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Abstract 

              Nonstandard analysis is a branch of Mathematics introduced by Abraham Robinson[1] in 1966. In 1977, 

Edward Nelson[4] gave an axiomatic approach to Non-standard analysis. In many instances, analysis on infinite sets 

can be reduced to a finiteness argument using Nonstandard methods. In this expository article, we present an 

introduction to the theory and atleast twice make an observation that numbers within our reach are "finitely many". 
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I. INTRODUCTION 

Abraham Robinson[1] constructed a superstructure to work in any given structure like the Euclidean spaces, 

topological spaces, algebraic structures (rings, fields etc., .) , graphs and so on. Instead, Edward Nelson[4] 

restructured the axiomatics of set theory by introducing three new principles (IST ) - Idealization, Standardization, 

Transfer - to the Zermelo Fraenkel set of axioms with the axiom of choice (ZFC) . Nelson proved the consistency of 

the new system (IST + ZFC) . This allows standard and nonstandard elements to work within sets. First we present 

the axioms and discuss the immediate outcomes. 

 

II. AXIOMATICS 

Henceforth whatever we refer to as ’classical’ is anything we have come across in Mathematics so far. For instance, 

sets, cartesian products of sets, relations and functions studied so far, all axioms, mathematical structures and results 

in classical set theory (ZFC) still hold in our extended analysis - namely Nonstandard analysis. Like the binary 

predicate ′ ∈ ′ (belongs to) and its governing rules in classical set theory, [4]Nelson introduces a unary predicate (for 

example, complement operation in sets is a unary predicate in classical set theory) ’standard’ and spells out its 

governing rules in the following three axioms. We present the axioms with some discussions in between. The 

fundamentals are as in Alain Robert [3]. 

 

Idealization (I ) : Let R (x, y) be a classical relation between two sets X and Y, that is, R ⊆ X × Y . If for every 

standard and finite F ⊆ X , there exists yF ∈  Y such that R (x, yF ) ∀x ∈  F , then there exists y ∈  Y such that R (x, 

y) for all standard x ∈  X . 

 

 

We use the symbols ∀  s , ∃  s , ∀  f , ∃  f , ∀  sf and ∃  sf to mean ’for every standard’, ’there exists standard’, ’for 

every finite’, ’there exists finite’, ’for every standard and finite’ and ’there exists standard and finite’ respectively. 

Hence restated, Idealization axiom is as follows : 

 

Let R (x, y) be a classical relation between two sets X and Y. That is, R ⊆ X × Y . ∀ sf   F ⊆ X, ∃ yF  ∈ Y  such that 

R (x, yF )  ∀ x ∈ F ⇒ ∃ y ∈ Y  such that  R (x, y) ∀ s  x ∈ X.  

We discuss some consequences before proceeding to the next two axioms. An element which is not standard will be 

called  nonstandard. 

Consequence 1. Every infinite set has nonstandard elements. 
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Proof. Let X be an infinite set and R be a relation on X defined by R (x, y) if x ≠ y . Now ∀ sf F ⊆ X, ∃ yF ∈ X such 

that R (x, yF ) , since X is infinite. By (I), ∃ y ∈ X such that R (x, y) ∀ s  x ∈ X . That is, y  ≠  x ∀ s  x ∈ X . This y 

must be nonstandard.                                                                                                                                                     // 

Consequence 2. Given any set X, there exists a finite subset F of X containing all standard elements of X. 

Proof. Let Pf (X ) denote the collection of all finite subsets of  X. Let R be a relation between X and Pf (X ) defined 

by R (x, A) if x ∈ A . ∀ sf A ⊆ X, ∃ A ∈ Pf (X ) such that R (x, A) ∀ x ∈ A . By (I), ∃ F ∈ Pf (X ) such that R (x, F ) 

∀ s x ∈ X . That is, x ∈ F ∀ s x ∈ X . Hence proved.                                                                                                    // 

Thus there is a finite subset of R containing all standard real numbers. By Transfer axiom to be spelt out, the real 

numbers that we know are all standard and hence are contained in a finite set. This may be rephrased as "The real 

numbers within our reach are finitely many (!)".  

Next we move to Standardization axiom. 

Standardization (S) : Let P be a property (classical or not) on a standard set X. Then there exists a unique standard 

subset E of X such that the standard elements of  E are precisely the standard elements of  X satisfying the property 

P. E is denoted by   

S {x ∈  X / P (x)}. 

It will be appropriate to discuss consequences of Standardization axiom after presenting Transfer axiom and some of 

its consequences. 

Transfer (T) : Let F be a formula involving a variable x and standard parameters  A,B,C etc.,. Then 

 (∀ s x) [F (x, A, B, C...)] ⇔ (∀x) [F (x, A, B, C...)] (*). Applying it for the negation ¬ F of F, we get   

(∀ s x) [¬F (x, A, B, C...)] ⇔ (∀ x) [¬F (x, A, B, C...)] . This is equivalent to the dual Transfer Principle. 

(∃ s x) [F (x, A, B, C...)] ⇔ (∃ x) [F (x, A, B, C...)] (**). 

Thus the Transfer principle is valid with the existential quantifier ′∃ ′ in place of the universal quantifier ′∀ ′ too. 

 

Consequence 3. The Transfer may be extended to any finite number of quantifiers. For instance, if A,B,C..... are 

standard parameters, (∀x) (∀y) ..... [F (x, y, ...A, B....)] ⇔ (∀ s x) (∀ s y) .... [F (x, y, ...A, B....)]. 

 

Consequence 4. In view of (**), whenever an entity is uniquely established in classical theory, this entity must be 

standard. Thus the numbers like 3, −101
103 , e, π,  2, the set  of natural numbers N, the set of  real numbers R 

etc.,. are all standard. 

Consequence 5. Let A,B be standard  sets. To show A ⊆ B , it is enough to check  x ∈ A ⇒ x ∈ B for standard 

elements. This follows from Transfer axiom: (∀ s x) [x ∈ A ⇒ x ∈ B] ⇔ (∀ x) [x ∈ A ⇒ x ∈ B]. Thus two standard 

sets are equal if both have the same standard elements. 

Consequence 6. In a set E every element is standard if and only if  E is a finite and standard set. 

Proof. 

(∃  x ∈  E) [x is nonstandard]    

  ⟺  (∃  x ∈  E) (∀  s  y ∈  E) [y ≠ x]                                           

  ⟺ (∀  sf  F)  (∃  x ∈  E) (∀  y ∈  F ) [y ≠ x] , by (I).                                        

     ⟺ (∀  sf  F)  (∃  x ∈  E) [x ∉ F ]                                        
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      ⟺ (∀  sf  F)  [E ⊈ F ]  

Negating the above equivalence,  (∀x ∈  E) [x is standard]  ⇔ (∃  sf   F)  [E ⊆ F ] (*) 

We shall use the above equivalence (*) to establish the statement of consequence 6. 

If E is standard and finite, taking F = E, the implication ⟸ of (*) gives that every x ∈  E is standard. 

Conversely let every x ∈  E be standard. Then ⇒ of (*) gives a standard, finite F such that E ⊆ F . First of all this 

says E is finite. F is standard and finite implies the power set P (F ) is standard and finite. (P (F ) is standard, by 

Consequence 4). By what we have established, every element of P (F ) is standard and hence E  is standard. This 

completes the proof.                                                                                                                                                 // 

From classical analysis, we know that 𝒇 ∶ 𝑹 → 𝑹 defined by 𝒇 𝒙 =1 if x is rational 

                                                                                                                = 0 if x is irrational 

is discontinuous at all real points. As a surprise we prove that there is a continuous 𝒇 ∶ 𝑹 → 𝑹 taking the value 

1 at all rationals in our reach and 0 at all irrationals in our reach. Precisely we spell it out as an    

  

Observation : There is a continuous 𝒇: 𝑹 → 𝑹 such that 𝒇(𝒙) = 1 if x is standard rational 

                                                                                                        = 0 if x is standard irrational 

Proof : Let F be a finite subset of R containing all standard real numbers.  

Let  F =  𝑥1 , 𝑥2 , …… . . , 𝑥𝑚  , 𝑦1 , 𝑦2 , …… . . 𝑦𝑛     where 𝑥𝑖 's  are rationals and 𝑦𝑗 's are irrationals. 

Consider  𝑓 𝑥 =  
 𝑥−𝑥2  𝑥−𝑥3 ….. 𝑥−𝑥𝑚   𝑥−𝑦1 ……(𝑥−𝑦𝑛 )

 𝑥1−𝑥2  𝑥1−𝑥3 ….. 𝑥1−𝑥𝑚   𝑥1−𝑦1 …..(𝑥1−𝑦𝑛 )
 

                       +   
 𝑥−𝑥1  𝑥−𝑥3 ….. 𝑥−𝑥𝑚   𝑥−𝑦1 ……(𝑥−𝑦𝑛 )

 𝑥2−𝑥1  𝑥2−𝑥3 ….. 𝑥2−𝑥𝑚   𝑥2−𝑦1 …..(𝑥2−𝑦𝑛 )
  

                            +............................................................. 

                            +  
 𝑥−𝑥1  𝑥−𝑥2 ….. 𝑥−𝑥𝑚−1  𝑥−𝑦1 ……(𝑥−𝑦𝑛 )

 𝑥𝑚 −𝑥1  𝑥𝑚 −𝑥2 ….. 𝑥𝑚 −𝑥𝑚−1  𝑥𝑚 −𝑦1 …..(𝑥𝑚 −𝑦𝑛 )
 

Clearly  𝑓  is continuous  (in fact, it is a polynomial function). 

Also  𝑓(𝑥𝑖) = 0  for  i = 1,2.....,m  and  𝑓(𝑦𝑖) = 0 for  j = 1,2,.....n. 

Hence  𝑓  is the required function.                                                                                                                            // 
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