closed in X then $\alpha cl(A) \setminus A$ does not contain any non-empty regular closed set in X but not conversely.

Proof.

Follows from theorem 3.23 and the fact that every regular closed set is rw-closed.

Theorem 3.26

Let A be a #arg-closed in (X,τ) then A is *a*-closed if and only if $acl(A)\setminus A$ is rw-closed.

Proof.

Necessity:- Let A be a #arg-closed by hypothesis $\alpha cl(A) = A$ and so $\alpha cl(A) \setminus A = \emptyset$ which is rw-closed.

Sufficiency:- Suppose $acl(A) \setminus A$ is rw-closed then by Theorem 3.23 $acl(A) \setminus A = \emptyset$. That is acl(A) = A.. Hence A is *a-closed*.

Theorem 3.27

For every point X of a space $X \setminus \{x\}$ is $\#\alpha rg$ -closed (or) rw-open.

Proof.

Suppose X\{x} is not rw-open. Then X is the only rw-open set containing X\{x}. This implies $\alpha cl(X \setminus \{x\}) \subseteq X$. Hence X\{x} is #arg-closed.

Theorem 3.28

If A is arg-closed subset of X much that $A \subseteq \subseteq \alpha cl(A)$ then B is also $\# \alpha rg$ -closed subset of (X, τ) .

Proof.

Let U be a rw-open set in X such that $B \subseteq U$ Then $A \subseteq U$ Since A is $\#\alpha rg$ -closed then $\alpha cl(A) \subseteq U$. Now since $B \subseteq \alpha cl(A)$. $\alpha cl(B) \subseteq \alpha cl(\alpha cl(A) = \alpha cl(A) \subseteq U$. Therefore $\alpha cl(B) \subseteq U$. Hene B is also $\#\alpha rg$ -closed. **Remark 3.29**

The converse of the above theorem need not be true as seen in the following example.

Example 3.30

Let X={a,b,c,d} be with the topology $\tau_{=\{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}}$ let A={a,c} and B={a,b,c} Then A and B are #arg-closed sets in (X, τ) but A \subseteq B and B is not a subset of $\alpha cl(A)$.

Theorem 3.31

If a subset A of topological space X is both rw-open and $#\alpha rg$ -closed then it is α -closed.. **Proof.**

Suppose a subset A of a topological space X is both rw-open and # arg-closed Now A $\subseteq A$. Then $\alpha cl(A) \subseteq A$. Thus A is α -closed.

Corollary 3.32

Let A be rw-open and $\#\alpha rg$ -closed in X. Suppose that F ix α -closed in X. Then A \cap F is a $\# \alpha rg$ -closed set in X.

Proof.

Let A be rw-open and # *arg-closed* in X and F be α -closed. Then by theorem 3.31 A is α -closed. So A \cap F is α -closed and hence A \cap F is # *arg-closed* set in X.

Theorem 3.33

If A is open and *ag-closed* then A is # *arg-closed*.

Proof.

Let A be an open and αg -closed set in X. Let $A \subseteq U$ and U be rw-open in X. Now $A \subseteq A$, By hypothesis $\alpha cl(A) \subseteq A$. That is $\alpha cl(A) \subseteq U$. Thus A is # ag-closed.

Remark 3.34

(1) If A is α -open and α -closed then A is # α rg-closed.

(2) If A is π -open and π g-closed then A # α rg-closed.

(3) If A is α -open and αg -closed then A is $\# \alpha rg$ -closed.

Definition 3.35

A space X is called $T_{\#\alpha rg}$ – space if every $\# \alpha rg$ -closed set in it is closed.

Example 3.36

Let X = {a,b,c} be with a topology $\tau = \{\phi, x\{c\}, \{c,a\}, \{b,c\}\}$, Then $\#\alpha \operatorname{rgc}=\{X, \phi, \{a\}, \{b\}, \{a,b\}\}$. Thus

 (X,τ) is a $T_{\#\alpha rg}$ – space.

Example 3.37

Let X = {a,b,c} be with the topology $\tau = \{ \phi, x\{c\}, \{c,a\} \}$ then $\# \alpha \operatorname{rgc} = \{x, \phi \{a\}, \{b\}, \{a,b\} \}$. Here the set {a} is $\# \alpha \operatorname{rgc-closed}$ but not closed in X. Thus (X, τ) is not a $T_{\#\alpha rg}$ – space.

Theorem 3.38

Every αT_b space is $T_{\#\alpha rg}$ – space.

Proof.

Let X be a αT_b space and A be $\# \alpha rg$ -closed set in X. We have every $\# \alpha rg$ -closed set is αg -closed. Hence A is i αg -closed. Since it is αT_b space, A is closed in X. Hence X is $T_{\#\alpha rg}$ – space.

CONCLUSION

Difference forms of generalized closed sets have been introduced. In this paper $\#\alpha rg$ -closed sets have been formulated and their basic properties, relationships with some generalized sets in topological space have also been discussed.

ACKNOWLEDGMENT

I wish to acknowledge the editor in Chief and others who extend their help to publish this paper.

REFERENCES

- [1] Benchalli, S.S., and Wali. R.S., on RW-Closed sets in topological spaces, Bull, Malays, Math.Sci.Soc(2) 30(2)(2007), 99-110.
- [2] Bhattacharyya. P. And Lahiri. B.K. Semi-generalized closed sets in topology, Indian J. Math 29(1987), 376-382.
- [3] Buswas, N., On Characterization of semi-continuous functions, Atti Accad, Naz. Lincei Rend, Cl.Sci.Fis.Mat. Natur. 48(8) (1970), 399-402.
- [4] Cameron, D.E., Properties of S-closed spaces, Proc.Amer Math.Soc.72(1978), 581-586.
- [5] Dontchev. J and Noiri. T Quasi-normal spaces and π g-closed sets, Acta Math. Hungar, 89(3)(2000), 211-219.
- [6] Gnanmbal Y., On generalized pre-regular closed sets in topological spaces, Indian J. Pure App. Math. 28 (1997), 351-360.
- [7] Gnanambal. Y. And Balachandran. K., On gpr-continuous functions in topological spaces, Indian J. Pure Appl. Math. 30(6)(1999), 581-593.
- [8] Levine. N., Semi-open sets and semi-continuity in topological spaces, Amer, Math. Monthly, 70(1973), 36-
- [9] Levine. N., Generalized closed sets in topology, Rend Circ. Mat. Palermo 19(1970), 89-96.

[10] Maki. H. Devi. R and Balachandran, K., Associated topologies of generalized a-cloed and a-generalized closed sets, Mem.Sci.

Kochi Univ. Ser. A. Math 15(1994), 51-63.

- [11] Mashhour. A.S., ABD. El-Monsef. M.e. and El-Deeb S.N., On pre continuous mappings and weak pre- continuous mappings, Proc Math, Phys. Soc. Egypt 53(1982), 47-53.
- [12] Nagaveni. N., Studies on Generalizations of Homeomorphisms in Topological Spaces., Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
- [13] Palaniappan N., and Rao. K.c., Regular generalized closed sets, Kyungpook Math. J. 33(1993),211-219.
- [14] Palaniappan N, Pious Missier S and Antony Rex Rodrigo αgp -closed sets in Topological Spaces, Acta Ciencia Indica Vol.XXXI M, No.1,243 (2006).
- [15] Park, J.K. and Park, J.H., Mildly generalized closed sets, almost normal and mildly normal spaces, Chaos Solitions and Fractals 20(2004), 1103-1111.
- [16] Pushpalatha. A., Studies on Generalizations of Mappings in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 2000.
- [17] Sundaram. P and Shiek John. M., On w-closed sets in topology, Acta Ciencia Indica 4(2000), 389-392.
- [18] Stone. M., Application of the theory of Boolean rings to general topology, Trans. Amer .Math. Soc.41(1937), 374-481.
- [19] Syed Ali Fathima S and Mariasingam M on #regular generalized closed sets in Topological Spaces, International Journal of Mathematical Archive -2(11),2011 2497-2502.
- [20] Tong.J., Weak almost continuous mapping and weak nearly compact spaces, Boll. Un.Mat.Ital. (1982),385-391.
- [21] Thakur C.K. Raman, Vidyottamma Kumari and Sharma M.K α--Generalized & α * Separation Axioma for Topological Spaces, IOSR Journal of Mathematics Volume 10, Issue 3 Ver.VI(May-Jun 2014) PP 32-36.