On $\beta w g$-Continuous and $\beta w g$-Irresolute Functions in Topological Spaces

Govindappa. Navalagi ${ }^{1}$ and Kantappa. M. Bhavikatti $*^{2}$
${ }^{1}$ Department of Mathematics, KIT Tiptur-572202. Karnataka, India
*2 Department of Mathematics, Government First Grade College for Women, Jamakhandi- 587301. Karnataka, India

Abstract

The purpose of this paper is to introduce a new type of functions called the β wg - continuous functions. Here, also $\beta w g$-irresolute maps, $\beta w g$-closed and $\beta w g$-open functions are defined and studied. Further some of their fundamental properties are investigated.

Mathematics Subject Classification (2010): 54C05, 54C08.
Keywords: α-open sets, β-open sets, $\beta w g$-open sets $\beta w g$-continuous, βw-irresolute, $\beta w g$-open, $\beta w g$-closed functions.

I. INTRODUCTION

In 1982, A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb [21] introduced the concept of precontinuity in topological spaces. In 1983, M. E. Abd El - Monsef, S.N. El-Deeb and R.A.Mahmoud [1] introduced the concept of β-open sets and β-continuous mappings in topological spaces Later, K. Balachandran, P. Sundram and H. Maki [6] introduced and studied the concept of generalized continuous functions. I. Arokirani, et. al., [4] defined gp-irresolute and gp-continuous functions and investigated their properties. M.K.R.S.Veerakumar [36] introduced $g^{*} p$-closed sets, $g^{*} p$-continuous maps, $g^{*} p$-irresolute maps and their properties. C.Sekar and J.Rajakumari [31] introduced $\alpha \mathrm{g} * \mathrm{p}$ - closed sets and their properties. Recently, the authors [24] have introduced Bwg - closed sets and some of their properties. In this paper we study a new class of functions, namely, $\beta w g$-continuous functions and $\beta \mathrm{wg}$-irresolute functions. Also, we study some of the characterization and basic properties of these functions.

II. PRELIMINARIES

In this paper, the spaces X, Y and Z always mean topological spaces $(X, \tau),(Y, \sigma)$ and (Z, η) respectively. For a subset A of X, the closure of A and the interior of A will be denoted by $\mathrm{cl}(A)$ and int (A) respectively. The union of all β-open sets of X contained in A is called β-interior of A and it is denoted by $\beta \operatorname{int}(A)$. The intersection of all β closed sets of X containing A is called β-closure of A and it is denoted by $\beta \mathrm{cl}(\mathrm{A})$.

We recall the following definitions which are useful in the sequel.
Definition 2.1: A subset A of a topological space (X, τ) is called
(i) \quad preopen [21] if $\mathrm{A} \subseteq \operatorname{int}(\mathrm{cl}(\mathrm{A}))$ and preclosed if $\mathrm{cl}(\operatorname{int}(\mathrm{A})) \subseteq \mathrm{A}$.
(ii) semi-open [15] if $\mathrm{A} \subseteq \mathrm{cl}(\operatorname{int}(\mathrm{A}))$ and semi-closed if int $(\mathrm{cl}(\mathrm{A})) \subseteq \mathrm{A}$.
(iii) $\quad \alpha$-open [13] if $\mathrm{A} \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A})))$ and α-closed if $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))) \subseteq \mathrm{A}$.
(iv) $\operatorname{semi-preopen}[3](\beta$-open[1]) if $A \subseteq \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))$ and
semi-preclosed[3] $(\beta$-closed [2]) if int $(\operatorname{cl}(\operatorname{int}(A))) \subseteq A$.
(v) regular open [32] if $\mathrm{A}=\operatorname{int}(\mathrm{cl}(\mathrm{A}))$ and regular closed if $\mathrm{A}=\mathrm{cl}(\operatorname{int}(\mathrm{A}))$.

Definition 2.2: A subset A of a topological space (X, τ) is called a
(i) \quad-closed [16] if $\operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in X .
(ii) sg-closed [7] if $\operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
(iii) gs-closed $[10]$ if $\operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
(iv) $\quad g \alpha$-closed [17] if $\alpha c l(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in X.
(v) $\quad \alpha$ g-closed [19] if $\alpha c l(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
(vi) $\quad g p$-closed $[20]$ if $\operatorname{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
(vii) \quad gsp-closed $[10]$ if $\operatorname{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
(viii) gpr-closed [12] if $\operatorname{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
(ix) $\quad r g$-closed $[25]$ if $\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular-open in X.
(x) wg-closed [23] if $\operatorname{cl}(\operatorname{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
(xi) \quad rwg-closed [23] if $\operatorname{cl}(\operatorname{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
(xii) $\quad g^{*}$-closed $[35]$ if $\mathrm{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
(xiii) mg-closed [26] if $\operatorname{cl}(\operatorname{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is gopen in X.
(xiv) $\quad g^{*} p$-closed set [36] if $p c l(A) \subseteq U$ whenever $A \subseteq U$ and U is gopen in X.
(xv) $\quad(\mathrm{gsp})^{*}$-closed $[28]$ if $ß c l(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
(xvi) $\quad \alpha g^{*}$ p-closed set [31] if pcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is α g-open in X.
(xvii) \quad gp*-closed set [14] if $\mathrm{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is gpopen in X.
(xviii) $\alpha \mathrm{g}^{*}$-closed set [31] if $\alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\alpha \mathrm{g}$-open in X .

Definition 2.3[24]: A subset A of a topological space (X, τ) is called beta w generalized closed set (briefly β wg-closed) if $\beta \operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is α g-open in X .
Definition 2.4: For a subset A of (X, τ), the intersection of all β wg-closed sets containing A is called the $\beta w g$-closure of A and is denoted by $\beta w g-c l(A)$. That is, $\beta w g-c l(A)=\cap\{F: F$ is $\beta w g$ -closed in $\mathrm{X}, \mathrm{A} \subseteq \mathrm{F}\}$.

Definition 2.5: A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be
(i) precontinuous [21] if $\mathrm{f}^{-1}(\mathrm{~V})$ is preclosed in X for every closed subset V of Y .
(ii) semi-continuous [15] if $f^{-1}(V)$ is semi-closed in X for every closed subset V of Y.
(iii) α-continuous [22] if $\mathrm{f}^{-1}(\mathrm{~V})$ is ${ }_{\alpha}$-closed in X for every closed subset V of Y .
(iv) regular continuous [5] if $\mathrm{f}^{-1}(\mathrm{~V})$ is regular closed in X for every closed subset V of Y .
(v) semi-precontinuous [3] if $\mathrm{f}^{-1}(\mathrm{~V})$ is semipre-closed in X for every closed subset V of Y .
(vi) g-continuous [6] if $\mathrm{f}^{-1}(\mathrm{~V})$ is g -closed in X for every closed subset V of Y .
(vii) g^{*}-continuous [35] if $f^{-1}(V)$ is g^{*}-closed in X for every closed subset V of Y
(viii) αg-continuous [19] if $f^{-1}(V)$ is αg-closed in X for every closed subset V of Y.
(ix) $g \alpha$-continuous [17] if $f^{-1}(V)$ is $g \alpha$-closed in X for every closed subset V of Y.
(x) gs-continuous [9] if $\mathrm{f}^{-1}(\mathrm{~V})$ is gs-closed in X for every closed subset V of Y .
(xi) sg-continuous [33] if $f^{-1}(V)$ is sg-closed in X for every closed subset V of Y.
(xii) gp-continuous [4] if $f^{-1}(V)$ is gp-closed in X for every closed subset V of Y.
(xiii) gsp-continuous [10] if $f^{-1}(V)$ is gsp-closed in X for every closed subset V of Y.
(xiv) gpr-continuous [12] if $\mathrm{f}^{-1}(\mathrm{~V})$ is gpr-closed in X for every closed subset V of Y .
(xv) $g p^{*}$-continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is $\mathrm{gp}{ }^{*}$-closed in X for every closed subset V of Y .
(x vi) $g^{*} p$-continuous [36] if $f^{-1}(V)$ is $g^{*} p$-closed in X for every closed subset V of Y.
(xvii) $\alpha \mathrm{g}^{*}$-continuous [29] if $\mathrm{f}^{-1}(\mathrm{~V})$ is $\alpha \mathrm{g}^{*}$-closed in X for every closed subset V of Y .
(xviii) αg^{*} p-continuous [29] if $f^{-1}(\mathrm{~V})$ is αg^{*} p-closed in X for every closed subset V of Y.
(xix) (gsp)*-continuous [28] if $\mathrm{f}^{-1}(\mathrm{~V})$ is (gsp)*-closed in X for every closed subset V of Y .
(xx) rg-continuous [25 if $\mathrm{f}^{-1}(\mathrm{~V})$ is rg-closed in X for every closed subset V of Y .
(xxi) wg-continuous [23] if $f^{-1}(V)$ is wg-closed in X for every closed subset V of Y.
(xxii) rwg-continuous [23] if $f^{-1}(V)$ is rwg-closed in X for every closed subset V of Y.
(xxiii) mg-continuous [26] if $f^{-1}(V)$ is mg-closed in X for every closed subset V of Y.

Definition 2.6: A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be
(i) $\quad \beta$-irresolute $[18]$ if $f^{-1}(\mathrm{~V})$ is β-closed in X for every β-closed subset V of Y .
(ii)
(iii)
(iv)
(v) pre-irresolute [30] if $f^{-1}(V)$ is preclosed in X for every preclosed subset V of Y. α-irresolute [34] if $\mathrm{f}^{-1}(\mathrm{~V})$ is α-closed in X for every α-closed subset V of Y . αg-irresolute [8] if $\mathrm{f}^{-1}(\mathrm{~V})$ is $\alpha \mathrm{g}$-closed in X for every $\alpha \mathrm{g}$-closed subset V of Y . preclosed [11] if $f(V)$ is preclosed in Y for every closed subset V of X.

Definition 2.7[32]: A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called almost continuous if $f^{-1}(V)$ is closed set in (X, τ) for each regular closed set V in (Y, σ).

III. $\beta w g$ CONTINUOUS FUNCTIONS AND $\beta w g$ IRRESOLUTE FUNCTIONS

In this section, we introduce $\beta w g$-continuous functions and study some of their properties in the following

Definition 3.1: A function $f: X \rightarrow Y$ is called $\beta w g$-continuous if $f^{-1}(V)$ is $\beta w g$-closed set in X for every closed set V in Y.

Theorem 3.2 (i) Every continuous function is β wg-continuous function and thus every precontinuous function, every α-continuous function and every regular continuous function is β wg-continuous function.
(ii) Every $\beta w g$-continuous function is β-continuous function

Proof: Obvious
The converse of the above theorem need not be true as seen in the following example.

Example 3.3: Let $X=Y=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\varphi,\{\mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$, $\mathrm{Y}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be defined $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{d}, \mathrm{f}(\mathrm{c})=\mathrm{a}, \mathrm{f}(\mathrm{d})=\mathrm{b}$. Then the function f is $\beta \mathrm{wg}$-continuous but not continuous. Since, $\{a\}$ is a closed set of $Y, f^{-1}(\{a\})=\{c\}$ is β wg-closed in X but not closed in X.

Example 3.4: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, $Y\}$. Let $f: X \rightarrow Y$ be defined by $f(a)=a, f(b)=b, f(c)=c$ and $f(d)=d$. Then the function f is βw-continuous but not pre-continuous. Since, $\{a, d\}$ is a closed set of $Y, f^{-1}(\{a, d\})=\{a, d\}$ is β wg-closed in X but not pre-closed in X.

Example 3.5: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\varphi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$. Now $\beta \mathrm{wgC}(\mathrm{X})=$ $\{\varphi,\{a\},\{b\},\{c\},\{d\},\{a, c\},\{a, d\},\{b, c\}, b, d\},\{c, d\},\{a, c, d\},\{b, c, d\}, X\}$. Let $f: X \rightarrow Y$ be a function defined by $f(a)=a$, $f(b)=b, f(c)=c, f(d)=d$. Then the function f is $\beta w g$-continuous but not α-continuous. Since, $\{a, c, d\}$ is a closed set of $Y, f^{-1}(\{a, c, d\})=\{a, c, d\}$ is $\quad \beta w$-closed in X but not α-closed set in X.

Example 3.6: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\varphi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}$.Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $f(a)=a, f(b)=b$ and $f(c)=c$. The function f is $\beta w g$-continuous but not regular continuous. Since, $\{a, c\}$ is a closed set of $Y, f^{-1}(\{a, c\})=\{a, c\}$ is βw g-closed in X but not regular-closed set in X.

Example 3.7: Let $X=\{a, b, c, d\}=Y, \tau=\{\varphi,\{a, b\}, X\}$ and $\sigma=\{\varphi,\{c\},\{d\},\{c, d\}, Y\}$ be topologies on X. Let $f:$ $X \rightarrow Y$ be a function defined by $f(a)=a, f(b)=b, f(c)=c, f(d)=d$. The function f is β-continuous but not β wgcontinuous. Since, $\{a, c\}$ is closed set in $Y, f^{-1}(\{a, c\})=\{a, c\}$ is not β wg-closed but it is β-closed in X.

Remark 3.8: β wg-continuity is independent of semi-continuity as seen from the following example.

Example 3.9: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with topologies, $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}$, $\varphi,\{c\},\{b, c\},\{a, c, d\}\}$. Let $f: X \rightarrow Y$ be a function defined by $f(a)=c, f(b)=b, f(c)=d, f(d)=a$. Then the function f is
semi-continuous and β-continuous but not β wg-continuous, since $\mathrm{f}^{-1}(\{b\})=\{b\}$ is both semi-closed and β-closed but not $\beta w g$-closed in X .

Example 3.10: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with topologies, $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function defined by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{b}$ and $\mathrm{f}(\mathrm{d})=\mathrm{d}$. Then the function f is $\beta \mathrm{wg}$ continuous but not semi-continuous and β-continuous, since $\mathrm{f}^{-1}(\{\mathrm{~b}\})=\{\mathrm{c}\}$ is not semi-closed and semi-preclosed but it is βw g-closed in X .

Theorem 3.11: If a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous, then the following holds.
(i) If f is $\beta \mathrm{wg}$-continuous, then f is $\mathrm{g} * \mathrm{p}$-continuous,
(ii) If f is $\beta \mathrm{wg}$-continuous, then f is gs-continuous (resp. gp-continuous, gsp-continuous, gpr-continuous, $\alpha \mathrm{g}$ continuous).
(iii) If f is $\beta w g$-continuous, then f is mg-continuous and thus rg-continuous, g-continuous, wg-continuous, rwgcontinuous.

Proof: (i) Let V be a closed set in Y. Since f is $\beta \mathrm{wg}$-continuous, then $\mathrm{f}^{-1}(\mathrm{~V})$ is $\beta w g$-closed in X. Since every $\beta \mathrm{wg}$ closed set is
$g * p$-closed then $f^{-1}(V)$ is $g * p$-closed in X. Hence f is $g * p$-continuous.
Similarly we can prove (ii).

The converse of the above theorem need not be true as seen from the following example.
Example 3.12: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\varphi,\{\mathrm{c}\}, \mathrm{Y}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an Identity function, defined by $f(a)=a, f(b)=b, f(c)=c, f(d)=d$. Then the function f is gpr-continuous but not $\beta w g$ continuous. Since, $\{a, b\}$ is a closed set of $Y, f^{-1}(\{a, b\})=\{a, b\}$ is not βw-closed in X but it is gpr-closed set in X.

Example 3.13: Let $X=Y=\{a, b, c, d\}, \tau=\{\varphi,\{a\},\{b\},\{a, b\},\{a, b, c\}, X\}$ and $\sigma=\{\varphi,\{c\},\{a, b, d\}, Y\}$. Let f : $X \rightarrow Y$ be a function defined by $f(a)=b, f(b)=a, f(c)=c$ and $f(d)=d$. Then the function f is $g^{*} p$-continuous but not $\beta w g$-continuous. Since, $\{a, b, d\}$ is a closed set of $Y, f^{-1}(\{a, b, d\})=\{a, b, d\}$ is not $\beta w g$-closed in X but it is g^{*} p-closed set in X.

Example 3.14: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\varphi,\{\mathrm{a}\}, \mathrm{X}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$. Now $\operatorname{GpC}(\mathrm{X})=\{\mathrm{X}, \varphi,\{\mathrm{b}\}$, $\{c\},\{a, b\},\{a, c\},\{b, c\}\}=\operatorname{GsC}(X)=\operatorname{GspC}(X)=\alpha G C(X)=\operatorname{GC}(X)$ and $\beta w g C(X)=\{\varphi,\{b\},\{c\},\{b, c\}, X\}$. Define a function $f: X \rightarrow Y$ by $f(a)=a, f(b)=c$ and $f(c)=b$. The f is gp-continuous (resp. gsp-continuous, gs-continuous, αg-continuous, g-continuous) function but not $\beta w g$-continuous. Since, $\{a, b\}$ is a closed set of $Y, f^{-1}(\{a, b\})=\{a, c\}$ is not βw g-closed in X .

Example 3.15: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\varphi,\{\mathrm{a}\}, \mathrm{X}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$.
Now $\operatorname{rgC}(X)=P(X)$ and $\beta w g C(X)=\{X, \varphi,\{b\},\{c\},\{b, c\}\}$. Define a function $f: X \rightarrow Y$ by $f(a)=c, f(b)=b$ and $f(c)=a$. Then f is rg-continuous function but not β wg-continuous. Since, for the closed set $\{a, c\}$ in $Y, f^{-1}(\{a, c\})=$ $\{\mathrm{a}, \mathrm{c}\}$ is not $\beta \mathrm{wg}$-closed but it is rg-closed in X .

Example 3.16: Let $X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}=\mathrm{Y}, \tau=\{\varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}$. Define a function $\mathrm{f}: ~ X \rightarrow Y$ by $\mathrm{f}(\mathrm{a})=\mathrm{d}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{c}$ and $\mathrm{f}(\mathrm{d})=\mathrm{b}$. Then f is mg-continuous function but not Bwg-
continuous. Since, for the closed set $\{a, b, d\}$ in $Y, f^{-1}(\{a, b, d\})=\{a, b, d\}$ is not β wg-closed but it is mg-closed in X.

Example 3.17: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}=\mathrm{Y}, \tau=\{\varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. Define a function $f: X \rightarrow Y$ by $f(a)=b, f(b)=a, f(c)=c$ and $f(d)=d$. Then the function f is wg-continuous but not $\beta w g$ continuous. Since, for the closed set $\{a, b, d\}$ in $Y, f^{-1}(\{a, b, d\})=\{a, b, d\}$ is $m g$-closed but not β wg-closed X.

Example 3.18: Let $X=\{a, b, c, d\}=Y, \tau=\{\varphi,\{a\},\{b\},\{b\},\{d\},\{a, b\},\{a, d\},\{b, d\},\{a, b, d\},\{a, b\}, X\}$ and $\sigma=\{Y, \varphi,\{c\},\{b, c\},\{c, d\},\{a, c, d\},\{b, c, d\}\}$. Define a function $f: X \rightarrow Y$ by $f(a)=b, f(b)=a, f(c)=c$ and $f(d)=d$. Then the function f is rwg-continuous but not $\beta w g$-continuous. Since, for the closed set $\{a, b, d\}$ in $Y, f^{-1}(\{a, b, d\})$ $=\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$ is rwg-closed but not $\beta \mathrm{wg}$-closed X.

Theorem 3.19: Every (gsp)*-continuous function is $\beta w g$-continuous function and thus every $\alpha g^{*} p$-continuous function is
$\beta \mathrm{wg}$-continuous function.
(ii) Every gp^{*}-continuous function and every $\alpha \mathrm{g}^{*}$-continuous function is $\beta \mathrm{wg}$-continuous.

The converse of the above theorem need not be true as shown in the following example.
Example 3.20: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}, \mathrm{b}\}\}$. Let f : $X \rightarrow Y$ be a function defined by $f(a)=a, f(b)=b$ and $f(c)=c$. Then the function f is β wg-continuous but not (gsp)*continuous. Since, for the closed set $\{\mathrm{c}\}$ in $\mathrm{Y}, \mathrm{f}^{-1}(\{\mathrm{c}\})=\{\mathrm{c}\}$ is $\beta \mathrm{wg}$-closed but not $(\mathrm{gsp})^{*}$-closed in X .

Example 3.21: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ be given the topologies $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}\}$. Let $f: X \rightarrow Y$ be a function defined by $f(a)=a, f(b)=b, f(c)=c$ and $f(d)=d$. Then the function f is $\beta w g$-continuous but not αg^{*} p-continuous. Since, the set $\{b, d\}$ is closed in $Y, f^{-1}(\{b, d\})=\{b, d\}$ is $\beta w g$-closed set but not $\alpha g^{*} p$ closed set in X.

Example 3.22: $\operatorname{Let} \mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\mathrm{X}, \varphi,\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$.
Now $g p^{*} C(X)=\{X,\{c\}\}$ and $\beta \mathrm{wgC}(X)=\{X, \varphi,\{a\},\{b\},\{c\},\{a, c\},\{b, c\}\}$. Define a function $f: X \rightarrow Y$ be an Identity function. Then f is $g p^{*}$-continuous function but not $\beta w g$-continuous. Since, for the closed set $\{b, c\}$ in Y, f^{-} ${ }^{1}(\{b, c\})=\{b, c\}$ is $\beta \mathrm{wg}$-closed but not gp^{*}-closed in X .

Example 3.23: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\mathrm{X}, \varphi,\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $f(a)=a, f(b)=c, f(c)=b$, . Then f is $ß w g-c o n t i n u o u s ~ f u n c t i o n ~ b u t ~ n o t ~ a g *-c o n t i n u o u s . ~ S i n c e, ~ f o r ~ t h e ~ c l o s e d ~ s e t ~\{c\} ~$ in $Y, f^{-1}(\{c\})=\{b\}$ is $\beta w g$-closed set but not αg^{*}-closed set in X.

Remark 3.24: The following examples shows that Bwg-continuous functions are independent of g-continuous, g*continuous, gs-continuous, sg-continuous and α g-continuous.

Example 3.25: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}$ with topologies $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an Identity function. Then the function f is $\beta \mathrm{wg}$-continuous but not $\mathrm{g}, \mathrm{g}^{*}, \mathrm{sg}, \mathrm{gs}$ and $\alpha \mathrm{g}$-continuous. Since, for $\{b\}$ is closed set in $Y, f^{-1}(\{b\})=\{b\}$ is $\beta w g$-closed but not g-closed, g-closed, g^{*}-closed, gs-closed, sgclosed, $\alpha \mathrm{g}$ - closed sets in X .

Example 3.26: Let $X=\{a, b, c, d\}=Y$, with topologies $\tau=\{\varphi,\{a\}, b\},\{a, b\},\{a, b, c\}, X\}$ and $\sigma=\{\varphi,\{c\},\{b, c\},\{a$, $c\},\{a, b, c\}, Y\}$. Let $f: X \rightarrow Y$ be defined by $f(a)=b, f(b)=a, f(c)=c, f(d)=d$. Then the function f is $g, g^{*}, s g$, gs, α-continuous, but not β wg-continuous, since $f^{-1}(\{a, b, d\})=\{a, b, d\}$ is not β wg-closed.

Remark 3.27: From the above discussions and known results we have the following implications.
$\mathrm{A} \longrightarrow \mathrm{B}$ means A implies B but not conversely.
$\mathrm{A} \longleftrightarrow \mathrm{B}$ means A and B are independent.

Diagram

IV. CHARACTERISTICS OF $\beta \mathbf{w g}$-CONTINUITY

Theorem 4.1: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a map .Then the following conditions are equivalent:
(i) f is $\beta w g$-continuous.
(ii) The inverse image of each open set in Y is β wg-open in X .
(iii) $f(\beta \operatorname{wg}-\mathrm{cl}(\mathrm{A})) \subseteq \operatorname{cl}(f(\mathrm{~A}))$ for each subset A of X .
(iv) For each subset B of $Y, \beta w g-c l\left(f^{-1}(B)\right) \subseteq f^{-1}(\operatorname{cl}(B))$

Proof: $(\mathbf{i}) \Rightarrow\left(\right.$ ii): Let U be an open set in Y. Then $Y \backslash U$ is closed in Y. By hypothesis, $f^{-1}(Y \backslash U)=X \backslash f^{-1}(U)$ is $\beta w g$-closed in X. Hence $f^{-1}(G)$ is $\beta w g$-open in X.
(ii) $\Rightarrow(\mathbf{i})$: Let U be a closed set in Y. Then $Y \backslash U$ is open in Y. By hypothesis, $f^{-1}(Y \backslash U)=X \backslash f^{-1}(U)$ is $\beta w g$ - open in X. Therefore $f^{-1}(U)$ is $\beta w g$-closed in X. Hence f is $\beta w g$-continuous.
(i) \Rightarrow (iii): Let G be a subset of X. Since $G \subseteq f^{-1}(f(G))$ and $f(G) \subseteq c l(f(G))$, we have $G \subseteq f^{-1}(f(G)) \subseteq f^{-1}(c l(f(G)))$. Therefore by assumption $f^{-1}\left(\mathrm{cl}(\mathrm{f}(\mathrm{G}))\right.$) is $\beta \mathrm{wg}$-closed set of X. Hence $\beta \mathrm{wg}-\mathrm{cl}(\mathrm{G}) \subseteq \mathrm{f}^{-1}(\mathrm{cl}(\mathrm{f}(\mathrm{G})))$. Thus $\mathrm{f}(\beta \mathrm{wg}-\mathrm{cl}(\mathrm{G}))$ $\subseteq \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{cl}(\mathrm{f}(\mathrm{G}))) \subseteq \operatorname{cl}(\mathrm{f}(\mathrm{G}))\right.$.
(iii) $\Rightarrow(\mathbf{i v})$: Let B be a subset of Y and $f(G)=B$. So by assumption, $f(\beta w g-c l(G))=f\left(\beta w g-c l\left(f^{-1}(B)\right)\right)$. Therefore $B W g-c l\left(f^{-1}(B)\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}\left(\beta \mathrm{Wg}-\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)\right) \subseteq \mathrm{f}^{-1}(\mathrm{cl}(\mathrm{B}))$.
$(\mathbf{i v}) \Rightarrow(\mathbf{i})$: Let B be a closed set in Y. Then by assumption, $\beta \mathrm{wg}-\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subseteq \mathrm{f}^{-1}(\mathrm{cl}(\mathrm{B}))=\mathrm{f}^{-1}(\mathrm{~B})$.Therefore $\mathrm{f}^{-1}(\mathrm{~B})$ is $\beta \mathrm{wg}$-closed set in X. Hence f is $\beta \mathrm{wg}$-continuous.

Theorem 4.2: Let A be a subset of a topological space X. Then $x \in \beta w g-c l(A)$ if and only if for any $\beta w g$-openset U containing $x, A \cap U \neq \varphi$.

Proof: Let $x \in \beta w g-c l(A)$ and suppose that there is a $\beta w g$-open set U in X such that $x \in U$ and $A \cap U=\varphi$ implies that $A \subseteq X \backslash U$ which is $\beta w g$-closed in X implies $\beta w g$-cl $(A) \subseteq \beta w g-c l(X \backslash U)=X \backslash U$. Since $x \in U$ implies that x $\notin X \backslash U$ implies that
$x \notin \beta w g C l(A)$, this is a contradiction. Conversely, suppose that, for any $\beta w g$ - open set U containing $x, A \cap U \neq \varphi$. To prove that $x \in \beta w g-c l(A)$. Suppose that $x \notin \beta w g-c l(A)$ then there is a $\beta w g$-closed set F in X such that $x \notin F$ and $A \subseteq F$. Since $x \notin F$ implies that $x \in X \backslash F$ which is Bwg-open in X. Since $A \subseteq F$ implies that $A \cap(X \backslash F)=\varphi$, this is a contradiction. Thus $x \in \beta w g-c l(A)$.

Theorem 4.3: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function from a topological space X into a topological space Y . If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\beta \mathrm{wg}$ continuous then $f(\beta \operatorname{wg}-\mathrm{cl}(\mathrm{A})) \subseteq \mathrm{cl}(\mathrm{f}(\mathrm{A}))$ for every subset A of X .

Proof: Since $f(A) \subseteq \operatorname{cl}(f(A))$ then $A \subseteq f^{-1}(\operatorname{cl}(f(A)))$. Since $\operatorname{cl}(f(A))$ is a closed set in Y and f is $\beta w g$ - continuous then by definition $f^{-1}(\operatorname{cl}(f(A)))$ is a $\beta w g-c l o s e d ~ s e t ~ i n ~ X ~ c o n t a i n i n g ~ A . ~ H e n c e ~ B w g-c l(A) \subseteq f^{-1}(c l(f(A)))$. Therefore $\mathrm{f}(\beta \mathrm{wg}-\mathrm{cl}(\mathrm{A})) \subseteq \operatorname{cl}(\mathrm{f}(\mathrm{A}))$.

The converse of the above theorem need not be true as shown in the following example

Example 4.4: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{\varphi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}$.
Define a function $f: X \rightarrow Y$ by, $f(a)=a, f(b)=b$ and $f(c)=c$. For every subset A of $X, f(\beta w g-c l(A)) \subseteq c l(f(A))$ holds. But f is not $\beta w g$-continuous, since $\{c\}$ is closed set in $Y, f^{-1}(\{c\})=\{c\}$ which is not β wg-closed set in X.

Theorem 4.5: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. Then the following statements are equivalent:
(i) For each $x \in X$ and each open set V containing $f(x)$ there exists a β wg-open set U containing x such that $f(U) \subset$ V.
(ii) $f(\beta w g-c l(A)) \subset \operatorname{cl}(f(A))$ for every subset A of X.

Proof: (i) \Rightarrow (ii): Let $y \in f(\beta w g-c l(A))$ then there exists an $x \in \beta w g-c l(A)$ such that $y=f(x)$. LetV be any open neighbourhood of y. Since $x \in \beta w g$-cl(A), there exists a $\beta w g$-open set U such that $x \in U$ and $U \cap A \neq \varphi, f(U) \subset V$. Since $U \cap A \neq \varphi, f(A) \cap V \neq \varphi$. Therefore $y=f(x) \in c l(f(A))$.Hence $f(\beta w g-c l(A)) \subset c l(f(A))$.
(ii) \Rightarrow (i): Let $x \in X$ and V be any open set containing $f(x)$. Let $A=f^{-1}(Y \backslash V)$. Since $f(\beta w g-c l(A)) \subset c l(f(A)) \subset$ $Y \backslash V$ then $(\beta w g-c l(A)) \subset f^{-1}(Y \backslash V)=A$. Hence $\beta w g-c l(A)=A$. Since $f(x) \in V \Rightarrow x \in f^{-1}(V) \Rightarrow x \notin A \Rightarrow x \notin \beta w g$ $\operatorname{cl}(A)$. Thus there exists an open set U containing x such that $U \cap A=\varphi$. Therefore $f(U) \subset V$.

Definition 4.6: Let be a topological spaces. Then
(i) a space (X, τ) is called ${ }_{\beta w g} T_{b}$-space if every $\beta w g$-closed is closed.
(ii) a space (X, τ) is called ${ }_{\beta w g} T_{d}$ - space if every $\beta w g$-closed is g-closed.
(iii) a space (X, τ) is called $\beta w g-T_{1 / 2}$ space if every $\alpha g^{*} \mathrm{p}$-closed is preclosed.
(iv) a space (X, τ) is called ${ }_{\beta w g} T_{\alpha}$-space if every $\beta_{w g}$-closed set is α-closed set.

Theorem 4.7: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. Let (X, τ) and (Y, σ) be any two spaces such that $\tau_{\text {Bwg }}$ is a topology on X . Then the following statements are equivalent:
(i) For every subset A of $\mathrm{X}, \mathrm{f}(\beta \mathrm{wg}-\mathrm{cl}(\mathrm{A})) \subseteq \operatorname{cl}(\mathrm{f}(\mathrm{A}))$ holds.
(ii) $\quad \mathrm{f}:\left(\mathrm{X}, \tau_{\beta w g}\right) \rightarrow(\mathrm{Y}, \sigma)$ is continuous.

Proof: Suppose (i) holds. Let A be closed in Y. By hypothesis $\mathrm{f}\left(\beta \mathrm{wg}-\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~A})\right)\right) \subseteq \operatorname{cl}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~A})\right)\right) \subseteq(\mathrm{A})=\mathrm{A}$.
Also $f^{-1}(A) \subseteq \beta w g-c l\left(f^{-1}(A)\right)$. Hence $\beta w g-c l\left(f^{-1}(A)\right)=f^{-1}(A)$. This implies $f^{-1}(A) \in \tau_{\beta w g}$. Thus $f^{-1}(A)$ is closed in ($\mathrm{X}, \tau_{\beta \mathrm{wg}}$) and so f is continuous. This proves (ii).

Suppose (ii) holds. For every subset A of $X, \operatorname{cl}(f(A))$ is closed in Y. Since $f:\left(X, \tau_{\beta w g}\right) \rightarrow(Y, \sigma)$ is continuous, $\mathrm{f}^{-1}(\mathrm{cl}(\mathrm{A}))$ is closed in $\left(\mathrm{X}, \tau_{\text {Bwg }}\right)$. By definition, $\beta \mathrm{wg}-\mathrm{cl}\left(\mathrm{f}{ }^{-1}(\mathrm{cl}(\mathrm{f}(\mathrm{A})))\right)=\mathrm{f}^{-1}(\mathrm{cl}(\mathrm{f}(\mathrm{A})))$.

Now we have, $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\operatorname{cl}(f(A)))$ and by $\beta w g-c l o s u r e, ~ \beta w g-c l(A) \subseteq \beta w g-c l\left(f^{-1}(\operatorname{cl}(f(A)))=f^{-1}(\operatorname{cl}(f(A))\right.$. Therefore $\mathrm{f}(\beta \mathrm{wg}-\mathrm{cl}(\mathrm{A})) \subseteq \operatorname{cl}(\mathrm{f}(\mathrm{A}))$. This proves (i).

Remark 4.8: The Composition of two $\beta \mathrm{wg}$-continuous functions need not be $\beta \mathrm{wg}$-continuous function and but the following is valid.

Example 4.9: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}=\mathrm{Z}$, with topologies $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}, \sigma=\{\mathrm{Y}, \varphi,\{\mathrm{b}, \mathrm{c}\}$, $\{a, b, c\}, Y\}$ and $\eta=\{Z, \varphi,\{a\}\}$. Define $g: Y \rightarrow Z$ by $g(a)=b, g(b)=c, g(c)=a, g(d)=d$ and define $f: X \rightarrow Y$ by $f(a)=b, f(b)=d, f(c)=c, f(d)=a$. Then both f and g are $\beta w g$-continuous functions. But gof is not $\beta w g-$ continuous function, since
$(g \circ f)^{-1}(\{b, c, d\})=f^{-1}\left[g^{-1}(\{b, c, d\})\right]=f^{-1}(\{a, b, d\})=\{a, b, c\}$ is not a Bwg-closed set in X.

Theorem 4.10: Let $f: X \rightarrow Y$ is ßwg-continuous function and $g: Y \rightarrow Z$ is continuous function then $g \circ f: X \rightarrow Z$ is ßwg-continuous.

Proof: Obvious.

Easy proofs of the following Theorems are omitted.

Theorem 4.11: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\beta \mathrm{wg}$ - continuous function and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is $\beta \mathrm{wg}$ - continuous function and Y is $\beta \mathrm{wg}$ T_{b} space then gof: $\mathrm{X} \rightarrow \mathrm{Z}$ is $\beta \mathrm{wg}$-continuous.

Theorem 4.12: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\beta \mathrm{wg}$-continuous function and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is $\alpha \mathrm{g}$-continuous function and Y is ${ }_{\alpha} \mathrm{T}_{\mathrm{b}}$ space then gof: $\mathrm{X} \rightarrow \mathrm{Z}$ is $\beta \mathrm{wg}$-continuous.

Theorem 4.13: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\beta \mathrm{wg}$-continuous function and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is α-continuous function and Y is α - space then gof: $\mathrm{X} \rightarrow \mathrm{Z}$ is $ß \mathrm{wg}$-continuous function.

Definition 4.14: A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called a β wg-irresolute if $\mathrm{f}^{-1}(\mathrm{~V})$ is β wg-closed set in (X, τ) for every $\beta \mathrm{wg}$-closed set V in (Y, σ).

Definition 4.15: A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called $\beta w g$-closed if $f(V)$ is $\beta w g$-closed set in (Y, σ) for every closed set V in (X, τ).

Definition 4.16: A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called $\beta w g$-open if $\mathrm{f}(\mathrm{V})$ is $\beta \mathrm{wg}$ - open set in (Y, σ) for every open set V in (X, τ).

Theorem 4.17: (i) Every α-irresolute function is $\beta w g$-continuous.
(ii) Every $\beta w g$-irresolute function is $\beta w g$-continuous.
(iii) Every β-irresolute function is $\beta w g$-irresolute.

Proof: Obvious
The converse of the above theorem (ii) need not be true it can be seen from the following example.

Example 4.18: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}, \mathrm{b}\}\}$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $\mathrm{f}(\mathrm{a})=$ $b, f(b)=a, f(c)=d$ and $f(d)=c$. Then f is $\beta w g$-continuous but not $\beta w g$-irresolute, since for the closed set $\{b, c, d\}$ in $\mathrm{Y}, \mathrm{f}^{-1}(\{\mathrm{~b}, \mathrm{c}, \mathrm{d}\})=\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}$ is not a $\beta \mathrm{wg}$-closed set in X .

Theorem 4.19: Let $f: X \rightarrow Y$ is $\beta w g$-irresolute function and $g: Y \rightarrow Z$ is $\beta w g$-irresolute function then gof: $X \rightarrow Z$ is $\beta \mathrm{wg}$-irresolute.

Proof: Let g be $\beta w g$-irresolute function and V be any $\beta w g$ - open set in Z then $g^{-1}(V)$ is $\beta w g$-open in Y. Since f is $\beta w g$-irresolute, $\quad f^{-1}\left(g^{-1}(V)\right)=(\mathrm{gof})^{-1}(\mathrm{~V})$ is $\beta \mathrm{wg}$-open in X . Hence gof is $\beta \mathrm{wg}$-irresolute.

Theorem 4.20: If a map $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\beta \mathrm{wg}$-irresolute, if and only if the inverse image $\mathrm{f}^{-1}(\mathrm{~V})$ is $\beta \mathrm{wg}$-open set in X for every ßwg-open set V in Y .

Proof: Obvious.

Theorem 4.21: If a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\beta \mathrm{wg}$-irresolute, then for every subset A of $\mathrm{X}, \mathrm{f}(\beta \mathrm{wg}-\mathrm{cl}(\mathrm{A}) \subseteq$ $\alpha \operatorname{cl}(f(\mathrm{~A}))$.

Proof: If $A \subseteq X$ then consider $\alpha c l(f(A))$ which is $\beta w g$-closed in Y. Since f is $\beta w g$-irresolute, $f^{-1}(\alpha c l(f(A)))$ is $\beta w g-$ closed in X. Furthermore $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\alpha c l(f(A)))$. Therefore by $\beta w g$-closure, $\beta w g-c l(A) \subseteq f^{-1}(\alpha c l(f(A)))$, consequently,
$\mathrm{f}\left(\beta \mathrm{wg}-\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{f}\left(\mathrm{f}^{-1}(\alpha \mathrm{cl}(\mathrm{f}(\mathrm{A})))\right) \subseteq \alpha \operatorname{clf}((\mathrm{A}))\right.$.

Theorem 4.22: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ be any two functions. Then
(i) $\quad \mathrm{g}$ of: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is $\beta w g$-continuous if g is regular-continuous and f is $\beta \mathrm{wg}$-irresolute.
(ii) $\quad \mathrm{gof}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is $\beta \mathrm{wg}$-irresolute if g is $\beta w \mathrm{w}$-irresolute and f is $\beta \mathrm{wg}$-irresolute.
(iii) $\quad \mathrm{g}$ of: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is $\beta \mathrm{wg}$-continuous if g is $\beta \mathrm{wg}$-continuous and f is $\beta w g$-rresolute.

Proof: (i) Let U be an open set in (Z, η). Since g is regular-continuous, $g^{-1}(U)$ is regular-open set in (Y, σ). Since every regular-open is $\beta w g$-open then $g^{-1}(U)$ is $\beta w g$-open in Y. Since f is $\beta w g$-irresolute then $f^{-1}\left(g^{-1}(U)\right)$ is a $\beta w g-$ open set in (X, τ). Thus
$(\text { gof })^{-1}(U)=f^{-1}\left(g^{-1}(U)\right)$ is a $ß w g$-open set in (X, τ) and hence $g \circ f$ is $ß w g$-continuous.
Similarly we can prove (ii) and (iii).
Theorem 4.23: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ be any two functions. Then gof: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is $\beta \mathrm{wg}-$ continuous
(i) if g is α-continuous and f is $\beta w g$-irresolute.
(ii) if g is $g p^{*}$-continuous and f is $\beta w g$-irresolute.
(iii) if g is $(\mathrm{gsp})^{*}$ - continuous and f is $\beta \mathrm{wg}$-irresolute.
(iv) if g is $\alpha g^{*} p$-continuous and f is $\beta w g$-rresolute.

Proof: Obvious.

Theorem 4.24: Let (X, τ) be topological space. Then
(i) Every $\beta w g-T_{b}$ space is $\beta w g-T_{1 / 2}$ space
(ii) Every $\beta w g-T_{b}$ space is $\beta w g-T_{d}$ - space.

Proof: It follows from the definitions and the fact that every closed set is g-closed.

Theorem 4.25: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function then,
(i) If f is $\beta \mathrm{wg}$-irresolute and X is $\beta \mathrm{wg}$ - $\mathrm{T}_{1 / 2}$ space, then f is pre-irresolute.
(ii) If is $\beta w g$-continuous and X is $\beta \mathrm{wg}-\mathrm{T}_{1 / 2}$ space, then f is pre-continuous.
(iii) If f is $\beta \mathrm{wg}$-irresolute and X is $\beta \mathrm{wg}$ - T_{α}-space, then f is α-irresolute.

Proof: (i) Let V be pre-closed in Y, then V is $\beta w g$-closed in Y. Since f is $\beta w g$-irresolute, $f^{-1}(V)$ is $\beta w g$-closed in X. Since X is $\beta \mathrm{wg}$ - $\mathrm{T}_{1 / 2}$ space, $\mathrm{f}^{-1}(\mathrm{~V})$ is pre-closed in X . Hence f is pre-irresolute.
(ii) Let V be closed in Y. Since f is $\beta w g$-continuous, $f^{-1}(V)$ is $\beta w g$-closed in X. Since X is $\beta w g-T_{1 / 2}$ space, $f^{-1}(V)$ is pre-closed. Therefore f is pre-continuous.
(iii) Let V be α-closed in Y, then V is $\beta w g$-closed in Y. Since f is $\beta w g$-irresolute, $f^{-1}(V)$ is $\beta w g$-closed in X. Since X is $\beta \mathrm{wg}-\mathrm{T}_{\alpha}$-space, $\mathrm{f}^{-1}(\mathrm{~V})$ is α-closed in X . Hence f is α-irresolute.

Theorem 4.26: A function $\mathrm{f}: \mathrm{X}_{\rightarrow} \mathrm{Y}$ be a bijection. Then the following are equivalent:
(i) f is $\beta \mathrm{wg}$-open,
(ii) f is $\beta \mathrm{wg}$-closed,
(iii) f^{-1} is $\beta w g$-irresolute.

Proof: Suppose f is $\beta w g$-open. Let F be $\beta w g$-closed in X. Then $X \backslash F$ is $\beta w g$-open. By definition, $f(X \backslash F)$ is $\beta w g$ open. Since f is bijection, $Y \backslash f(F)$ is $ß w g$-open in Y. Therefore f is $\beta w g$-closed. This proves (i) \Rightarrow (ii).

Let $g=f^{-1}$. Suppose f is $\beta \mathrm{wg}$-closed. Let V be $\beta w g$-open in X. Then $X \backslash V$ is $\beta w g$-closed in X. Since f is $\beta w g$-closed, $f(X \backslash V)$ is $\beta w g$ - closed. Since f is a bijection, $Y \backslash f(V)$ is $\beta w g$-closed that implies $f(V)$ is $\beta w g$-open in Y. Thus g^{-1} (V) is $\beta \mathrm{wg}$-open in Y . Therefore f^{-1} is $\beta \mathrm{wg}$-irresolute. This proves (ii) \Rightarrow (iii).

Let V be $\beta w g$-open in X. Then $X \backslash V$ is $\beta w g$-closed in X. Since f^{-1} is $\beta w g$ - irresolute and $\left(f^{-1}\right)^{-1}(X \backslash V)=f(X \backslash V)=$ $Y \backslash f(V)$ is $ß w g$-closed in Y that implies $f(V)$ is $ß w g$-open in Y. Therefore f is $ß w g$-open. This proves (iii) \Rightarrow (i).

Theorem 4.27: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a bijective, $\alpha \mathrm{g}$-irresolute and β-closed function. Then $\mathrm{f}(\mathrm{A})$ is $\beta \mathrm{wg}$-closed in Y for every $\beta \mathrm{wg}$-closed set A of X .

Proof: Let A be $\beta \mathrm{wg}$-closed in (X, τ). Let V be $\alpha \mathrm{g}$-open set of $\left(\mathrm{Y}, \sigma\right.$) containing $\mathrm{f}(\mathrm{A})$. Since f is $\alpha \mathrm{g}$-irresolute, f^{-} ${ }^{1}(V)$ is αg-open in X. Since $A \subseteq f^{-1}(V)$ and A is $\beta w g$-closed, $ß c l(A) \subseteq f^{-1}(V)$. Since f is bijective and β-closed function, $f(ß \operatorname{cl}(A))=\operatorname{cl}(f(\beta \operatorname{cl}(A))$. Now $ß \operatorname{cl}(f(A)) \subseteq ß \operatorname{cl}(f(ß c l(A))=f(\beta \operatorname{cl}(A)) \subseteq V$. Hence $f(A)$ is $ß w g$-closed set in Y.

V. ON ALMOST Bwg-CONTINUOUS FUNCTION

We define and obtain some their properties the following
Definition 5.1: A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called almost $\beta w g$-continuous if $f^{-1}(V)$ is $\beta w g$-closed set in (X, τ) for each regular closed set V in (Y, σ).

Theorem 5.2: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\beta \mathrm{wg}$-continuous function. Then it is almost $\beta \mathrm{wg}$-continuous.
Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a $\beta \mathrm{wg}$-continuous function. Let V be a regular closed set in Y . Since f is continuous, $\mathrm{f}^{-1}(\mathrm{~V})$ is closed in X. Since every regular closed set is a closed set and hence $f^{-1}(V)$ is $\beta w g$-closed in X. Therefore f is almost $\beta w g$-continuous function.

The converse of the above theorem need not be true as seen in the following example.

Example 5.3: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\varphi,\{\mathrm{a}\}, \mathrm{X}\}$ and $\sigma=\{\varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}$. Now $\mathrm{RC}(\mathrm{X}, \tau)=\{\mathrm{Y}, \varnothing\}$ and $\beta w g C(X, \tau)=\{\varphi,\{b\},\{c\},\{b, c\}, X\}$. Define function $f: X \rightarrow Y$ be defined by $f(a)=c, f(b)=a, f(c)=b$. Then the function f is almost $\beta \mathrm{wg}$-continuous but not $\beta \mathrm{wg}$-continuous. Since, $\{c\}$ is a closed set of $\mathrm{Y}, \mathrm{f}^{-1}(\{\mathrm{c}\})=\{\mathrm{a}\}$ is not Bwg-closed in X.

Theorem 5.4: If X is $a_{\beta w g} T_{b}$ space and the function $f:(X, \tau) \rightarrow(Y, \sigma)$ is almost $\beta w g$-continuous then f is almost continuous.

Proof: Obvious.

VI. CONCLUSIONS

In this article we have focused on β wg-closed sets, $\beta w g$-continuity and its characteristics and $\beta w g$-irresolute functions in topological spaces. Further with help these functions almost $\beta \mathrm{wg}$-continuous functions were studied.

ACKNOWLEDGMENT

The authors would like to gratitude thanks the referees for useful comments and suggestions.

REFERENCES

[1] M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull. Fac.Sci. Assiut Univ., 12(1983), 77-90.
[2] M.E.Abd El-Monsef, R.A.Mahmoud and E.R.Lasin, β-closure and β-interior, J.Fac. Ed. Ain Shams Univ.10(1986),235-245.
[3] D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1) (1986), 24-32.
[4] I.Arokiarani, K.Balachandran and J.Dontchev, Some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci.Kochi. Univ. Ser.A. Math., 20(1999), 93-104.
[5] S. P. Arya and R. Gupta, On strongly continuous functions, Kyungpook Math. J., 14(1974), 131-143.
[6] K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi Univ. Ser.A, Math., 12(1991), 5-13.
[7] P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian. Math., 29(3) (1987), 375-382.
[8] R.Devi, K.Balachandran and H.Maki, Generalized α-closed maps and α-generalized closed maps, Indian J. Pure. Appl. Math., 29(1)(1998), 37-49.
[9] R.Devi H.Maki and K.Balachandran, Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 14(1993), 41-54.
[10] J.Dontchev, On generalizing semipreopen sets, Mem.Fac.Sci.Kochi Uni.Ser A, Math., 16(1995), 35-48.
[11] S.N.El-Deeb, I.A.Hasanien, A.S.Mashhour and T.Noiri, On p-regular spaces, Bull.Mathe.Soc.Sci.Math., R.S.R. 27(75) (1983), 311-315.
[12] Y. Gnanambal, On generalized pre regular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3) (1997), 351-360.
[13] O. NJastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
[14] P. Jayakumar , K.Mariappa and S.Sekar, On generalized gp*closed set in topological spaces, Int. Journal of Math. Analysis, 33(7) (2013), 75-86.
[15] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math. Monthly, 70(1963), 36-41.
[16] N. Levine, Generalized closed sets in topology, Rend. Circ. Math.Palermo, 19(2) (1970), 89-96.
[17] H.Maki, R.Devi and K.Balachandran, Generalized α-closed sets in topology, Bull.Fukuoka Univ. Ed. Part III, 42(1993),13-21.
[18] R.A.Mahmoud and M.E.Abd El-Monsef, β-irresolute and topological β-invariant, Proc.Pakistan Acad.Sci. 27 (1990), $285-296$.
[19] H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 15 (1994), 51-63
[20] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T $\mathrm{T}_{1 / 2}$ space, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 17(1996), 33-42.
[21] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre-continuous mapings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53
[22] A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, α-continuous and α-open mappings, Acta Math. Hung., 41(3-4) (1983), $213-218$.
[23] N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
[24] G.B. Navalagi and K. M. Bhavikatti, Beta weakly Generalized Closed Sets in Topological Spaces [submitted].
[25] N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math. J., 33(2) (1993), 211-219.
[26] J.K.Park and J.H.Park, Mildly generalized closed sets, almost normal and mildly normal spaces, Chaos, Solutions and Fractals, 20(2004), 1103-1111.
[27] J.H.Park and Y.B.Park, Weaker forms of irresolute functions, Indian J. PureAppl.Math., 26(7) (1995), 691-696.
[28] Pauline Mary Helen. M, Kulandhai Therese. A, (gsp)*-closed sets in Topological spaces, IJMTT, Volume 6, (February 2014), 75-78.
[29] J.Rajakumari and C.Sekar, On αg^{*} p-Continuous and αg^{*} p-irresolute Maps in Topological Spaces, International Journal of Mathematical Archive-7(8), 2016, 124-131.
[30] I.L.Reilly and M.K.Vamanmurthy, On α-continuity in topologicalspaces, Acta Math.Hungar, 45(1-2) (1985), 27-32.
[31] C.Sekar and J.Rajakumari, A new notion of generalized closed sets in Topological Spaces, International journal of Mathematics Trends And Technology, Vol.-36(2), (August 2016) ,124-129.
[32] M.K. Singal and A.R .Singal, Almost Continuous mappings, Yokohoma, Math., J. 16(1968), 63-73.
[33] P.Sundaram, H.Maki and K.Balachandran, Semi-generalized continuous maps and semi-T1/2 spaces, Bull. Fukuoka Univ. Ed. Part III, 40(1991), 33-40.
[34] S.S .Thakur, α-irresolute functions, Tamkang J. Math, 11(1980), 209-214.
[35] M.K.R.S. Veera kumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. (Math), 21(2000), 1-19.
[36]] M. K. R. S. Veera Kumar, g*-preclosed sets, Acts Ciencia indica, 28(1) (2002), 51-60.

