On βwg-Continuous and βwg-Irresolute Functions in Topological Spaces

Govindappa. Navalagi¹ and Kantappa. M. Bhavikatti *²

¹Department of Mathematics, KIT Tiptur-572202. Karnataka, India *² Department of Mathematics, Government First Grade College for Women, Jamakhandi - 587301. Karnataka, India

Abstract: The purpose of this paper is to introduce a new type of functions called the β wg - continuous functions. Here, also β wg - irresolute maps, β wg-closed and β wg-open functions are defined and studied. Further some of their fundamental properties are investigated.

Mathematics Subject Classification (2010): 54C05, 54C08.

Keywords: α -open sets, β -open sets, β wg-open sets β wg-continuous, β wg-irresolute, β wg-open, β wg-closed functions.

I. INTRODUCTION

In 1982, A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb [21] introduced the concept of precontinuity in topological spaces. In 1983, M. E. Abd El - Monsef, S.N. El-Deeb and R.A.Mahmoud [1] introduced the concept of β -open sets and β -continuous mappings in topological spaces Later, K. Balachandran, P. Sundram and H. Maki [6] introduced and studied the concept of generalized continuous functions. I. Arokirani, et. al., [4] defined gp-irresolute and gp-continuous functions and investigated their properties. M.K.R.S.Veerakumar [36] introduced g*p-closed sets, g*p-continuous maps, g*p-irresolute maps and their properties. C.Sekar and J.Rajakumari [31] introduced α g*p - closed sets and their properties. Recently, the authors [24] have introduced β wg - closed sets and some of their properties. In this paper we study a new class of functions, namely, β wg-continuous functions and β wg-irresolute functions. Also, we study some of the characterization and basic properties of these functions.

II. PRELIMINARIES

In this paper, the spaces X, Y and Z always mean topological spaces (X, τ) , (Y, σ) and (Z, η) respectively. For a subset A of X, the closure of A and the interior of A will be denoted by cl (A) and int (A) respectively. The union of all β -open sets of X contained in A is called β -interior of A and it is denoted by β int(A). The intersection of all β closed sets of X containing A is called β -closure of A and it is denoted by β cl (A).

We recall the following definitions which are useful in the sequel.

Definition 2.1: A subset A of a topological space (X, τ) is called

- (i) preopen [21] if $A \subseteq int (cl (A))$ and preclosed if $cl (int(A)) \subseteq A$.
- (ii) semi-open [15] if $A \subseteq cl$ (int (A)) and semi-closed if int (cl (A)) $\subseteq A$.
- (iii) α -open [13] if $A \subseteq$ int (cl (int (A))) and α -closed if cl(int(cl(A))) $\subseteq A$.
- (iv) semi-preopen[3] (β -open[1]) if A \subseteq cl(int(cl(A))) and semi-preclosed[3] (β -closed [2]) if int (cl (int (A))) \subset A.
- (v) regular open [32] if A = int (cl(A)) and regular closed if A = cl (int (A)).

Definition 2.2: A subset A of a topological space (X, τ) is called a

- (i) g-closed [16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (ii) sg-closed [7] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
- (iii) gs-closed [10] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (iv) $g\alpha$ -closed [17] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in X.
- (v) α g-closed [19] if α cl(A) \subseteq U whenever A \subseteq U and U is open in X.
- (vi) gp-closed [20] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (vii) gsp-closed [10] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (viii) gpr-closed [12] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- (ix) rg-closed [25] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular-open in X.
- (x) wg-closed [23] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (xi) rwg-closed [23] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- (xii) g^* -closed [35] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
- (xiii) mg-closed [26] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is gopen in X.
- (xiv) g^*p -closed set [36] if pcl (A) $\subseteq U$ whenever A $\subseteq U$ and U is gopen in X.
- (xv) $(gsp)^*$ -closed [28] if $\beta cl(A) \subset U$ whenever $A \subset U$ and U is g-open in X.
- (xvi) αg^*p -closed set [31] if pcl (A) $\subseteq U$ whenever A $\subseteq U$ and U is αg -open in X.
- (xvii) gp*-closed set [14] if cl (A) \subseteq U whenever A \subseteq U and U is gpopen in X.
- (xviii) αg^* -closed set [31] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open in X.

Definition 2.3[24]: A subset A of a topological space (X, τ) is called beta w generalized closed set (briefly β wg-closed) if β cl(A) \subseteq U whenever A \subseteq U and U is α g-open in X. **Definition 2.4:** For a subset A of (X, τ) , the intersection of all β wg-closed sets containing A is called the β wg-closure of A and is denoted by β wg-cl(A). That is, β wg-cl(A) = \cap {F : F is β wg -closed in X, A \subseteq F}.

Definition 2.5: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be

- (i) precontinuous [21] if $f^{-1}(V)$ is preclosed in X for every closed subset V of Y.
- (ii) semi-continuous [15] if $f^{-1}(V)$ is semi-closed in X for every closed subset V of Y.
- (iii) α -continuous [22] if f⁻¹(V) is α -closed in X for every closed subset V of Y.
- (iv) regular continuous [5] if $f^{-1}(V)$ is regular closed in X for every closed subset V of Y.
- (v) semi-precontinuous [3] if $f^{-1}(V)$ is semipre-closed in X for every closed subset V of Y.
- (vi) g-continuous [6] if $f^{-1}(V)$ is g-closed in X for every closed subset V of Y.
- (vii) g*-continuous [35] if $f^{-1}(V)$ is g*-closed in X for every closed subset V of Y
- (viii) α g-continuous [19] if f⁻¹(V) is α g-closed in X for every closed subset V of Y.
- (ix) $g\alpha$ -continuous [17] if $f^{-1}(V)$ is $g\alpha$ -closed in X for every closed subset V of Y.
- (x) gs-continuous [9] if $f^{-1}(V)$ is gs-closed in X for every closed subset V of Y.
- (xi) sg-continuous [33] if $f^{-1}(V)$ is sg-closed in X for every closed subset V of Y.
- (xii) gp-continuous [4] if $f^{-1}(V)$ is gp-closed in X for every closed subset V of Y.
- (xiii) gsp-continuous [10] if $f^{-1}(V)$ is gsp-closed in X for every closed subset V of Y.
- (xiv) gpr-continuous [12] if $f^{-1}(V)$ is gpr-closed in X for every closed subset V of Y.
- (xv) gp^* -continuous if $f^{-1}(V)$ is gp^* -closed in X for every closed subset V of Y.
- (xvi) g^*p -continuous [36] if $f^{-1}(V)$ is g^*p -closed in X for every closed subset V of Y.
- (xvii) αg^* -continuous [29] if $f^{-1}(V)$ is αg^* -closed in X for every closed subset V of Y.
- $(xviii)ag^*p$ -continuous [29] if f⁻¹(V) is ag^*p -closed in X for every closed subset V of Y.
- (xix) $(gsp)^*$ -continuous [28] if $f^{-1}(V)$ is $(gsp)^*$ -closed in X for every closed subset V of Y.
- (xx) rg-continuous [25 if $f^{-1}(V)$ is rg-closed in X for every closed subset V of Y.
- (xxi) wg-continuous [23] if $f^{-1}(V)$ is wg-closed in X for every closed subset V of Y.
- (xxii) rwg-continuous [23] if $f^{-1}(V)$ is rwg-closed in X for every closed subset V of Y.
- (xxiii) mg-continuous [26] if $f^{-1}(V)$ is mg-closed in X for every closed subset V of Y.

Definition 2.6: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

- (i) β -irresolute [18] if f⁻¹(V) is β -closed in X for every β -closed subset V of Y.
- (ii) pre-irresolute [30] if $f^{-1}(V)$ is preclosed in X for every preclosed subset V of Y.
- (iii) α -irresolute [34] if f⁻¹(V) is α -closed in X for every α -closed subset V of Y.
- (iv) α g-irresolute [8] if f⁻¹(V) is α g-closed in X for every α g-closed subset V of Y.
- (v) preclosed [11] if f (V) is preclosed in Y for every closed subset V of X.

Definition 2.7[32]: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called almost continuous if f⁻¹(V) is closed set in (X, τ) for each regular closed set V in (Y, σ) .

III. βwg CONTINUOUS FUNCTIONS AND βwg IRRESOLUTE FUNCTIONS

In this section, we introduce βwg-continuous functions and study some of their properties in the following

Definition 3.1: A function f: $X \to Y$ is called β wg-continuous if f⁻¹(V) is β wg-closed set in X for every closed set V in Y.

Theorem 3.2 (i) Every continuous function is β wg-continuous function and thus every precontinuous function, every α -continuous function and every regular continuous function is β wg-continuous function.

(ii) Every β wg-continuous function is β -continuous function

Proof: Obvious

The converse of the above theorem need not be true as seen in the following example.

Example 3.3: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, X\}$ and $\sigma = \{\phi, \{d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, Y\}$. Let f: X \rightarrow Y be defined f (a) = c, f (b) = d, f(c) = a, f (d) = b. Then the function f is β wg -continuous but not continuous. Since, $\{a\}$ is a closed set of Y, f⁻¹($\{a\}$) = $\{c\}$ is β wg-closed in X but not closed in X.

Example 3.4: Let $X = Y = \{a, b, c, d\}, \tau = \{\varphi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, X\}$ and $\sigma = \{\varphi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, Y\}$. Let f: X \rightarrow Y be defined by f (a) = a, f (b) = b, f(c) = c and f (d) = d. Then the function f is β wg-continuous but not pre-continuous. Since, $\{a, d\}$ is a closed set of Y, f⁻¹($\{a, d\}$) = $\{a, d\}$ is β wg-closed in X but not pre-closed in X.

Example 3.5: Let $X = Y = \{a,b,c,d\}, \tau = \{\varphi, \{a,b\}, X\}$ and $\sigma = \{\varphi,\{a\},\{b\},\{a,b\},\{a,b,c\}, Y\}$. Now β wgC (X) = $\{\varphi,\{a\},\{b\},\{c\},\{d\},\{a,c\},\{a,d\},\{b,c\}, b,d\},\{c,d\},\{a,c,d\},\{b,c,d\}, X\}$. Let f: X \rightarrow Y be a function defined by f (a) = a, f (b) = b, f(c) = c, f (d) = d. Then the function f is β wg-continuous but not α -continuous. Since, $\{a,c,d\}$ is a closed set of Y, f⁻¹($\{a,c,d\}$) = $\{a, c, d\}$ is β wg-closed in X but not α -closed set in X.

Example 3.6: Let $X = Y = \{a,b,c\}, \tau = \{\phi, \{a,b\}, X\}$ and $\sigma = \{\phi,\{a\},\{b\},\{a,b\}, Y\}$. Define a function f: $X \rightarrow Y$ by f(a) = a, f(b) = b and f(c) = c. The function f is β wg-continuous but not regular continuous. Since, $\{a, c\}$ is a closed set of Y, $f^{-1}(\{a, c\}) = \{a, c\}$ is β wg-closed in X but not regular-closed set in X.

Example 3.7: Let $X = \{a, b, c, d\} = Y$, $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{c\}, \{d\}, \{c, d\}, Y\}$ be topologies on X. Let f: X \rightarrow Y be a function defined by f(a) = a, f(b) = b, f(c) = c, f(d) = d. The function f is β -continuous but not β wg-continuous. Since, $\{a, c\}$ is closed set in Y, $f^{-1}(\{a, c\}) = \{a, c\}$ is not β wg-closed but it is β -closed in X.

Remark 3.8: βwg-continuity is independent of semi-continuity as seen from the following example.

Example 3.9: Let $X = Y = \{a, b, c, d\}$ with topologies, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$ and $\sigma = \{Y, \phi, \{c\}, \{b, c\}, \{a, c, d\}\}$. Let f: $X \rightarrow Y$ be a function defined by f(a) = c, f(b) = b, f(c) = d, f(d) = a. Then the function f is

semi-continuous and β -continuous but not β wg-continuous, since $f^{-1}(\{b\}) = \{b\}$ is both semi-closed and β -closed but not β wg-closed in X.

Example 3.10: Let $X = Y = \{a, b, c, d\}$ with topologies, $\tau = \{X, \varphi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{c\}, \{b, c\}, \{a, c, d\}\}$. Let f: $X \rightarrow Y$ be a function defined by f (a) = c, f (b) = a, f (c) = b and f(d) = d. Then the function f is β wg - continuous but not semi-continuous and β -continuous, since f $^{-1}(\{b\}) = \{c\}$ is not semi-closed and semi-preclosed but it is β wg-closed in X.

Theorem 3.11: If a function $f: X \rightarrow Y$ is continuous, then the following holds.

(i) If f is β wg-continuous, then f is g*p-continuous,

(ii) If f is β wg-continuous, then f is gs-continuous (resp. gp-continuous, gsp-continuous, gpr-continuous, α g-continuous).

(iii) If f is β wg-continuous, then f is mg-continuous and thus rg-continuous, g-continuous, wg-continuous, rwg-continuous.

Proof: (i) Let V be a closed set in Y. Since f is β wg-continuous, then f⁻¹(V) is β wg-closed in X. Since every β wg-closed set is

g*p-closed then f $^{-1}(V)$ is g*p-closed in X. Hence f is g*p-continuous.

Similarly we can prove (ii).

The converse of the above theorem need not be true as seen from the following example.

Example 3.12: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a,b\}, X\}$ and $\sigma = \{\phi, \{c\}, Y\}$. Let $f: X \rightarrow Y$ be an Identity function, defined by f(a) = a, f(b) = b, f(c) = c, f(d) = d. Then the function f is gpr-continuous but not β wg-continuous. Since, $\{a, b\}$ is a closed set of Y, $f^{-1}(\{a, b\}) = \{a, b\}$ is not β wg-closed in X but it is gpr-closed set in X.

Example 3.13: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{c\}, \{a, b, d\}, Y\}$. Let f: $X \rightarrow Y$ be a function defined by f(a) = b, f(b) = a, f(c) = c and f(d) = d. Then the function f is g*p-continuous but not ßwg-continuous. Since, $\{a, b, d\}$ is a closed set of Y, $f^{-1}(\{a, b, d\}) = \{a, b, d\}$ is not ßwg-closed in X but it is g*p-closed set in X.

Example 3.14: Let $X = Y = \{a,b,c\}, \tau = \{\phi, \{a\}, X\}$ and $\sigma = \{Y, \phi, \{c\}, \{a,c\}, \{b,c\}\}$. Now GpC(X) = $\{X, \phi, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\} = GsC(X) = GspC(X) = \alpha GC(X) = GC(X)$ and $\beta wgC(X) = \{\phi, \{b\}, \{c\}, \{b,c\}, X\}$. Define a function f: X \rightarrow Y by f(a) = a, f(b) = c and f(c) = b. The f is gp-continuous (resp. gsp-continuous, gs-continuous, ag-continuous, g-continuous) function but not βwg -continuous. Since, $\{a, b\}$ is a closed set of Y, f⁻¹($\{a, b\}$) = $\{a, c\}$ is not βwg -closed in X.

Example 3.15: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{Y, \phi, \{b\}, \{a, b\}\}$.

Now rgC(X) = P(X) and $\beta wg C(X) = \{X, \varphi, \{b\}, \{c\}, \{b, c\}\}$. Define a function f: $X \rightarrow Y$ by f(a) = c, f(b) = b and f(c) = a. Then f is rg-continuous function but not βwg -continuous. Since, for the closed set $\{a, c\}$ in Y, $f^{-1}(\{a, c\}) = \{a, c\}$ is not βwg -closed but it is rg-closed in X.

Example 3.16: Let $X = \{a, b, c, d\} = Y$, $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, X\}$ and $\sigma = \{Y, \phi, \{c\}, \{a,c,d\}$. Define a function f: $X \rightarrow Y$ by f(a) = d, f(b) = a, f(c) = c and f(d) = b. Then f is mg-continuous function but not ßwg-

continuous. Since, for the closed set $\{a,b,d\}$ in Y, $f^{-1}(\{a, b, d\}) = \{a, b, d\}$ is not ßwg-closed but it is mg-closed in X.

Example 3.17: Let $X = \{a, b, c, d\} = Y$, $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, X\}$ and $\sigma = \{Y, \phi, \{c\}, \{a,b\}, \{a,b,c\}$. Define a function f: $X \rightarrow Y$ by f(a) = b, f(b) = a, f(c) = c and f(d) = d. Then the function f is wg-continuous but not β wg-continuous. Since, for the closed set $\{a,b,d\}$ in Y, $f^{-1}(\{a,b,d\}) = \{a, b, d\}$ is mg-closed but not β wg-closed X.

Example 3.18: Let $X = \{a,b,c,d\} = Y$, $\tau = \{\phi, \{a\}, \{b\}, \{b\}, \{d\}, \{a,b\}, \{a,d\}, \{a,b,d\}, \{a,b,d\}, \{x,b\}, X\}$ and

 $\sigma = \{Y, \varphi, \{c\}, \{b,c\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}\}$. Define a function f: X \rightarrow Y by f(a) = b, f(b) = a, f(c) = c and f(d) = d. Then the function f is rwg-continuous but not β wg-continuous. Since, for the closed set $\{a, b, d\}$ in Y, f⁻¹($\{a, b, d\}$) = $\{a, b, d\}$ is rwg-closed but not β wg-closed X.

Theorem 3.19: Every (gsp)*-continuous function is βwg-continuous function and thus every αg*p-continuous function is

βwg-continuous function.

(ii) Every gp*-continuous function and every α g*-continuous function is β wg-continuous.

The converse of the above theorem need not be true as shown in the following example.

Example 3.20: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}\}$ and $\sigma = \{Y, \phi, \{a, b\}\}$. Let f: $X \rightarrow Y$ be a function defined by f(a) = a, f(b) = b and f(c) = c. Then the function f is β wg-continuous but not (gsp)*-continuous. Since, for the closed set $\{c\}$ in Y, $f^{-1}(\{c\}) = \{c\}$ is β wg-closed but not (gsp)*-closed in X.

Example 3.21: Let $X = Y = \{a, b, c, d\}$ be given the topologies $\tau = \{X, \phi, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a, c\}, \{a, c, d\}\}$. Let f: X \rightarrow Y be a function defined by f(a) = a, f(b) = b, f(c) = c and f(d) = d. Then the function f is ßwg-continuous but not αg^* p-continuous. Since, the set $\{b, d\}$ is closed in Y, f⁻¹($\{b, d\}$) = $\{b, d\}$ is β wg-closed set but not αg^* p-closed set in X.

Example 3.22: Let $X = \{a, b, c\} = Y$, $\tau = \{X, \varphi, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a, b\}\}$. Now gp*C(X) = $\{X, \{c\}\}$ and $\beta wgC(X) = \{X, \varphi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$. Define a function f: X \rightarrow Y be an Identity function. Then f is gp*-continuous function but not βwg -continuous. Since, for the closed set $\{b, c\}$ in Y, f⁻¹($\{b, c\}$) = $\{b, c\}$ is βwg -closed but not gp*-closed in X.

Example 3.23: Let $X = \{a, b, c\} = Y$, $\tau = \{X, \phi, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}\}$. Define a function f: $X \rightarrow Y$ by f(a) = a, f(b) = c, f(c) = b. Then f is Bwg-continuous function but not αg^* -continuous. Since, for the closed set $\{c\}$ in Y, $f^{-1}(\{c\}) = \{b\}$ is Bwg-closed set but not αg^* -closed set in X.

Remark 3.24: The following examples shows that ßwg-continuous functions are independent of g-continuous, g*continuous,

gs-continuous, sg-continuous and ag-continuous.

Example 3.25: Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{X, \varphi, \{a\}, \{c\}, \{a, c\}\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{a, c\}\}$. Let f: $X \rightarrow Y$ be an Identity function. Then the function f is β wg-continuous but not g, g*, sg, gs and α g-continuous. Since, for $\{b\}$ is closed set in Y, f⁻¹($\{b\}$) = $\{b\}$ is β wg-closed but not g-closed, g-closed, g*-closed, gs-closed, sg-closed, ag- closed sets in X.

Example 3.26: Let $X = \{a, b, c, d\} = Y$, with topologies $\tau = \{\phi, \{a\}, b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{c\}, \{b, c\}, \{a, c\}, \{a, b, c\}, Y\}$. Let f: $X \rightarrow Y$ be defined by f(a) = b, f(b) = a, f(c) = c, f(d) = d. Then the function f is g, g*, sg, gs, α g-continuous, but not β wg-continuous, since $f^{-1}(\{a, b, d\}) = \{a, b, d\}$ is not β wg-closed.

Remark 3.27: From the above discussions and known results we have the following implications.

 $A \longrightarrow B$ means A implies B but not conversely.

 $A \longleftrightarrow B$ means A and B are independent.

IV. CHARACTERISTICS OF β wg-CONTINUITY

Theorem 4.1: Let $f: (X, \tau) \to (Y, \sigma)$ be a map .Then the following conditions are equivalent: (i) f is β wg-continuous.

(ii) The inverse image of each open set in Y is β wg-open in X.

(iii) $f(\beta wg-cl(A)) \subseteq cl(f(A))$ for each subset A of X.

(iv) For each subset B of Y, β wg-cl(f⁻¹(B)) \subseteq f⁻¹(cl(B))

Proof: (i) \Rightarrow (ii): Let U be an open set in Y. Then $Y \setminus U$ is closed in Y. By hypothesis, $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ is β wg-closed in X. Hence $f^{-1}(G)$ is β wg-open in X.

(ii) \Rightarrow (i): Let U be a closed set in Y. Then Y \ U is open in Y. By hypothesis, $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ is βwg - open in X. Therefore $f^{-1}(U)$ is βwg -closed in X. Hence f is βwg -continuous.

(i) \Rightarrow (iii): Let G be a subset of X. Since $G \subseteq f^{-1}(f(G))$ and $f(G) \subseteq cl(f(G))$, we have $G \subseteq f^{-1}(f(G)) \subseteq f^{-1}(cl(f(G)))$. Therefore by assumption $f^{-1}(cl(f(G)))$ is β wg-closed set of X. Hence β wg-cl(G) $\subseteq f^{-1}(cl(f(G)))$. Thus $f(\beta$ wg-cl(G)) $\subseteq f(f^{-1}(cl(f(G))) \subseteq cl(f(G))$.

(iii) \Rightarrow (iv): Let B be a subset of Y and f (G) = B. So by assumption, $f(\beta wg-cl(G)) = f(\beta wg-cl(f^{-1}(B)))$. Therefore $\beta wg-cl(f^{-1}(B)) \subseteq f^{-1}(f(\beta wg-cl(f^{-1}(B)))) \subseteq f^{-1}(cl(B))$.

(iv) \Rightarrow (i): Let B be a closed set in Y. Then by assumption, βwg -cl(f⁻¹(B)) \subseteq f⁻¹(cl(B)) = f⁻¹(B). Therefore f⁻¹(B) is βwg -closed set in X. Hence f is βwg -continuous.

Theorem 4.2: Let A be a subset of a topological space X. Then $x \in \beta wg\text{-cl}(A)$ if and only if for any $\beta wg\text{-openset}$ U containing x, $A \cap U \neq \varphi$.

Proof: Let $x \in \beta$ wg-cl(A) and suppose that there is a ßwg-open set U in X such that $x \in U$ and $A \cap U = \varphi$ implies that $A \subseteq X \setminus U$ which is ßwg-closed in X implies ßwg-cl(A) \subseteq ßwg-cl(X \ U) = X \ U. Since $x \in U$ implies that $x \notin X \setminus U$ implies that

 $x \notin \beta wgCl(A)$, this is a contradiction. Conversely, suppose that, for any βwg - open set U containing x, $A \cap U \neq \varphi$. To prove that $x \in \beta wg-cl(A)$. Suppose that $x \notin \beta wg-cl(A)$ then there is a $\beta wg-closed$ set F in X such that $x \notin F$ and $A \subseteq F$. Since $x \notin F$ implies that $x \in X \setminus F$ which is βwg -open in X. Since $A \subseteq F$ implies that $A \cap (X \setminus F) = \varphi$, this is a contradiction. Thus $x \in \beta wg-cl(A)$.

Theorem 4.3: Let f: $X \rightarrow Y$ be a function from a topological space X into a topological space Y. If f: $X \rightarrow Y$ is ßwg-continuous then $f(\beta wg-cl(A)) \subseteq cl(f(A))$ for every subset A of X.

Proof: Since $f(A) \subseteq cl(f(A))$ then $A \subseteq f^{-1}(cl(f(A)))$. Since cl(f(A)) is a closed set in Y and f is β wg - continuous then by definition $f^{-1}(cl(f(A)))$ is a β wg-closed set in X containing A. Hence β wg-cl(A) $\subseteq f^{-1}(cl(f(A)))$. Therefore $f(\beta$ wg -cl(A)) $\subseteq cl(f(A))$.

The converse of the above theorem need not be true as shown in the following example

Example 4.4: Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$.

Define a function f: $X \rightarrow Y$ by, f(a) = a, f(b) = b and f(c) = c. For every subset A of X, $f(\beta wg-cl(A)) \subseteq cl(f(A))$ holds. But f is not βwg -continuous, since {c} is closed set in Y, $f^{-1}(\{c\}) = \{c\}$ which is not βwg -closed set in X.

Theorem 4.5: Let f: $X \rightarrow Y$ be a function. Then the following statements are equivalent:

(i) For each $x \in X$ and each open set V containing f(x) there exists a Bwg-open set U containing x such that $f(U) \subset V$.

(ii) $f(\beta wg-cl(A)) \subset cl(f(A))$ for every subset A of X.

Proof: (i) \Rightarrow (ii): Let $y \in f(\beta wg\text{-cl}(A))$ then there exists an $x \in \beta wg\text{-cl}(A)$ such that y = f(x). Let V be any open neighbourhood of y. Since $x \in \beta wg\text{-cl}(A)$, there exists a $\beta wg\text{-open set } U$ such that $x \in U$ and $U \cap A \neq \varphi$, $f(U) \subset V$. Since $U \cap A \neq \varphi$, $f(A) \cap V \neq \varphi$. Therefore $y = f(x) \in cl$ (f(A)). Hence $f(\beta wg\text{-cl}(A)) \subset cl$ (f(A)).

(ii) \Rightarrow (i): Let $x \in X$ and V be any open set containing f(x). Let $A = f^{-1}(Y \setminus V)$. Since $f(\beta wg\text{-cl}(A)) \subset cl(f(A)) \subset Y \setminus V$ then $(\beta wg\text{-cl}(A)) \subset f^{-1}(Y \setminus V) = A$. Hence $\beta wg\text{-cl}(A) = A$. Since $f(x) \in V \Rightarrow x \in f^{-1}(V) \Rightarrow x \notin A \Rightarrow x \notin \beta wg\text{-cl}(A)$. Thus there exists an open set U containing x such that $U \cap A = \varphi$. Therefore $f(U) \subset V$.

Definition 4.6: Let be a topological spaces. Then

(i) a space (X, τ) is called $_{\beta wg}T_b$ -space if every βwg -closed is closed.

(ii) a space (X, τ) is called $_{\beta wg}T_d$ - space if every βwg -closed is g-closed.

(iii) a space (X, τ) is called β wg-T_{1/2} space if every α g*p-closed is preclosed.

(iv) a space (X, τ) is called $_{Bwg}T_{\alpha}$ -space if every Bwg-closed set is α -closed set.

Theorem 4.7: Let f: $X \rightarrow Y$ be a function. Let (X, τ) and (Y, σ) be any two spaces such that τ_{Bwg} is a topology on X. Then the following statements are equivalent:

- (i) For every subset A of X, $f(\beta wg-cl(A)) \subseteq cl(f(A))$ holds.
- (ii) f: $(X, \tau_{\beta wg}) \rightarrow (Y, \sigma)$ is continuous.

Proof: Suppose (i) holds. Let A be closed in Y. By hypothesis $f(\beta wg-cl(f^{-1}(A))) \subseteq cl(f(f^{-1}(A))) \subseteq (A) = A$.

Also $f^{-1}(A) \subseteq \beta wg\text{-cl}(f^{-1}(A))$. Hence $\beta wg\text{-cl}(f^{-1}(A)) = f^{-1}(A)$. This implies $f^{-1}(A) \in \tau_{\beta wg}$. Thus $f^{-1}(A)$ is closed in $(X, \tau_{\beta wg})$ and so f is continuous. This proves (ii).

Suppose (ii) holds. For every subset A of X, cl(f(A)) is closed in Y. Since f: $(X, \tau_{\beta wg}) \rightarrow (Y, \sigma)$ is continuous, $f^{-1}(cl(A))$ is closed in $(X, \tau_{\beta wg})$. By definition, βwg - $cl(f^{-1}(cl(f(A)))) = f^{-1}(cl(f(A)))$.

Now we have, $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(cl(f(A)))$ and by β wg-closure, β wg-cl $(A) \subseteq \beta$ wg-cl $(f^{-1}(cl(f(A))) = f^{-1}(cl(f(A)))$. Therefore $f(\beta$ wg-cl $(A)) \subseteq cl(f(A))$. This proves (i).

Remark 4.8: The Composition of two ßwg-continuous functions need not be ßwg-continuous function and

but the following is valid.

Example 4.9: Let $X = Y = \{a,b,c,d\} = Z$, with topologies $\tau = \{X, \varphi, \{a\}, \{a,b\}, \{a,b,c\}\}, \sigma = \{Y, \varphi, \{b,c\}, \{a,b,c\}, Y\}$ and $\eta = \{Z, \varphi, \{a\}\}$. Define g: $Y \rightarrow Z$ by g(a) = b, g(b) = c, g(c) = a, g(d) = d and define f: $X \rightarrow Y$ by f(a) = b, f(b) = d, f(c) = c, f(d) = a. Then both f and g are ßwg-continuous functions. But gof is not β wg-continuous function, since

 $(gof)^{-1}(\{b, c, d\}) = f^{-1}[g^{-1}(\{b, c, d\})] = f^{-1}(\{a, b, d\}) = \{a, b, c\}$ is not a ßwg-closed set in X.

Theorem 4.10: Let f: $X \rightarrow Y$ is β wg-continuous function and g: $Y \rightarrow Z$ is continuous function then $g \circ f: X \rightarrow Z$ is β wg-continuous.

Proof: Obvious.

Easy proofs of the following Theorems are omitted.

Theorem 4.11: Let f: $X \rightarrow Y$ is βwg - continuous function and g: $Y \rightarrow Z$ is βwg - continuous function and Y is βwg -T_b space then gof: $X \rightarrow Z$ is βwg -continuous.

Theorem 4.12: Let f: $X \rightarrow Y$ is β wg-continuous function and g: $Y \rightarrow Z$ is α g-continuous function and Y is $_{\alpha}T_{b}$ space then gof: $X \rightarrow Z$ is β wg-continuous.

Theorem 4.13: Let f: $X \rightarrow Y$ is β wg-continuous function and g: $Y \rightarrow Z$ is α -continuous function and Y is α - space then gof: $X \rightarrow Z$ is β wg-continuous function.

Definition 4.14: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a β wg-irresolute if f⁻¹(V) is β wg-closed set in (X, τ) for every β wg-closed set V in (Y, σ) .

Definition 4.15: A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called β wg-closed if f (V) is β wg-closed set in (Y,σ) for every closed set V in (X,τ) .

Definition 4.16: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called Bwg-open if f (V) is Bwg- open set in (Y, σ) for every open set V in (X, τ) .

Theorem 4.17: (i) Every α -irresolute function is β wg-continuous.

(ii) Every β wg-irresolute function is β wg-continuous.

(iii) Every β-irresolute function is βwg-irresolute.

Proof: Obvious

The converse of the above theorem (ii) need not be true it can be seen from the following example.

Example 4.18: Let $X=Y = \{a,b,c,d\}, \tau = \{X, \phi, \{a\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a,b\}\}$. Define a function f: $X \rightarrow Y$ by f(a) = b, f(b) = a, f(c) = d and f(d) = c. Then f is β wg -continuous but not β wg-irresolute, since for the closed set $\{b,c,d\}$ in Y, $f^{-1}(\{b,c,d\}) = \{a,c,d\}$ is not a β wg-closed set in X.

Theorem 4.19: Let f: $X \rightarrow Y$ is β wg-irresolute function and g: $Y \rightarrow Z$ is β wg-irresolute function then gof: $X \rightarrow Z$ is β wg-irresolute.

Proof: Let g be β wg-irresolute function and V be any β wg - open set in Z then g⁻¹(V) is β wg-open in Y. Since f is β wg-irresolute, f⁻¹(g⁻¹(V)) = (gof)⁻¹(V) is β wg-open in X. Hence gof is β wg-irresolute.

Theorem 4.20: If a map $f: (X, \tau) \to (Y, \sigma)$ is ßwg-irresolute, if and only if the inverse image $f^{-1}(V)$ is ßwg-open set in X for every ßwg-open set V in Y.

Proof: Obvious.

Theorem 4.21: If a function f: $(X, \tau) \rightarrow (Y, \sigma)$ is β wg-irresolute, then for every subset A of X, f(β wg-cl(A) $\subseteq \alpha$ cl(f(A)).

Proof: If $A \subseteq X$ then consider $\alpha cl(f(A))$ which is βwg -closed in Y. Since f is βwg -irresolute, $f^{-1}(\alpha cl(f(A)))$ is βwg -closed in X. Furthermore $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\alpha cl(f(A)))$. Therefore by βwg -closure, βwg -cl(A) $\subseteq f^{-1}(\alpha cl(f(A)))$, consequently,

 $f(\beta wg-cl(A) \subseteq f(f^{-1}(\alpha cl(f(A)))) \subseteq \alpha clf((A)).$

Theorem 4.22: Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be any two functions. Then

- (i) g o f : $(X,\tau) \rightarrow (Z,\eta)$ is ßwg-continuous if g is regular-continuous and f is ßwg-irresolute.
- (ii) $g \circ f: (X, \tau) \to (Z, \eta)$ is ßwg-irresolute if g is ßwg-irresolute and f is ßwg-irresolute.
- (iii) g o f : $(X, \tau) \rightarrow (Z, \eta)$ is Bwg-continuous if g is Bwg-continuous and f is Bwg-rresolute.

Proof: (i) Let U be an open set in (Z,η) . Since g is regular-continuous, $g^{-1}(U)$ is regular-open set in (Y, σ) . Since every regular-open is β -pen then $g^{-1}(U)$ is β -pen in Y. Since f is β -pen set in (T, τ) . Thus

 $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is a ßwg-open set in (X, τ) and hence $g \circ f$ is ßwg-continuous.

Similarly we can prove (ii) and (iii).

Theorem 4.23: Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be any two functions. Then gof: $(X, \tau) \to (Z, \eta)$ is ßwg-continuous

- (i) if g is α -continuous and f is β wg-irresolute.
- (ii) if g is gp^* -continuous and f is βwg -irresolute.
- (iii) if g is $(gsp)^*$ continuous and f is βwg -irresolute.
- (iv) if g is αg^*p -continuous and f is βwg -rresolute.

Proof: Obvious.

Theorem 4.24: Let (X, τ) be topological space. Then

(i) Every β wg-T_b space is β wg-T_{1/2} space

(ii) Every β wg-T_b space is β wg-T_d - space.

Proof: It follows from the definitions and the fact that every closed set is g-closed.

Theorem 4.25: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function then,

- (i) If f is β wg-irresolute and X is β wg-T_{1/2} space, then f is pre-irresolute.
- (ii) If is β wg-continuous and X is β wg-T_{1/2} space, then f is pre-continuous.
- (iii) If f is β wg-irresolute and X is β wg-T_{α} -space, then f is α -irresolute.

Proof: (i) Let V be pre-closed in Y, then V is β wg-closed in Y. Since f is β wg-irresolute, f⁻¹(V) is β wg-closed in X. Since X is β wg-T_{1/2} space, f⁻¹(V) is pre-closed in X. Hence f is pre-irresolute. (ii) Let V be closed in Y. Since f is β wg-continuous, f⁻¹(V) is β wg-closed in X. Since X is β wg-T_{1/2} space, f⁻¹(V) is pre-closed. Therefore f is pre-continuous.

(iii) Let V be α -closed in Y, then V is β wg-closed in Y. Since f is β wg-irresolute, f⁻¹(V) is β wg-closed in X. Since X is β wg-T_{α} -space, f⁻¹(V) is α -closed in X. Hence f is α -irresolute.

Theorem 4.26: A function f: X_→Y be a bijection. Then the following are equivalent:

- (i) f is β wg-open,
- (ii) f is β wg-closed,
- (iii) f^{-1} is β wg-irresolute.

Proof: Suppose f is β wg-open. Let F be β wg-closed in X. Then X \ F is β wg-open. By definition, f(X \ F) is β wg-open. Since f is bijection, Y \ f(F) is β wg-open in Y. Therefore f is β wg-closed. This proves (i) \Rightarrow (ii).

Let $g = f^{-1}$. Suppose f is β wg-closed. Let V be β wg-open in X. Then X \ V is β wg-closed in X. Since f is β wg-closed, $f(X \setminus V)$ is β wg - closed. Since f is a bijection, Y \ f(V) is β wg-closed that implies f(V) is β wg-open in Y. Thus g⁻¹ (V) is β wg-open in Y. Therefore f⁻¹ is β wg-irresolute. This proves (ii) \Rightarrow (iii).

Let V be ßwg-open in X. Then X \ V is ßwg-closed in X. Since f^{-1} is ßwg - irresolute and $(f^{-1})^{-1}(X \setminus V) = f(X \setminus V) = Y \setminus f(V)$ is ßwg-closed in Y that implies f(V) is ßwg-open in Y. Therefore f is ßwg-open. This proves (iii) \Rightarrow (i).

Theorem 4.27: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a bijective, αg -irresolute and β -closed function. Then f(A) is $\beta w g$ -closed in Y for every $\beta w g$ -closed set A of X.

Proof: Let A be ßwg-closed in (X, τ) . Let V be α g-open set of (Y, σ) containing f (A). Since f is α g-irresolute, f $^{-1}(V)$ is α g-open in X. Since A \subseteq f $^{-1}(V)$ and A is ßwg-closed, β cl(A) \subseteq f $^{-1}(V)$. Since f is bijective and β -closed function, f(β cl(A)) = cl(f(β cl(A))). Now β cl(f(A)) $\subseteq \beta$ cl(f(β cl(A))) = f(β cl(A)) $\subseteq V$. Hence f (A) is β wg-closed set in Y.

V. ON ALMOST ßwg-CONTINUOUS FUNCTION

We define and obtain some their properties the following

Definition 5.1: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called almost ßwg-continuous if f⁻¹(V) is ßwg-closed set in (X, τ) for each regular closed set V in (Y, σ) .

Theorem 5.2: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is Bwg-continuous function. Then it is almost Bwg-continuous.

Proof: Let $f: X \to Y$ be a ßwg-continuous function. Let V be a regular closed set in Y. Since f is continuous, $f^{-1}(V)$ is closed in X. Since every regular closed set is a closed set and hence $f^{-1}(V)$ is ßwg-closed in X. Therefore f is almost β wg-continuous function.

The converse of the above theorem need not be true as seen in the following example.

Example 5.3: Let $X = Y = \{a,b,c\}, \tau = \{\phi,\{a\},X\}$ and $\sigma = \{\phi,\{a\},\{a,b\},Y\}$. Now $RC(X,\tau) = \{Y,\emptyset\}$ and $\beta wg C(X, \tau) = \{\phi,\{b\}, \{c\},\{b,c\},X\}$. Define function f: $X \rightarrow Y$ be defined by f (a) = c, f (b) = a, f(c) = b. Then the function f is almost βwg -continuous but not βwg -continuous. Since, $\{c\}$ is a closed set of Y, f⁻¹($\{c\}$) = $\{a\}$ is not βwg -closed in X.

Theorem 5.4: If X is a $_{\beta wg}T_b$ space and the function f: $(X, \tau) \rightarrow (Y, \sigma)$ is almost βwg -continuous then f is almost continuous.

Proof: Obvious.

VI. CONCLUSIONS

In this article we have focused on β wg-closed sets, β wg-continuity and its characteristics and β wg-irresolute functions in topological spaces. Further with help these functions almost β wg-continuous functions were studied.

ACKNOWLEDGMENT

The authors would like to gratitude thanks the referees for useful comments and suggestions.

REFERENCES

- M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull. Fac.Sci. Assiut Univ., 12(1983), 77-90.
- [2] M.E.Abd El-Monsef, R.A.Mahmoud and E.R.Lasin, β-closure and β-interior, J.Fac. Ed. Ain Shams Univ.10(1986),235-245.
- [3] D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1) (1986), 24-32.
- [4] I.Arokiarani, K.Balachandran and J.Dontchev, Some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci.Kochi. Univ. Ser.A. Math., 20(1999), 93-104.
- [5] S. P. Arya and R. Gupta, On strongly continuous functions, Kyungpook Math. J., 14(1974), 131-143.
- [6] K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi Univ. Ser.A, Math., 12(1991), 5-13.
- [7] P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian. Math., 29(3) (1987), 375-382.
- [8] R.Devi, K.Balachandran and H.Maki, Generalized α -closed maps and α -generalized closed maps, Indian J. Pure. Appl. Math., 29(1)(1998), 37-49.
- [9] R.Devi H.Maki and K.Balachandran, Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 14(1993), 41-54.
- [10] J.Dontchev, On generalizing semipreopen sets, Mem.Fac.Sci.Kochi Uni.Ser A, Math., 16(1995), 35-48.
- [11] S.N.El-Deeb, I.A.Hasanien, A.S.Mashhour and T.Noiri, On p-regular spaces, Bull.Mathe.Soc.Sci.Math., R.S.R. 27(75) (1983), 311-315.
- [12] Y. Gnanambal, On generalized pre regular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3) (1997), 351-360.
- [13] O. NJastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [14] P. Jayakumar, K.Mariappa and S.Sekar, On generalized gp*closed set in topological spaces, *Int. Journal of Math. Analysis*, 33(7) (2013), 75-86.
- [15] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math. Monthly, 70(1963), 36-41.
- [16] N. Levine, Generalized closed sets in topology, Rend. Circ. Math.Palermo, 19(2) (1970), 89-96.
- [17] H.Maki, R.Devi and K.Balachandran, Generalized α-closed sets in topology, Bull.Fukuoka Univ. Ed. Part III, 42(1993),13-21.
- [18] R.A.Mahmoud and M.E.Abd El-Monsef, β-irresolute and topological β- invariant, Proc.Pakistan Acad.Sci. 27 (1990), 285-296.
- [19] H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 15 (1994), 51-63
- [20] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T_{1/2} space, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 17(1996), 33-42.
- [21] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre-continuous mapings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53
- [22] A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, α -continuous and α -open mappings, Acta Math. Hung., 41(3-4) (1983), 213-218.
- [23] N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
- [24] G.B. Navalagi and K. M. Bhavikatti, Beta weakly Generalized Closed Sets in Topological Spaces [submitted].
- [25] N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math. J., 33(2) (1993), 211-219.
- [26] J.K.Park and J.H.Park, Mildly generalized closed sets, almost normal and mildly normal spaces, Chaos, Solutions and Fractals, 20(2004), 1103-1111.
- [27] J.H.Park and Y.B.Park, Weaker forms of irresolute functions, Indian J. PureAppl.Math., 26(7) (1995), 691-696.
- [28] Pauline Mary Helen. M, Kulandhai Therese. A, (gsp)*-closed sets in Topological spaces, IJMTT, Volume 6, (February 2014), 75-78.
- [29] J.Rajakumari and C.Sekar, On αg^*p -Continuous and αg^*p -irresolute Maps in Topological Spaces, International Journal of Mathematical Archive-7(8), 2016, 124-131.
- [30] I.L.Reilly and M.K.Vamanmurthy, On α-continuity in topologicalspaces, Acta Math.Hungar, 45(1-2) (1985), 27-32.
- [31] C.Sekar and J.Rajakumari, A new notion of generalized closed sets in Topological Spaces, International journal of Mathematics Trends And Technology, Vol.-36(2), (August 2016), 124-129.
- [32] M.K. Singal and A.R. Singal, Almost Continuous mappings, Yokohoma, Math., J. 16(1968), 63-73.
- [33] P.Sundaram, H.Maki and K.Balachandran, Semi-generalized continuous maps and semi-T1/2 spaces, Bull. Fukuoka Univ. Ed. Part III, 40(1991), 33-40.
- [34] S.S. Thakur, α-irresolute functions, Tamkang J. Math, 11(1980), 209-214.
- [35] M.K.R.S. Veera kumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. (Math), 21(2000), 1-19.
- [36]] M. K. R. S. Veera Kumar, g*-preclosed sets, Acts Ciencia indica, 28(1) (2002), 51-60.