Growth Properties of Composition of Two Meromorphic Functions

MONALISA MONDAL

Department of Mathematics, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India. Email : monalisa.iitg@gmail.com

Abstract

In this paper, we have proved few important results on relative growth properties of entire functions, meromorphic functions and their compositions.

Key Words : Entire function, Order of entire function, Meromorphic function, Order of meromorphic function, Relative order of entire function, Relative order of meromorphic function.

Mathematics Subject Classification (2010) : Primary 30B50, Secondary 30D99.

1 Introduction

Meromorphic function is a function whose singularities are only poles in the finite plane and an entire function is a function which is analytic in the entire finite complex plane.

The maximum modulus of an entire function $f(z)$ is defined by

$$
M_{f}(r)=\sup \{|f(z)|:|z|=r\}
$$

If f is non constant then $M_{f}(r)$ is strictly increasing and continuous function of r and the inverse function

$$
M_{f}^{-1}:(|f(0)|, \infty) \rightarrow(0, \infty)
$$

exists and $\lim _{r \rightarrow \infty} M_{f}^{-1}(r)=\infty$
Definition 1.1 The order of an entire function f is defined as

$$
\rho_{f}=\limsup _{r \rightarrow \infty} \frac{\log \log M_{f}(r)}{\log r}
$$

Definition 1.2 If f and g are two entire functions then the relative order of f with respect to g is defined as

$$
\begin{aligned}
\rho_{g}(f) & =\inf \left\{\mu>0: M_{f}(r)<M_{g}\left(r^{\mu}\right) \text { for all }>r_{0}(\mu)>0\right\} \\
& =\limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1} M_{f}(r)}{\log r}
\end{aligned}
$$

Now let $h(z)$ be a non constant meromorphic function in the complex plane \mathbb{C}. Let us denote the number of roots of the equation $h(z)=a$ in $|z| \leq r$, with due count of multiplicity by $n(r, a)$ for any complex number a and number of poles of $h(z)$ in $|z| \leq r$ by $n(r, \infty)$ or $n(r, h)$. Let us take

$$
\begin{aligned}
& N(r, a)=\int_{0}^{r} \frac{|n(t, a)-n(0, a)|}{t} d t+n(0, a) \log r \\
& N(r, h)=\int_{0}^{r} \frac{n(t, h)}{t} d t \\
& N\left(r, \frac{1}{h}\right)=\int_{0}^{r} \frac{n\left(t, \frac{1}{h}\right)}{t} d t \\
& m(r, h)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|h\left(r e^{i \theta}\right)\right| d \theta
\end{aligned}
$$

where $\log ^{+} x=\max \{0, \log x\}$ for all $x>0$
Now we write

$$
\begin{equation*}
T_{h}(r)=T(r, h)=m(r, h)+N(r, h) \tag{1.1}
\end{equation*}
$$

Thus we understand that $m(r, h)$ is a sort of averaged magnitude of $\log |h|$ on arcs of $|z|=r$ where $|h|$ is large. The term $N(r, h)$ relates to the number of poles. The function $T_{h}(r)$ is called the characteristic function of the meromorphic function $h(z)$.

2 Definitions and Lemmas

In this section we state few important definitions and important lemmas.
Definition 2.1 The order of a meromorphic function h is defined as

$$
\rho_{h}=\limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log r}
$$

Definition 2.2 The relative order of a meromorphic function h with respect to an entire function f is defined as [6]

$$
\begin{aligned}
\rho_{f}(h) & =\inf \left\{\lambda>0: T_{h}(r)<T_{f}\left(r^{\lambda}\right) \text { for all } r>r_{0}(\lambda)>0\right\} \\
& =\underset{r \rightarrow \infty}{\limsup } \frac{\log T_{f}^{-1} T_{h}(r)}{\log r}
\end{aligned}
$$

Definition 2.3 The relative order of meromorphic function f with respect to another meromorphic function h ([1], [2]) is defined as

$$
\rho_{h}(f)=\limsup _{r \rightarrow \infty} \frac{\log T_{f}(r)}{\log T_{h}(r)}
$$

Lemma 2.1 (P. 18 [5]) Let g be an entire function then for all large r

$$
\begin{equation*}
T_{g}(r) \leq \log M_{g}(r) \leq 3 T_{g}(2 r) \tag{2.2}
\end{equation*}
$$

Lemma 2.2 ([8]) Let f and g be two entire functions. Then for a sequence of values of r tending to infinity

$$
\begin{equation*}
T_{f o g}(r) \geq \frac{1}{3} \log M_{f}\left(\frac{1}{8} M_{g}\left(\frac{r}{4}\right)+o(1)\right) \tag{2.3}
\end{equation*}
$$

Lemma 2.3 ([4]) Let f and g be two entire functions. Then for all sufficiently large values of r

$$
\begin{equation*}
M_{f}\left(\frac{1}{8} M_{g}\left(\frac{r}{2}\right)-|g(0)|\right) \leq M_{f o g}(r) \leq M_{f}\left(M_{g}(r)\right) \tag{2.4}
\end{equation*}
$$

Lemma 2.4 [3] Let g be an entire function and $\alpha>1,0<\beta<\alpha$. Then for all large r

$$
\begin{equation*}
M_{g}(\alpha r)>\beta M_{g}(r) \tag{2.5}
\end{equation*}
$$

Lemma 2.5 [3] Let g be an entire function with property (A). Then for any positive integer n and for all $\sigma>1$

$$
\begin{equation*}
\left\{M_{g}(r)\right\}^{n}<M_{g}\left(r^{\sigma}\right) \tag{2.6}
\end{equation*}
$$

holds for all large r
Lemma 2.6 [10] Let f be meromorphic and let g be entire and suppose that $0<$ $\mu<\rho_{g} \leq \infty$. Then for a sequence of values of r tending to infinity,

$$
\begin{equation*}
T_{f o g}(r) \geq T_{f}\left(\exp \left(r^{\mu}\right)\right) \tag{2.7}
\end{equation*}
$$

3 Theorems and results

In this section we have obtained theorems and results which we have proved.
Theorem 3.1 Let f, h be two entire functions of respective finite orders ρ_{f}, ρ_{h} such that $\rho_{f} \neq 0$ and g be a polynomial of degree m. The relative order of h with respect to fog satisfies the inequality: $\rho_{\text {fog }}(h) \geq \frac{\rho_{h}}{m \rho_{f}}$.
The sign of equality occurs if $|g(0)|=0$.
Proof: We know by the definition of order of entire function [3]

$$
\rho_{f}=\limsup _{r \rightarrow \infty} \frac{\log \log M_{f}(r)}{\log r}
$$

Therefore for any $\epsilon>0$ there exists $r_{0}(\epsilon)>0$ such that

$$
\begin{array}{cl}
\frac{\log \log M_{f}(r)}{\log r}<\rho_{f}+\epsilon \quad \text { for all } r>r_{0}(\epsilon) \\
\text { or } M_{f}(r)<\exp \left\{r^{\rho_{f}+\epsilon}\right\} & \text { for all } r>r_{0}(\epsilon) \tag{3.8}
\end{array}
$$

Let $\exp \left\{r^{\rho_{f}+\epsilon}\right\}=r_{1}$ or $r^{\rho_{f}+\epsilon}=\log r_{1}$

$$
\begin{equation*}
\text { or } \log r=\frac{1}{\rho_{f}+\epsilon} \log \log r_{1} \tag{3.9}
\end{equation*}
$$

This implies, $\quad M_{f}\left(\exp \left\{\frac{1}{\rho_{f}+\epsilon} \log \log r_{1}\right\}\right)<r_{1}$

$$
\begin{equation*}
\text { or } M_{f}^{-1}(r)>\exp \left\{\frac{1}{\rho_{f}+\epsilon} \log \log r\right\} \quad \text { for all } r>r_{0}(\epsilon) \tag{3.10}
\end{equation*}
$$

Also there exists a sequence $\left\{r_{n}\right\}$ strictly increasing and increases to ∞ such that

$$
\begin{equation*}
M_{f}\left(r_{n}\right)>\exp \left\{r_{n}^{\rho_{f}-\epsilon}\right\} \tag{3.11}
\end{equation*}
$$

Following the same steps as shown in equation(3.9) we get

$$
\begin{equation*}
M_{f}^{-1}\left(r_{n}\right)<\exp \left\{\frac{1}{\rho_{f}-\epsilon} \log \log r_{n}\right\} \tag{3.12}
\end{equation*}
$$

Similarly for the entire function h, for any $\epsilon>0$ there exists $r_{1}(\epsilon)>0$ such that

$$
\begin{equation*}
M_{h}(r)<\exp \left\{r^{\rho_{h}+\epsilon}\right\} \quad \text { for all } r>r_{1}(\epsilon) \tag{3.13}
\end{equation*}
$$

and for strictly increasing sequence $\left\{u_{n}\right\}$, increasing to ∞

$$
\begin{equation*}
M_{h}\left(u_{n}\right)>\exp \left\{u_{n}^{\rho_{h}-\epsilon}\right\} \tag{3.14}
\end{equation*}
$$

Now let $g(z)=a_{0}+a_{1} z+\ldots+a_{m} z^{m}$. Then $M_{g}(r) \sim\left|a_{m}\right| r^{m}$.

Therefore for any $\epsilon>0$ there exists $r_{2}(\epsilon)>0$ such that

$$
\begin{equation*}
\left|a_{m}\right| r^{m}(1-\epsilon)<M_{g}(r)<\left|a_{m}\right| r^{m}(1+\epsilon) \quad \text { for all } r>r_{2}(\epsilon) \tag{3.15}
\end{equation*}
$$

Hence for all $r>r_{2}(\epsilon)$

$$
\begin{equation*}
M_{g}^{-1}(r)>\left\{\frac{r}{\left|a_{m}\right|(1+\epsilon)}\right\}^{\frac{1}{m}} \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{g}^{-1}(r)<\left\{\frac{r}{\left|a_{m}\right|(1-\epsilon)}\right\}^{\frac{1}{m}} \tag{3.17}
\end{equation*}
$$

By Lemma (2.3,[4]), for all sufficiently large values of r,

$$
\begin{equation*}
M_{f o g}(r) \leq M_{f}\left(M_{g}(r)\right) \tag{3.18}
\end{equation*}
$$

That implies, for all large r

$$
\begin{equation*}
M_{g}^{-1}\left(M_{f}^{-1}(r)\right) \leq M_{f o g}^{-1}(r) \tag{3.19}
\end{equation*}
$$

Now by definition of relative order of entire function with respect to another entire function, we have

$$
\begin{aligned}
& \rho_{f o g}(h)=\underset{r \rightarrow \infty}{\limsup } \frac{\log M_{\text {fog }}^{-1}\left(M_{h}(r)\right)}{\log r} \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(M_{f}^{-1}\left(M_{h}(r)\right)\right)}{\log r} \quad \text { [by equation (3.19)] } \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(\exp \left(\frac{1}{\rho_{f}+\epsilon} \log \log M_{h}(r)\right)\right)}{\log r}[\text { by equation (3.10)] } \\
& \geq \limsup _{u_{n} \rightarrow \infty} \frac{\log M_{g}^{-1}\left(\exp \left(\frac{\rho_{h}-\epsilon}{\rho_{f}+\epsilon} \log u_{n}\right)\right)}{\log u_{n}}[\text { by equation (3.14)] } \\
& =\limsup _{u_{n} \rightarrow \infty} \frac{\log M_{g}^{-1}\left(u_{n}^{\frac{\rho_{h}-\epsilon}{\rho_{f}+\epsilon}}\right)}{\log u_{n}} \\
& \geq \limsup _{u_{n} \rightarrow \infty} \frac{\log \left(\frac{\frac{u_{n}-\epsilon}{a_{n}+\epsilon}}{\left|a_{m}\right|(1+\epsilon)}\right)^{\frac{1}{m}}}{\log u_{n}}[\text { by equation (3.16)] } \\
& =\limsup _{u_{n} \rightarrow \infty} \frac{1}{m}\left\{\left(\frac{\rho_{h}-\epsilon}{\rho_{f}+\epsilon}\right) \frac{\log u_{n}}{\log u_{n}}-\frac{\log \left|a_{m}\right|(1+\epsilon)}{\log u_{n}}\right\} \\
& =\frac{1}{m}\left(\frac{\rho_{h}-\epsilon}{\rho_{f}+\epsilon}\right)
\end{aligned}
$$

Since ϵ is arbitrarily small,

$$
\begin{equation*}
\rho_{f o g}(h) \geq \frac{\rho_{h}}{m \rho_{f}} \tag{3.20}
\end{equation*}
$$

By Lemma (2.3,[4]), for all sufficiently large values of r,

$$
M_{f}\left(\frac{1}{8} M_{g}\left(\frac{r}{2}\right)-|g(0)|\right) \leq M_{\text {fog }}(r)
$$

If $|g(0)|=0$ then

$$
M_{f}\left(\frac{1}{8} M_{g}\left(\frac{r}{2}\right)\right) \leq M_{\text {fog }}(r)
$$

That implies for all sufficiently large values of r,

$$
\begin{equation*}
M_{\text {fog }}^{-1}(r) \leq 2 M_{g}^{-1}\left(8 M_{f}^{-1}(r)\right) \tag{3.21}
\end{equation*}
$$

Now

$$
\begin{aligned}
\rho_{f o g}(h) & =\limsup _{r \rightarrow \infty} \frac{\log M_{\text {fog }}^{-1}\left(M_{h}(r)\right)}{\log r} \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log \left(2 M_{g}^{-1}\left(8 M_{f}^{-1}\left(M_{h}(r)\right)\right)\right)}{\log r}[\text { by equation (3.21)] } \\
& \leq \limsup _{r_{n} \rightarrow \infty} \frac{\log \left(M_{g}^{-1}\left(8 \exp \left(\frac{1}{\rho_{f}-\epsilon} \log \log M_{h}\left(r_{n}\right)\right)\right)\right)}{\log r_{n}} \text { [by equation (3.12)] } \\
& \leq \limsup _{r_{n} \rightarrow \infty} \frac{\log \left(M_{g}^{-1}\left(8 \exp \left(\frac{\rho_{\rho}+\epsilon}{\rho_{f}-\epsilon} \log \left(r_{n}\right)\right)\right)\right)}{\log r_{n}}[\text { by equation }(3.13)] \\
& =\limsup _{r_{n} \rightarrow \infty} \frac{\log \left(M_{g}^{-1}\left(8\left(r_{n}\right)^{\frac{\rho_{h}+\epsilon}{\rho_{f}-\epsilon}}\right)\right)}{\log r_{n}} \\
& \leq \limsup _{r_{n} \rightarrow \infty} \frac{\log \left(\frac{\rho_{h}+\epsilon}{\frac{\rho_{h}+\epsilon}{\rho_{f}-\epsilon}}\right)^{\frac{1}{m}}(1-\epsilon)}{\log r_{n}}[b y \text { equation }(3.17)] \\
& =\limsup _{r_{n} \rightarrow \infty} \frac{1}{m}\left\{\frac{\log 8+\frac{\rho_{h}+\epsilon}{\rho_{f}-\epsilon} \log r_{n}-\log \left|a_{m}\right|(1-\epsilon)}{\log r_{n}}\right\} \\
& =\frac{1}{m}\left(\frac{\rho_{h}+\epsilon}{\rho_{f}-\epsilon}\right)
\end{aligned}
$$

Since ϵ is arbitrarily small,
$\rho_{f o g}(h) \leq \frac{\rho_{h}}{m \rho_{f}}$

So, when $|g(0)|=0$, from equation (3.20) and equation (3.22),

$$
\rho_{f o g}(h)=\frac{\rho_{h}}{m \rho_{f}}
$$

Theorem 3.2 Let f, h_{1} be two entire functions of respective finite orders ρ_{f} and $\rho_{h_{1}}$ such that $\rho_{f} \neq 0$ and g, h_{2} be two polynomials of respective degree m_{1} and m_{2} such that $\left|h_{2}(0)\right|=0$. The relative order of $h_{1} h_{2}$ with respect to fog satisfies the inequality: $\rho_{f o g}\left(h_{1} o h_{2}\right) \geq \frac{m_{2} \rho_{h_{1}}}{m_{1} \rho_{f}}$.
The sign of equality occurs if $|g(0)|=0$.

Proof:

Let $g(z)=a_{0}+a_{1} z+\ldots+a_{m_{1}} z^{m_{1}}$ and $h_{2}(z)=b_{0}+b_{1} z+\ldots+b_{m_{2}} z^{m_{2}}$ be two polynomials of degree m_{1} and m_{2} respectively. By definition of relative order of entire function with respect to another entire function we have

$$
\begin{aligned}
& \rho_{\text {fog }}\left(h_{1} o h_{2}\right)=\limsup _{r \rightarrow \infty} \frac{\log M_{\text {fog }}^{-1}\left(M_{h_{1} o h_{2}}(r)\right)}{\log r} \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(M_{f}^{-1}\left(M_{h_{1} o h_{2}}(r)\right)\right)}{\log r}[\text { by equation (3.19)] } \\
& {\left[\text { Since }\left|h_{2}(0)\right|=0 \text { by assumption, using Lemma }(2.3), \text { [4] we get }\right] } \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(M_{f}^{-1}\left(M_{h_{1}}\left(\frac{1}{8} M_{h_{2}}\left(\frac{r}{2}\right)\right)\right)\right)}{\log r} \\
& {\left[\text { Since } h_{2}\right.} \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log {\text { polynomial of degree } \left.m_{2}, \text { using equation }(3.15) \text { we get }\right]}_{\log \left(M_{f}^{-1}\left(M_{h_{1}}\left(\frac{1}{8}\left|b_{m_{2}}\right|(1-\epsilon)\left(\frac{r}{2}\right)^{m_{2}}\right)\right)\right)}^{\log r}}{} \\
& \geq \limsup _{u_{n} \rightarrow \infty} \frac{\log M_{g}^{-1}\left(M_{f}^{-1}\left(\exp \left(\frac{1}{8}\left|b_{m_{2}}\right|(1-\epsilon)\left(\frac{u_{n}}{2}\right)^{m_{2}}\right)^{\rho_{h_{1}-\epsilon}}\right)\right)}{\log u_{n}} \text { by equation (3.14) } \\
& \geq \limsup _{u_{n} \rightarrow \infty} \frac{\log M_{g}^{-1}\left(\exp \left(\frac{1}{\rho_{f}+\epsilon} \log \log \exp \left(\frac{1}{8}\left|b_{m_{2}}\right|(1-\epsilon)\left(\frac{u_{n}}{2}\right)^{m_{2}}\right)^{\rho_{h_{1}}-\epsilon}\right)\right)}{\log u_{n}} \text { by equation } \\
&=\limsup _{u_{n} \rightarrow \infty} \frac{\log M_{g}^{-1}\left(\exp \left(\frac{1}{\rho_{f}+\epsilon} \log \left(\frac{1}{8}\left|b_{m_{2}}\right|(1-\epsilon)\left(\frac{u_{n}}{2}\right)^{m_{2}}\right)^{\rho_{h_{1}}-\epsilon}\right)\right)}{\log u_{n}} \\
&=\limsup _{u_{n} \rightarrow \infty}^{\log M_{g}^{-1}\left(\exp \left(\frac{\rho_{h_{1}-\epsilon}-\epsilon}{\rho_{f}+\epsilon} \log \left(\frac{1}{8}\left|b_{m_{2}}\right|(1-\epsilon)\left(\frac{u_{n}}{2}\right)^{m_{2}}\right)\right)\right)} \operatorname{logu_{n}} \\
&=\limsup _{u_{n} \rightarrow \infty}^{\frac{\rho_{h_{1}-\epsilon}}{\rho_{f}+\epsilon}} \\
& \log M_{g}^{-1}\left(\frac{1}{8}\left|b_{m_{2}}\right|(1-\epsilon)\left(\frac{u_{n}}{2}\right)^{m_{2}}\right) \\
& \log u_{n}
\end{aligned}
$$

[Since g is a polynomial of degree m_{1}, using equation (3.16) we get]

$$
\begin{aligned}
& \geq \limsup _{u_{n} \rightarrow \infty} \frac{\frac{1}{m_{1}} \log \frac{\left(\frac{1}{8}\left|b_{m_{2}}\right|(1-\epsilon)\left(\frac{u_{n}}{2}\right)^{m_{2}}\right)^{\frac{\rho_{h_{1}}-\epsilon}{\rho_{f}+\epsilon}}}{\left|a_{m_{1}}\right|(1+\epsilon)}}{\log u_{n}} \\
& =\limsup _{u_{n} \rightarrow \infty} \frac{1}{m_{1}} \frac{\frac{\rho_{h_{1}-\epsilon}-\epsilon}{\rho_{f}+\epsilon}\left(\log \frac{1}{8}\left|b_{m_{2}}\right|(1-\epsilon)+m_{2}\left(\log \frac{u_{n}}{2}\right)\right)-\log \left|a_{m_{1}}\right|(1+\epsilon)}{\log u_{n}} \\
& =\left(\frac{\rho_{h_{1}}-\epsilon}{\rho_{f}+\epsilon}\right) \frac{m_{2}}{m_{1}}
\end{aligned}
$$

Since ϵ is arbitrarily small,

$$
\begin{equation*}
\rho_{f o g}\left(h_{1} o h_{2}\right) \geq \frac{m_{2} \rho_{h_{1}}}{m_{1} \rho_{f}} \tag{3.23}
\end{equation*}
$$

On the other hand, using similar steps as done in Theorem (3.1), we can prove that

$$
\begin{equation*}
\rho_{f o g}\left(h_{1} o h_{2}\right) \leq \frac{m_{2} \rho_{h_{1}}}{m_{1} \rho_{f}} \tag{3.24}
\end{equation*}
$$

Combining equation(3.23)and equation (3.24) we get $\rho_{f o g}\left(h_{1} o h_{2}\right)=\frac{m_{2} \rho_{h_{1}}}{m_{1} \rho_{f}}$
Theorem 3.3 Let f be an entire function of finite non-zero order ρ_{f}, h be a meromorphic function of finite non-zero order ρ_{h} and g be a polynomial of degree m. The relative order of h with respect to fog satisfies the inequality $\rho_{f o g}(h) \geq$ $\frac{\rho_{h}}{m \rho_{f}}$.
The sign of equality occurs if $|g(0)|=0$.
Proof: From the definition of order of entire function, we have

$$
\limsup _{r \rightarrow \infty} \frac{\log \log M_{f}(r)}{\log r}=\underset{r \rightarrow \infty}{\limsup } \frac{\log T_{f}(r)}{\log r}=\rho_{f}
$$

Also for the meromorphic function h we have

$$
\limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log r}=\rho_{h}
$$

So, for any $\epsilon>0$ there exists $r_{0}(\epsilon)>0, r_{1}(\epsilon)>0$ such that

$$
\begin{align*}
& T_{f}(r)<r^{\rho_{f}+\epsilon} \text { for all } r>r_{0}(\epsilon) \tag{3.25}\\
& T_{h}(r)<r^{\rho_{h}+\epsilon} \text { for all } r>r_{1}(\epsilon) \tag{3.26}
\end{align*}
$$

Let $r^{\rho_{f}+\epsilon}=r_{1}$. That implies $\log r=\frac{1}{\rho_{f}+\epsilon} \log r_{1}$ or $r=r_{1}^{\frac{1}{\rho_{f}+\epsilon}}$

$$
\begin{equation*}
\text { Hence } \quad T_{f}^{-1}(r)>r^{\frac{1}{\rho_{f}+\epsilon}} \text { for all } r>r_{0}(\epsilon) \tag{3.27}
\end{equation*}
$$

Also there exists sequence $\left\{r_{n}\right\}$ and $\left\{u_{n}\right\}$ strictly increasing and increases to ∞ such that

$$
\begin{gather*}
T_{f}\left(r_{n}\right)>r_{n}^{\rho_{f}-\epsilon} \tag{3.28}\\
\text { and } \quad T_{h}\left(u_{n}\right)>u_{n}^{\rho_{h}-\epsilon} \tag{3.29}
\end{gather*}
$$

If f and g are entire functions, then we have from [8] for all large r

$$
\begin{equation*}
T_{f o g}(r) \leq 3 T_{f}\left(2 M_{g}(r)\right) \tag{3.30}
\end{equation*}
$$

This implies for all large r

$$
\begin{equation*}
T_{f o g}^{-1}(r) \geq M_{g}^{-1}\left(\frac{1}{2}\left(T_{f}^{-1}\left(\frac{r}{3}\right)\right)\right) \tag{3.31}
\end{equation*}
$$

Let $g(z)=a_{0}+a_{1}+\ldots+a_{m} z^{m}$ be a polynomial of degree m. By definition of relative order of meromorphic function with respect to entire function [6],

$$
\begin{aligned}
\rho_{\text {fog }}(h) & =\limsup _{r \rightarrow \infty} \frac{\log T_{\text {fog }}^{-1}\left(T_{h}(r)\right)}{\log r} \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log M_{g}^{-1}\left(\frac{1}{2} T_{f}^{-1}\left(\frac{T_{h}(r)}{3}\right)\right)}{\log r} \text { by equation (3.31) } \\
& \geq \limsup _{u_{n} \rightarrow \infty} \frac{\log M_{g}^{-1}\left(\frac{1}{2} T_{f}^{-1}\left(\frac{u_{n}^{\rho_{h}-\epsilon}}{3}\right)\right)}{\log u_{n}} \text { by equation (3.29) } \\
& \geq \limsup _{u_{n} \rightarrow \infty} \frac{\log M_{g}^{-1}\left(\frac{1}{2}\left(\frac{u_{n}^{\rho_{h}-\epsilon}}{3}\right)^{\frac{1}{\rho_{f}+\epsilon}}\right)}{\log u_{n}} \text { by equation (3.27) }
\end{aligned}
$$

[Since g is a polynomial of order m , by equation(3.16)]

$$
\begin{aligned}
& \geq \limsup _{u_{n} \rightarrow \infty} \frac{\frac{1}{m}\left\{\log \left(\frac{1}{2}\left(\frac{u_{n}^{\rho_{n}-\epsilon}}{3}\right)^{\frac{1}{\rho_{f}+\epsilon}}\right)-\log \left|a_{m}\right|(1+\epsilon)\right\}}{\log u_{n}} \\
& =\limsup _{u_{n} \rightarrow \infty}\left[\frac{1}{m}\left(\frac{\rho_{h}-\epsilon}{\rho_{f}+\epsilon}\right) \frac{\log u_{n}}{\log u_{n}}-\frac{1}{m} \frac{\log \left|a_{m}\right|(1+\epsilon)}{\log u_{n}}\right] \\
& =\frac{1}{m}\left(\frac{\rho_{h}-\epsilon}{\rho_{f}+\epsilon}\right)
\end{aligned}
$$

[Since $\epsilon>0$ is arbitrarily small,

$$
\begin{equation*}
\rho_{f o g}(h) \geq \frac{\rho_{h}}{m \rho_{f}} \tag{3.32}
\end{equation*}
$$

Since f is entire function and g is a polynomial, by Lemma (2.3,[4]) and Lemma (2.1), if $|g(0)|=0$, for all sufficiently large values of r,

$$
\begin{align*}
& M_{f}\left(\frac{1}{8} M_{g} \frac{r}{2}\right) \leq M_{f o g}(r) \\
& \text { that implies } \log \left(M_{f}\left(\frac{1}{8} M_{g} \frac{r}{2}\right)\right) \leq \log \left(M_{f o g}(r)\right) \leq 3 T_{f o g}(2 r) \\
& \text { or } T_{\text {fog }}^{-1}\left(\frac{1}{3} \log \left(M_{f}\left(\frac{1}{8} M_{g} \frac{r}{2}\right)\right)\right) \leq 2 r \\
& \text { Let } r_{1}=\frac{1}{3} \log \left(M_{f}\left(\frac{1}{8} M_{g} \frac{r}{2}\right)\right) \\
& \text { or } M_{f}\left(\frac{1}{8} M_{g} \frac{r}{2}\right)=\exp \left(3 r_{1}\right) \\
& \text { or } \frac{1}{8} M_{g} \frac{r}{2}=M_{f}^{-1}\left(\exp \left(3 r_{1}\right)\right) \\
& \qquad \text { or } \frac{r}{2}=M_{g}^{-1}\left(8 M_{f}^{-1}\left(\exp \left(3 r_{1}\right)\right)\right) \\
& \text { or } r=2 M_{g}^{-1}\left(8 M_{f}^{-1}\left(\exp \left(3 r_{1}\right)\right)\right) \\
& \text { Therefore for all large } \mathrm{r}, \\
& T_{f o g}^{-1}\left(r_{1}\right) \leq 4 M_{g}^{-1}\left(8 M_{f}^{-1}\left(\exp \left(3 r_{1}\right)\right)\right) \tag{3.33}
\end{align*}
$$

On the other hand

$$
\begin{aligned}
\rho_{f o g}(h) & =\limsup _{r \rightarrow \infty} \frac{\log T_{f o g}^{-1}\left(T_{h}(r)\right)}{\log r} \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log \left(4 M_{g}^{-1}\left(8 M_{f}^{-1}\left(\exp \left(3 T_{h} r\right)\right)\right)\right)}{\log r}[\text { by equation }(3.33)] \\
& \leq \limsup _{r_{n} \rightarrow \infty} \frac{\log \left(M_{g}^{-1}\left(8\left(\log \left(\exp \left(3 T_{h}\left(r_{n}\right)\right)\right)\right)^{\frac{1}{\rho_{f}-\epsilon}}\right)\right)}{\log r_{n}}[\text { by equation }(3.12)] \\
& =\limsup _{r_{n} \rightarrow \infty} \frac{\log \left(M_{g}^{-1}\left(8\left(3 T_{h}\left(r_{n}\right)\right)^{\frac{1}{\rho_{f}-\epsilon}}\right)\right)}{\log r_{n}} \\
& \leq \limsup _{r_{n} \rightarrow \infty} \frac{\log \left(M_{g}^{-1}\left(8\left(3\left(r_{n}\right)^{\rho_{h}+\epsilon}\right)^{\frac{1}{\rho_{f}-\epsilon}}\right)\right)}{\log r_{n}}[\text { by equation }(3.26)] \\
& \leq \limsup _{r_{n} \rightarrow \infty} \frac{\frac{1}{m}\left[\log \left(8\left(3\left(r_{n}\right)^{\rho_{h}+\epsilon}\right)^{\frac{1}{\rho_{f}-\epsilon}}\right)-\log \left|a_{m}\right|(1-\epsilon)\right]}{\log r_{n}}[\text { by equation }(3.17)] \\
& =\limsup _{r_{n} \rightarrow \infty} \frac{\frac{1}{m}\left[\log \left(8.3^{\frac{1}{\rho_{f}-\epsilon}}\right)+\log \left(r_{n}^{\frac{\rho_{h}+\epsilon}{\rho_{n}-\epsilon}}\right)\right]}{\log r_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& =\limsup _{r_{n} \rightarrow \infty} \frac{\frac{1}{m}\left[\log \left(r_{n}^{\frac{\rho_{h}+\epsilon}{\rho_{f}-\epsilon}}\right)\right]}{\log r_{n}} \\
& =\frac{1}{m}\left(\frac{\rho_{h}+\epsilon}{\rho_{f}-\epsilon}\right)
\end{aligned}
$$

Since ϵ is arbitrarily small,

$$
\begin{equation*}
\rho_{f o g}(h) \leq \frac{\rho_{h}}{m \rho_{f}} \tag{3.34}
\end{equation*}
$$

Combining equation (3.32) and equation (3.34) we get

$$
\rho_{f o g}(h)=\frac{\rho_{h}}{m \rho_{f}}
$$

Theorem 3.4 Let f, h be two meromorphic functions of finite non-zero orders ρ_{f}, ρ_{h} such that $\rho_{f} \neq 0$ and g be a polynomial of degree m. The relative order of h with respect to fog satisfies the inequality $\rho_{\text {fog }}(h) \geq \frac{\rho_{h}}{m \rho_{f}}$.
The sign of equality occurs if $|g(0)|=0$.
Proof:Let $g(z)=a_{0}+a_{1}+\ldots+a_{m} z^{m}$ be a polynomial of degree m. We know by ([1], [2])

$$
\begin{aligned}
\rho_{f o g}(h) & =\limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log T_{\text {fog }}(r)} \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log \log M_{\text {fog }}(r)} \quad[\text { by Lemma }(2.1)] \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log \log M_{f}\left(M_{g} r\right)} \quad[\text { by Lemma }(2.3)] \\
& \left.\geq \limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log \left(3 T_{f}\left(2 M_{g} r\right)\right)} \quad \quad \text { by Lemma }(2.1)\right] \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log 3+\log \left(T_{f}\left(2 M_{g} r\right)\right)} \\
& =\limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log \left(T_{f}\left(2 M_{g} r\right)\right)} \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log \left(T_{f}\left(2\left|a_{m}\right|(1+\epsilon) r^{m}\right)\right)} \\
& \left.\geq \limsup _{u_{n} \rightarrow \infty} \frac{\left(\rho_{h}-\epsilon\right) \log u_{n}}{\log \left(T_{f}\left(2\left|a_{m}\right|(1+\epsilon) u_{n}^{m}\right)\right)} \quad \quad \text { [by equation }(3.15)\right] \\
& \left.\geq \limsup _{u_{n} \rightarrow \infty} \frac{\left(\rho_{h}-\epsilon\right) \log u_{n}}{\left(\rho_{f}+\epsilon \log \left(2\left|a_{m}\right|(1+\epsilon) u_{n}^{m}\right)\right.} \quad \text { [by equation }(3.29)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\limsup _{u_{n} \rightarrow \infty} \frac{\left(\rho_{h}-\epsilon\right) \log u_{n}}{\left(\rho_{f}+\epsilon\right) \log \left(2\left|a_{m}\right|(1+\epsilon)\right)+\left(\rho_{f}+\epsilon\right) m \log u_{n}} \\
& =\limsup _{u_{n} \rightarrow \infty}^{\left(\rho_{h}-\epsilon\right) \log u_{n}} \\
& =\frac{\rho_{h}-\epsilon}{m\left(\rho_{f}+\epsilon\right) m \log u_{n}}
\end{aligned}
$$

Since $\epsilon>0$ is arbitrarily small,

$$
\begin{align*}
& \rho_{f o g}(h) \geq \frac{\rho_{h}}{m \rho_{f}} \tag{3.35}\\
& \rho_{f o g}(h)=\limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log T_{f o g}(r)} \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log \left(\frac{1}{3} \log M_{\text {fog }}\left(\frac{r}{2}\right)\right)} \quad[\text { by Lemma }(2.1)] \\
& =\limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log \log M_{\text {fog }}\left(\frac{r}{2}\right)} \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log \log M_{f}\left(\frac{1}{8} M_{g}\left(\frac{r}{4}\right)\right)} \\
& \text { [by Lemma(2.3), since }|g(0)|=0] \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log T_{f}\left(\frac{1}{8} M_{g}\left(\frac{r}{4}\right)\right)} \quad[\text { by Lemma }(2.1)] \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log T_{h}(r)}{\log \left(T_{f}\left(\frac{1}{8}\left|a_{m}\right|(1+\epsilon) 4^{-m} r^{m}\right)\right)} \quad \text { [by equation(3.15)] } \\
& \leq \limsup _{r \rightarrow \infty} \frac{\left(\rho_{h}+\epsilon\right) \log r}{\log \left(T_{f}\left(\frac{1}{8}\left|a_{m}\right|(1+\epsilon) 4^{-m} r^{m}\right)\right)} \quad \text { [by equation(3.26)] } \\
& \leq \limsup _{u_{n} \rightarrow \infty} \frac{\left(\rho_{h}+\epsilon\right) \log u_{n}}{\left(\rho_{f}-\epsilon\right) \log \left(\frac{1}{8}\left|a_{m}\right|(1+\epsilon) 4^{-m} u_{n}^{m}\right)} \quad \text { [by equation(3.29)] } \\
& =\limsup _{u_{n} \rightarrow \infty} \frac{\left(\rho_{h}+\epsilon\right) \log u_{n}}{\left(\rho_{f}-\epsilon\right) m \log u_{n}+\left(\rho_{f}-\epsilon\right) \log \left(\frac{1}{8}\left|a_{m}\right|(1+\epsilon) 4^{-m}\right)} \\
& =\frac{\rho_{h}+\epsilon}{m\left(\rho_{f}-\epsilon\right)}
\end{align*}
$$

Since $\epsilon>0$ is arbitrarily small,

$$
\begin{equation*}
\rho_{f o g}(h) \leq \frac{\rho_{h}}{m \rho_{f}} \tag{3.36}
\end{equation*}
$$

Combining equation (3.35) and equation (3.36) we get

$$
\rho_{f o g}(h)=\frac{\rho_{h}}{m \rho_{f}}
$$

Theorem 3.5 Let f, h be meromorphic functions and g be entire such that fog is meromorphic and
(i) $\liminf _{r \rightarrow \infty} \frac{\log r}{\left(\log T_{h}(r)\right)^{\alpha}}=A$
(ii) $\liminf _{r \rightarrow \infty} \frac{\log T_{f}\left(\exp r^{\mu}\right)}{(\log r)^{\beta+1}}=B$
where A and B are positive real numbers and α, β, μ are any arbitrary real numbers satisfying $0<\alpha<1, \beta>0, \alpha(\beta+1)>1$ and $0<\mu<\rho_{g} \leq \infty$ then $\rho_{h}(f o g)=\infty$

Proof: By (i) we have for any arbitrary $\epsilon>0$ there exists $r_{0}(\epsilon)>0$ such that

$$
\begin{equation*}
\log r \geq(A-\epsilon)\left(\log T_{h}(r)\right)^{\alpha} \quad \text { for all } r>r_{0}(\epsilon) \tag{3.37}
\end{equation*}
$$

By (ii) we have for any arbitrary $\epsilon>0$ there exists $r_{1}(\epsilon)>0$ such that

$$
\begin{equation*}
\log T_{f}\left(\exp r^{\mu}\right) \geq(B-\epsilon)(\log r)^{\beta+1} \quad \text { for all } \quad r>r_{1}(\epsilon) \tag{3.38}
\end{equation*}
$$

By definition of relative order of meromorphic function with respect to another meromorphic function given by D. Banerjee ([1], [2]) we have

$$
\begin{aligned}
\rho_{h}(f o g) & =\limsup _{r \rightarrow \infty} \frac{\log T_{f o g}(r)}{\log T_{h}(r)} \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log T_{f}\left(\exp r^{\mu}\right)}{\log T_{h}(r)} \quad[\text { by Lemma }(2.6)] \\
& \geq \liminf _{r \rightarrow \infty} \frac{(B-\epsilon)(\log r)^{\beta+1}}{\log T_{h}(r)} \quad[\text { by equation }(3.38)] \\
& \geq \liminf _{r \rightarrow \infty} \frac{(B-\epsilon)(A-\epsilon)^{\beta+1}\left(\log T_{h}(r)\right)^{\alpha(\beta+1)}}{\log T_{h}(r)} \quad[\text { by equation }(3.37)]
\end{aligned}
$$

We know by Hayman [5] that $T_{h}(r)$ is a convex increasing function of $\log r$. Since $\alpha(\beta+1)>1$, by the above inequality we get that for any arbitrarily small $\epsilon>0, A, B$ constants

$$
\rho_{h}(f o g)=\infty
$$

Theorem 3.6 Let f, h be meromorphic functions and g be entire such that fog is meromorphic and
(i) $\liminf _{r \rightarrow \infty} \frac{r^{\mu}}{\left(\log \log T_{h}(r)\right)^{\alpha}}=A$
(ii) $\liminf _{r \rightarrow \infty} \frac{\log \left[\frac{\log T_{f}\left(\exp r^{\mu}\right)}{r^{\mu}}\right]}{(r)^{\mu \beta}}=B$
where A and B are positive real numbers and α, β, μ are any arbitrary real numbers satisfying $0<\beta<1, \alpha>1, \mu \beta>1$ and $0<\mu<\rho_{g} \leq \infty$ then $\rho_{h}(f o g)=\infty$

Proof: From (i) we have for any arbitrary $\epsilon>0$ there exists $r_{0}(\epsilon)>0$ such that

$$
\begin{equation*}
r^{\mu} \geq(A-\epsilon)\left(\log \log T_{h}(r)\right)^{\alpha} \quad \text { for all } \quad r>r_{0}(\epsilon) \tag{3.39}
\end{equation*}
$$

From (ii) we have for any arbitrary $\epsilon>0$ there exists $r_{1}(\epsilon)>0$ such that

$$
\begin{align*}
& \log \left[\frac{\log T_{f}\left(\exp r^{\mu}\right)}{r^{\mu}}\right] \geq(B-\epsilon)(r)^{\mu \beta} \quad \text { for all } \quad r>r_{1}(\epsilon) \\
& \text { That implies } \frac{\log T_{f}\left(\exp r^{\mu}\right)}{r^{\mu}} \geq \exp \left((B-\epsilon)(r)^{\mu \beta}\right) \tag{3.40}
\end{align*}
$$

By definition of relative order of meromorphic function with respect to another meromorphic function given by D. Banerjee ([1], [2]) we have

$$
\begin{aligned}
\rho_{h}(f o g) & =\limsup _{r \rightarrow \infty} \frac{\log T_{\text {fog }}(r)}{\log T_{h}(r)} \\
& \geq \limsup _{r \rightarrow \infty}^{\log T_{f}\left(\exp r^{\mu}\right)} \\
\log T_{h}(r) & {[b y \operatorname{Lemma}(2.6)] } \\
& =\limsup _{r \rightarrow \infty}^{\log T_{f}\left(\exp r^{\mu}\right)} \\
r^{\mu} & \frac{r^{\mu}}{\log T_{h}(r)} \\
& \geq \liminf _{r \rightarrow \infty} \exp \left((B-\epsilon)(r)^{\mu \beta}\right) \cdot \frac{(A-\epsilon)\left(\log \log T_{h}(r)\right)^{\alpha}}{\log T_{h}(r)}
\end{aligned}
$$

[By equation (3.39) and (3.40)]
We know by Hayman [5] that $T_{h}(r)$ is a convex increasing function of $\log r$. Since $\mu \beta, \alpha>1$, by the above inequality we get that for any arbitrarily small $\epsilon>0$, A, B constants

$$
\rho_{h}(f o g)=\infty
$$

Theorem 3.7 Let f and h be two meromorphic functions and g be an entire functions such that fog is meromorphic, $0<\rho_{g} \leq \infty$ and $\lambda_{h}(f)>0$. Then $\rho_{h}(f o g)=\infty$

Proof: By definition of relative order of meromorphic function with respect to another meromorphic function given by D. Banerjee ([1], [2]) we have

$$
\rho_{h}(f)=\underset{r \rightarrow \infty}{\limsup } \frac{\log T_{f}(r)}{\log T_{h}(r)}
$$

Therefore the lower order

$$
\lambda_{h}(f)=\liminf _{r \rightarrow \infty} \frac{\log T_{f}(r)}{\log T_{h}(r)}
$$

That implies for all arbitrary $\epsilon>0$ there exists $r_{0}(\epsilon)>0$ such that

$$
\frac{\log T_{f}(r)}{\log T_{h}(r)}>\lambda_{h}(f)-\epsilon \quad \text { for all } r>r_{0}(\epsilon)
$$

Hence

$$
\begin{equation*}
T_{f}(r)>\left(T_{h}(r)\right)^{\lambda_{h}(f)-\epsilon} \tag{3.41}
\end{equation*}
$$

By Lemma (2.6) for a sequence of values of r tending to infinity

$$
\begin{aligned}
T_{f o g}(r) & \geq T_{f}\left(\exp r^{\mu}\right) \\
& \geq\left(T_{h}\left(\exp r^{\mu}\right)\right)^{\lambda_{h}(f)-\epsilon} \quad[\text { by equation }(3.41)
\end{aligned}
$$

That implies, for a sequence of values of r tending to infinity

$$
\log T_{f o g}(r) \geq\left(\lambda_{h}(f)-\epsilon\right) \log \left(T_{h}\left(\exp r^{\mu}\right)\right)
$$

Therefore

$$
\begin{aligned}
\rho_{h}(f o g) & =\limsup _{r \rightarrow \infty} \frac{\log T_{f o g}(r)}{\log T_{h}(r)} \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log T_{f}\left(\exp r^{\mu}\right)}{\log T_{h}(r)} \quad[\text { by Lemma }(2.6)] \\
& \left.\geq \liminf _{r \rightarrow \infty} \frac{\left(\lambda_{h}(f)-\epsilon\right) \log \left(T_{h}\left(\exp r^{\mu}\right)\right)}{\log T_{h}(r)} \text { [by equation }(3.41)\right]
\end{aligned}
$$

Since $T_{h}(r)$ is convex increasing function of $\log r$,

$$
\liminf _{r \rightarrow \infty} \frac{\log \left(T_{h}\left(\exp r^{\mu}\right)\right)}{\log T_{h}(r)} \rightarrow \infty
$$

Hence $\rho_{h}(f o g)=\infty$

Theorem 3.8 Let f and h be two meromorphic functions and g be an entire function such that $0<\lambda_{h}(g) \leq \rho_{h}(g)<\infty$. If for any real positive constant k

$$
\limsup _{r \rightarrow \infty} \frac{\log T_{f}\left(\alpha M_{g}(r)\right)}{\log T_{g}(r)}=k<\infty
$$

then $\lambda_{h}(f o g) \leq k \lambda_{h}(g) \leq \rho_{h}(f o g) \leq \rho_{h}(g)$. Where α is any real positive constant.
Proof: By definition of relative order of meromorphic function with respect to another meromorphic function given by D. Banerjee ([1], [2]) we have

$$
\rho_{h}(f o g)=\limsup _{r \rightarrow \infty} \frac{\log T_{f o g}(r)}{\log T_{h}(r)}
$$

Therefore the lower order

$$
\begin{aligned}
\lambda_{h}(f o g) & =\liminf _{r \rightarrow \infty} \frac{\log T_{\text {fog }}(r)}{\log T_{h}(r)} \\
& \leq \liminf _{r \rightarrow \infty} \frac{\log 3 T_{f}\left(2 M_{g}(r)\right)}{\log T_{h}(r)} \quad[8] \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log T_{f}\left(2 M_{g}(r)\right)}{\log T_{g}(r)} \cdot \liminf _{r \rightarrow \infty} \frac{\log \left(T_{g}(r)\right)}{\log T_{h}(r)} \\
& =k \cdot \lambda_{h}(g)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\lambda_{h}(f o g) \leq k \lambda_{h}(g) \tag{3.42}
\end{equation*}
$$

Again

$$
\begin{aligned}
& \rho_{h}(f o g)=\limsup _{r \rightarrow \infty} \frac{\log T_{\text {fog }}(r)}{\log T_{h}(r)} \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log \left(\frac{1}{3} \log M_{f}\left(\frac{1}{8} M_{g}\left(\frac{r}{4}\right)+o(1)\right)\right)}{\log T_{h}(r)} \quad[\text { by Lemma }(2.2)] \\
& =\limsup _{r \rightarrow \infty} \frac{\log \left(\frac{1}{3} \log M_{f}\left(\frac{1}{8} M_{g}\left(\frac{r}{4}\right)\right)\right)}{\log T_{h}(r)} \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log \left(\frac{1}{3} T_{f}\left(\frac{1}{8} M_{g}\left(\frac{r}{4}\right)\right)\right)}{\log T_{h}(r)} \quad[\text { by Lemma (2.1)] } \\
& \geq \limsup _{r \rightarrow \infty} \frac{\log T_{f}\left(\frac{1}{8} M_{g}\left(\frac{r}{4}\right)\right)}{\log T_{g}(r)} . \liminf _{r \rightarrow \infty} \frac{\log T_{g}(r)}{\log T_{h}(r)} \\
& =k . \lambda_{h}(g)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
k \lambda_{h}(g) \leq \rho_{h}(f o g) \tag{3.43}
\end{equation*}
$$

Finally

$$
\begin{aligned}
\rho_{h}(f o g) & =\limsup _{r \rightarrow \infty} \frac{\log T_{\text {fog }}(r)}{\log T_{h}(r)} \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log 3 T_{f}\left(2 M_{g}(r)\right)}{\log T_{h}(r)} \quad[b y[8]] \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log T_{f}\left(2 M_{g}(r)\right)}{\log T_{g}(r)} \cdot \limsup _{r \rightarrow \infty} \frac{\log T_{g}(r)}{\log T_{h}(r)} \\
& =k \rho_{h}(g)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\rho_{h}(f o g) \leq k \rho_{h}(g) \tag{3.44}
\end{equation*}
$$

From equation (3.42), equation(3.43), and (3.44) the theorem follows.

References

[1] Banerjee, D. :A note on relative order of meromorphic functions, Bull.Cal. Math. Soc.,98, 1(2006), 25-30.
[2] Banerjee, D. and Jana, S. :On meromorphic functions of relative order (p,q), Int. Journal of Math. Analysis, Vol. 5, 2011, no. 28, 1391-1398.
[3] Bernal, L.: Orden relativo de crecimiento de functions enteras, collectanea Mathematica, Vol. 39 (1988), pp. 209-229
[4] Clunie, J.: The composition of entire and meromorphic functions, Mathematical Essays dedicated to A. J. Macintyre, Ohio University Press, pp. 7592, 1970.
[5] Hayman, W.K. : Meromorphic Functions, The Clarendon press, Oxford (1964).
[6] Lahiri, B.K. and Banerjee, D. : Relative order of entire and meromorphic functions, Proc. Nat. Acad. Sci. India Ser. A., 69(A): 3(1999), 339-354.
[7] Niino, K. and C. C. Yang, Some Growth relationships on factors of two composite entire functions, Factorization theory of meromorphic functions and related topics, Marcel Dekker Inc. New York (1982), 95-99.
[8] Niino, K. and Suita, N., Growth of a composite function of entire functions, Kodai math. J., Vol. 3 (1980), pp. 374-379.
[9] Singh, A. P., Growth of composite entire functions, Kodai Math. J., Vol. 8 (1985), pp. 99-102.
[10] W. Bergweiler, "On the growth rate of composite meromorphic functions," Complex Variables, Theory and Application, Vol.14, no. 1-4, pp.187-196, 1990.

