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Abstract:  

 In the present paper Quassi linearisation and finite difference attempt is made to study the effect of magnetic 

field on steady flow of a viscous incompressible fluid past a heated stretching sheet in the presence thermal 

radition. A magnetic field is applied normal to the flow. Roseland approximation is used to describe the 

radiative heat flux in the energy equation With appropriate similarity transformations, the momentum and 

energy equations are reduced to ordinary differential equations, in which the equation of motion is a non-linear 

equation that is linearized by Quassi-linearization method. the governing linear differential equations with 

boundary conditions in the transformed form are solved numerically using finite difference method. Graphical 

results for velocity and temperature fields, are presented and discussed. It is noted that for the increasing  

values of Pr, the rate of decrement in the temperature profile is observed to be fast in the presence of radiation, 

than in the case of absence radiation.Further, it is concluded that a considerable decrement in the velocity of 

the fluid is observed in the presence of radiation and magnetic field. 
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I. INTRODUCTION 

The boundary layer flow over a stretching sheet in a uniform stream of fluid has been considered widely in fluid 

mechanics. The flow over a heated stretching surface has received great interest during the last decades because 

of several applications in geophysics and energy related engineering problems that includes both metal and 

polymer sheets. For example, it happens in the aerodynamic extrusion of polymer sheets, thermal energy storage 

and recoverable systems, petroleum reservoirs, continuous filament extrusion from a dye, cooling of an infinite 

metallic plate in a cooling bath and during cooling reduction in both the thickness and width take place as these 

strips are sometimes elongated. The temperature distribution, thickness and width reduction are function of draw 

ratio and stretching distance. In all these technologies, the quality of the ultimate product depends on the rate of 

heat and mass transfer at the stretching surface. Sakiadis [1] studied first the boundary layer flow over a 

continuous solid surface moving in its own plane with constant speed. He has shown that the characteristics of 

the boundary layer in this case are quite different from that of the blassius flow owing to entrainment of the 

ambient fluid. 

 

 Erickson et al [2] investigated a similar problem in which the transverse velocity at the moving surface is non-

zero, taking account of the heat and mass transfer in the boundary layer. Investigations of this type are important 

due their relevance to the problem of a polymer sheet extruded continuously from a dye. A tacit assumption is 

being made that the sheet is inextensible. In polymer industry it is necessary to tackle the boundary layer flow 

over a stretching sheet, McCormack and Crane [8]. Gupta and Gupta [5] carried out the analysis of momentum, 

heat and mass transfer in the boundary layer over a stretching sheet, subjected to suction or blowing. Radwan et 

al [9] examined the mass transfer over a stretching surface with variable concentration in a transverse magnetic 

field. In all the cases mentioned above the viscosity of the fluid was assumed uniform in the flow region. Jang et 

al [7] studied the rate of temperature dependent viscosity in the flow and vortex instability of a heated horizontal 

free convection boundary layer flow. Ioan Pop et al [6] analyzed the effect of variable viscosity on flow and 

heat transfer to a continuous moving flat plate. Lai et al [3] studied the effect of variable viscosity on convective 

heat transfer along a vertical surface in saturated porous medium.   

 

The flow of an electrically conducting fluid past stretching sheet under the effect of a magnetic field has 

attracted the attention of many researchers due to its wide applications in many engineering problems such as 
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magneto-hydrodynamic (MHD) generator, plasma studies, nuclear rectors, oil exploration,and the boundary 

layer control in the field of aerodynamics.Consequently,Samad and Mohebujjaman [11] studied a steady-state 

two dimensional magneto hydrodynamic heat and mass transfer free convective flow along a vertical stretching 

sheet in the presence of a magnetic field with heat generation. Fadzilah et al. [12] discussed the steady magneto-

hydrodynamic boundary-layer flow and heat transfer of a viscous and electrically conducting fluid over a 

stretching sheet with an induced magnetic field. Ishak [13,14] studied the steady MHD boundary-layer flow and 

heat transfer due to a stretching sheet. Mixed convection boundary layer in the stagnation point flow to-wards 

stretching sheet was studied by Ishak et al. [15]. Lahiri et al [10] analyzed the effects of transverse magnetic 

field on the momentum and heat transfer characteristics in the boundary layer of an incompressible fluid flow 

over a stretching sheet when viscosity of the fluid depends on temperature.  

    

    Actually, many processes in engineering areas occur at high temperature and knowledge of radiation heat 

transfer becomes very important for the design of the pertinent equipment, Nuclear power plants, gas turbines. 

In such cases one has to take into account the effects of radiation. Moreover, when the radiative heat transfer 

takes place, the fluid involved can be electrically conducting in the sense that it is ionized owing to high 

operating temperature. In such case one cannot neglect the effect of magnetic field on the flow field.  So in the 

present article Quassi- linearization and finite difference attempt is made to study the effects of magnetic field 

on steady flow of a viscous incompressible fluid past a heated stretching sheet in the presence and absence of 

radiation. The governing equations in non-dimensional form are solved by using Quassi- linearization and finite 

difference methods.  

 

 

II. Mathematical Formulation:  

         Steady two-dimensional flow of a viscous incompressible, electrically conducting fluid over a heated 

stretching sheet is considered. The motion of the fluid is being caused solely by the surface` which is moving 

horizontally with a speed proportional to the distance from the origin (x=0). Additionally, the viscosity of the 

fluid is assumed to be dependent on the temperature. A magnetic field of uniform strength is applied normal to 

the flow. The continuity, momentum and energy equations governing such a flow in the boundary layer when 

subjected to an magnetic field of strength 0   (Ferraro et al [4] ) are written, as 

             0
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The radiative flux  rq  by using the Rosseland approximation [16], is given by 
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It has been assumed that the temperature differences within the flow are sufficiently small. So T4 may be 

expressed as a linear function of the temperature T. This can be accomplished by expanding T4 in a Taylor series 

about T , as follows.  
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In the above expansion, neglecting the higher order terms, we have 
 

     
434 34   TTTT                                                    (6) 

Substituting (6) in (4) and then (4) in (3), we get 
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Where  u  and v  are the components of velocity, respectively in the x and y directions,T  is the temperature, 

 is the coefficient of thermal diffusivity,  is the fluid density,   is the conductivity of the fluid and   is the 

coefficient of fluid viscosity. The boundary conditions are given by  

                  0,0,  yatTTvcxu wt                                                      (8) 

                    yasTTu ,0                                                  (9) 

Hence )0(c is a constant, wT  is the uniform wall temperature and  T  is the free-stream  

Temperature. We now introduce the following relations for vu, and   as                                          
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    Where 
 
is the stream function. The temperature dependent– viscosity is given by (Bird et al 1960) 
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Where 
  is the reference viscosity and a  is a constant.  

Using the relations (10), (11) and (12) in the equations (2) to (7), we obtain the following  
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Where  
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0  and c  has a dimension (1/ time). 

  Using the following similarity transformations  
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in to the equations (13) and (14), we get following differential equations with boundary conditions in 

dimensional less form, they are given by in two different cases.  

Case I: Presence of radiation 
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   The corresponding boundary conditions reduced to  

            1)0(,1)0(,0)0(  ff                                                                                (18) 
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           0)(,0)(  f              (19)  

Case II: Absence of radiation 
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The boundary conditions are reduced to   

            1)0(,1)0(,0)0(  ff                                                                                 (22) 
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III. Method of solution 

 Quasi- linearization of all non-linear terms in equations (16) and (20), we get the following 
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 , they are called finite difference approximations 

of F   and F  . Here F  is assumed to be a known function. 

In order to facilitate the application of finite difference scheme in the range )1,0( , we transform the set of 

equations (17), (23) and (21),(23) to a new system of co-ordinates. So applying the transformation, bez 1  

on the above set of equations we get the following set of equations in the presence and absence of radiation 

respectively 
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with corresponding boundary conditions for both the cases given by: 
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Applying the finite difference formulae (29) on the set of equations (24),(25) and (26),(27), the following set of  

system of equations are obtained in both presence and absence of radiation respectively 
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          hbifPiQiH r  )(][2][4 , where the  h is a mesh size in z-direction.     

    Set of equations (30),(31) and (32),(33) with corresponding boundary conditions have been solved by using 

Gauss-seidel iteration method, for which numerical code is executed using C-Program. In the above system  f
 

is considered as the 
thn)( order iterative solutions and F  is the thn )1(  order solutions. After each cycle of 

iteration the convergence check is performed, i.e the tolerance set at  
610

, i.e.,
610 fF  is satisfied at all 

points, then f is considered as convergent solution. Otherwise f becomes the new F  and another cycle of 

iteration is carried out. 

 

 

IV. RESULTS AND DISCUSSION: 

       In order to get the physical understanding of the problem and to discuss the significance of the various 

parameters, a parametric study is conducted. To be realistic, the values of Prandtl number (Pr) are chosen to be 

Pr = 0.71 and Pr = 7.0, which represent air and water at temperature 20◦C and one atmosphere pressure, 

respectively. 

   

 Magnetic parameter M describes the ratio of electromagnetic force to the viscous force. Figures (1) and (2) 

show the effect of magnetic parameter M on velocity field u in the absence and presence of radiation 

respectively while figures (6) reveals the effect of magnetic parameter M on temperature field. It is observed 
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from the figure that as the value of M increases the velocity of the fluid flow decreases due to the Lorentz type 

of resistive force. This is due to fact that the interaction of the magnetic field with an electrically conducting 

fluid produces a body force known as Lorentz force, which plays the role of a resistive type force on the velocity 

and this force acts against to the fluid flow when the magnetic field is applied perpendicular to it. Therefore it is 

likely to suppress the flow thereby declining the primary velocity. On the other hand, an opposed effect is noted 

in the case of temperature field as the value of M increases. Further, it is noted that a comparative study of the 

graphs show that the presence of heavier radiative number fluid flow is found to decelerate velocity profile. This 

due to the fact that an increase in the thermal radiation leads to decline in the rate of radiative heat, transferred to 

the fluid. Further from figure (3) it is seen that the velocity decreases as a non-zero value of A  (temperature 

dependent viscosity) increases. 

 

  Figures (7) and (8) show the effect of radiation parameter R on temperature and velocity and fields respectively. 

It is observed that the temperature and velocity reduce as the radiation parameter increases. It is observed from a 

non-dimensional radiation parameter that a decrease in the radiation parameter  34/  TakR R 

  

(forgiven k
 

and T  ) gives a decline in the Roseland radiation absorbptivity, Ra . From the equations 3) and (4), it is also 

noted that as Roseland radiation absorbptivity
 Ra  decreases, the divergence of the radiation heat flux 

(
*/ yqr  ) enhances, it indicates that an increase in the thermal radiation leads to decline in the rate of 

radiative heat, transferred to the fluid. So it causes a reduce in kinetic energy of the fluid particles. This 

consequence leads to diminish in the velocity and temperature of the fluid. 

 

     Figures (4) and (5) demonstrate the effect of Pr in the absence and presence of radiation on temperature 

profile. It is observed that the presence of heavier Prandtl number fluid is found to slow down temperature 

profile. This is owing to the truth that a fluid with high Prandtl number has a relatively low thermal conductivity 

which consequences in the decline of the thermal boundary layer. Further, it is interesting to note that 

temperature of the fluid decreases in the presence of radiation and also it is noted that in the presence of 

radiation as the value of Pr increases the rate of decrement in the temperature profile is observed to be more in 

comparison to the case of absence radiation. 

       

V. Conclusions: 

 The temperature and velocity of the fluid decrease in the presence of thermal radiation. Magnetic parameter 

reduces the velocity of the flow due to the magnetic pull of Lorenz force. 

 In the presence of radiation, as the value of Pr increases the rate of decrement in the temperature field is 

observed more in comparison to the case of absence radiation. 

 

                                           

VI. Figures 
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Fig 1: Effect of Magnetic parameter M on velocity field in the 

absence of radiation A=1.0 and Pr =0.71   
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Fig 2: Effect of Magnetic parameter M on velocity field in the presence 

of radiation (R=2.0) when A=1.0 and Pr =0.71   
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Fig 3: Effect of temperature dependent viscosity A on velocity field in the 

absence of radiation when M=1.0 and Pr =0.71   
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Fig 4: Effect of Pr on temperature field in the absence of  radiation when 

A=1.0, M=1.0 and Pr =0.71   
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Fig 5: Effect of Prandtl number Pr on temperature field in the presence of  

radiation when A=1.0, M=1.0 and Pr =0.71   

  

   
  

 

Fig 6: Effect of Magnetic parameter M on temperature field in the  

absence of radiation A=1.0, R=2.0, R=1.0 and Pr =0.71)   
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Fig 7: Effect of Radiation on temperature field when  

A=1.0, M=1.0 and Pr =0.71   
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Fig 8: Effect of Radiation on velocity field when A=1.0,  

M=1.0 and Pr =0.71   
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