Irreducible Polynomial on Finite Field

Poonam ${ }^{\# 1}$,Shilpa Aggrwal ${ }^{\# 2}$
${ }^{\# 1}$ Department of Mathematics, Govt. College,Hisar .
\#2 Department of Mathematics, Govt. College,Hisar .

Abstract

The aim of this paper is to study about irreducible polynomials over finite field and to find irreducible polynomials of degree 2 and 3 over the field Z_{2} and Z_{3}.

Key Words: Irreducible, Polynomial, Reducible, Field.

Introduction

Irreducible polynomial plays very important role in field theory. An irreducible polynomial is a non-constant polynomial that can't factorised into the product of two non constant polynomials. A polynomial that is irreducible over any field containing coefficients is absolutely irreducible.

Notations

$$
\mathrm{Z}_{2}=\{0,1\} \text { is field under addition modulo } 2 \text { and }
$$

multiplication modulo 2 .
$\mathrm{Z}_{2}[\mathrm{x}]$ is a polynomial ring.
$\mathrm{Z}_{3}=\{0,1,2\}$ is a field under addition modulo 3 and multiplication modulo 3 .
$\mathrm{Z}_{3}[\mathrm{x}]$ is polynomial ring.

Irreducible Polynomial

Let F be a field. Let $f(x) \epsilon F[x]$ be a non zero, non-constant polynomial. Then $f(x)$ is said to be irreducible if it can not be factorised into the product of two non-constant polynomial with coefficients in F .

Theorem - Reducibility test for degree 2 and 3.

Let f be a field. If $\mathrm{f}(\mathrm{x}) \epsilon \mathrm{F}[\mathrm{x}]$ and $\operatorname{deg} \mathrm{f}(\mathrm{x})=2$ or 3 , then $f(x)$ is reducible over F if and only if $f(x)$ has a zero in field F.

Now we calculate number of irreducible polynomials of degree 2 over $\mathbf{Z}_{\mathbf{2}}$ $a x^{2}+b x+C \quad$ over Z_{2}

Clearly $\mathrm{a} \neq 0$, so $\mathrm{a}=1$, equation becomes
$x^{2}+b x+C$
Now we have two choice for c and two for b .
Case - I If $C=0$, then polynomial $x^{2}+b x$ is reducible over Z_{2}.
Case - II If $\mathrm{C}=1$ then polynomial becomes
$x^{2}+b x+1 \quad$ Now we have two choice for b
If $b=0$, then polynomial $x^{2}+1$ is reducible over Z_{2}.
If $b=1$, then polynomial $x^{2}+x+1$ is irreducible over Z_{2}.
Now we calculate number of irreducible polynomials of degree 2 over Z_{3}
Now $\quad \mathrm{ax}^{2}+\mathrm{bx}+\mathrm{C} \quad$ over Z_{3}
Clearly a $\neq 1$, so a have two choices.
Case - I If $\mathrm{a}=1$, then polynomial becomes $\mathrm{x}^{2}+\mathrm{bx}+\mathrm{C}$, here C have three choices.
Sub Case-(i) If $C=0$, then polynomial $x^{2}+b x$ is reducible over
Z3.
Sub Case-(ii) If $C=1$, then polynomial becomes $x^{2}+b x+1$
Now b has three choices.
If $b=0$, then polynomial $x^{2}+1$ is irreducible over
Z_{3}.

```
    If \(b=1\), then polynomial \(x^{2}+x+1\) is reducible
over \(Z_{3}\).
    If \(b=2\), then polynomial \(\quad x^{2}+2 x+1\) is reducible
over \(Z_{3}\).
```

Sub Case-(iii)
If $C=2$, then polynomial becomes $x^{2}+b x+2$ Now b has three choices.
If $b=0$, then polynomial $\quad x^{2}+b x+2$ is reducible Over Z_{3}.

If $b=1$, then polynomial $\quad x^{2}+x+2$ is irreducible over Z_{3}.

If $b=2$, then polynomial $\quad x^{2}+2 x+1$ is irreducible over Z_{3}.

Case - II If $\mathrm{a}=2$, then the polynomial becomes $2 x^{2}+b x+C$. Now C have again three choices.

Sub Case-(i) If $C=0$, then polynomial $2 x^{2}+b x$, is reducible over Z_{3}.

Sub Case-(ii) | $C=1$, then polynomial becomes $2 x^{2}+b x+1$, here b has three choices. |
| :--- |
| If $b=0$, then polynomial $2 x^{2}+1$ is reducible over Z_{3}. |
| If $b=1$, then polynomial $2 x^{2}+x+1$ is irreducible over Z_{3}. |
| If $b=2$, then polynomial $2 x^{2}+2 x+1$ is irreducible over Z_{3}. |

Sub Case-(iii) $\quad C=2$, then polynomial becomes $2 x^{2}+b x+2=0$, here b has three choices.
If $b=0$, then polynomial $2 x^{2}+2$ is irreducible over Z_{3}.
If $b=1$, then polynomial $2 x^{2}+x+2$ is reducible over Z_{3}.
If $b=2$, then polynomial $2 x^{2}+2 x+2$ is reducible over Z_{3}.
Now we calculate irreducible polynomials of degree 3 over \mathbf{Z}_{2}.
Now $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$ over Z_{2}
Clearly $a \neq 0$, so $a=1$, then the polynomial becomes $x^{3}+b x^{2}+c n+d$. Here d have two choices.

Case - I If $\mathrm{d}=0$, then polynomial $\mathrm{x}^{3}+\mathrm{bx}^{2}+\mathrm{cx}, \quad$ is reducible over Z_{2}.
Case - II If $\mathrm{d}=1$, then polynomial becomes $\mathrm{x}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+1$ here C has two choices.
Sub Case (i) If $C=0$, then polynomial becomes $x^{3}+b x^{2}+1$, here b has two choices.
If $b=0$, then polynomial $x^{3}+1$ is reducible over Z_{2}.
If $b=1$, then polynomial $x^{3}+x+1$ is irreducible
over Z_{2}.
Sub Case (ii)
If $\mathrm{C}=1$, then polynomial $\mathrm{x}^{3}+\mathrm{bx}+\mathrm{x}+1$, here b has two choices.
If $b=0$, then polynomial $\quad x^{3}+x+1$ is reducible over Z_{2}.
If $b=1$, then polynomial $x^{3}+x^{2}+x+1$ is irreducible over Z_{2}.

Now we calculate irreducible polynomials of degree 3 over \mathbf{Z}_{3}.

Now $a x^{3}+b x^{2}+c x+d=0 \quad$ over Z_{3}
Clearly $\mathrm{a} \neq 0$ clearly q has two choices.
Case - I If $\mathrm{a}=1$, then polynomial becomes $\mathrm{x}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$, here d has three choices.
Sub Case (i) If $d=0$, then polynomial becomes $x^{3}+b x^{2}+c x$ reducible over Z_{3}
Sub Case (ii)
If $\mathrm{d}=1$, then polynomial becomes $\mathrm{x}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+1$ here C has three choices.
(A)

If $\mathrm{C}=0$, then polynomial becomes $\quad \mathrm{x}^{3}+b \mathrm{x}^{2}+1$, here b has three choices.
If $b=0$, then polynomial $x^{3}+1$ is reducible over Z_{3}.

If $\mathrm{b}=1$, then polynomial $\mathrm{x}^{3}+\mathrm{x}^{2}+1$ is reducible over Z_{3}.
If $b=2$, then polynomial $x^{3}+2 x^{2}+1$ is irreducible over Z_{3}
(B)

If $\mathrm{C}=1$, then polynomial becomes $\quad \mathrm{x}^{3}+\mathrm{bx}^{2}+\mathrm{x}+1$, here b has three choices.
If $b=0$, then polynomial $x^{3}+x+1$ is reducible over Z_{3}.
If $b=1$, then polynomial $x^{3}+x^{2}+x+1$ is reducible over Z_{3}.
If $b=2$, then polynomial $x^{3}+2 x^{2}+x+1$ is irreducible over Z_{3}.
(C)

If $\mathrm{C}=2$, then polynomial becomes $\quad \mathrm{x}^{3}+b \mathrm{x}^{2}+2 \mathrm{x}+1$, here b has three choices.
If $b=0$, then polynomial $x^{3}+x^{2}+2 x+1$ is irreducible over Z_{3}.
If $b=1$, then polynomial $x^{3}+x^{2}+2 x+1$ is irreducible over Z_{3}.
If $b=2$, then polynomial $x^{3}+2 x^{2}+2 x+1$ is reducible over Z_{3}.
Sub Case (iii) If $d=2$, then polynomial $x^{3}+b x^{2}+c x+2$ here C has three choices.
(A)

If $C=0$, then polynomial $x^{3}+b x^{2}+2$, here b has three choices.
If $b=0$, then polynomial $x^{3}+2$ is reducible over Z_{3}.
If $b=1$, then polynomial $x^{3}+x^{2}+2$ is irreducible over Z_{3}.
If $b=2$, then polynomial $x^{3}+2 x^{2}+2$ is reducible over Z_{3}.
(B)

If $\mathrm{C}=1$, then polynomial $\mathrm{x}^{3}+b \mathrm{x}^{2}+\mathrm{x}+2$, here b has three choices.
If $b=0$, then polynomial $x^{3}+x+2$ is reducible over Z_{3}.
If $b=1$, then polynomial $x^{3}+x^{2}+x+2$ is irreducible over Z_{3}.
If $b=2$, then polynomial $x^{3}+2 x^{2}+x+2$ is reducible over Z_{3}.
(C)

If $\mathrm{C}=2$, then polynomial becomes $\quad \mathrm{x}^{3}+\mathrm{bx}^{2}+2 \mathrm{x}+2$ here b has three choices.
If $b=0$, then polynomial $x^{3}+2 x+2$ is irreducible over Z_{3}.
If $b=1$, then polynomial $x^{3}+x^{2}+2 x+2$ is reducible over Z_{3}.
If $b=2$, then polynomial $x^{3}+2 x^{2}+2 x+2$ is irreducible over Z_{3}.
Case - II If $a=2$, then poly. becomes $2 x^{3}+b x^{2}+c x+d=0$, here d has three choices.
Sub Case (i) If $d=0$, then polynomial $2 x^{3}+b x^{2}+c x$ is
reducible over Z_{3}
Sub Case (ii) If $d=1$, then polynomial becomes $2 x^{3}+b x^{2}+c x+1$
here C has three choices.
(A)

If $\mathrm{C}=0$, then polynomial becomes $2 \mathrm{x}^{3}+b \mathrm{x}^{2}+1$, here b has three choices.
If $b=0$, then polynomial $2 x^{3}+1$ is reducible
over Z_{3}.
If $b=1$, then polynomial $2 x^{3}+x^{2}+1$ is reducible over Z_{3}.
If $b=2$, then polynomial $2 x^{3}+2 x^{2}+1$ is irreducible over Z_{3}.
(B)

If $\mathrm{C}=1$, then polynomial $2 \mathrm{x}^{3}+\mathrm{bx}+\mathrm{x}+1$, here b has three choices.
If $b=0$, then polynomial $2 x^{3}+x+1$ is irreducible over Z_{3}.
If $b=1$, then polynomial $2 x^{3}+x^{2}+x+1$ is irreducible over Z_{3}.
If $b=2$, then polynomial $2 x^{3}+2 x^{2}+x+1$ is reducible over Z_{3}
(C)

If $\mathrm{C}=2$, then polynomial $2 \mathrm{x}^{3}+b \mathrm{x}^{2}+2 \mathrm{x}+1$, here b has 3 choices.
If $b=0$, then polynomial $2 x^{3}+2 x+1$ is reducible over Z_{3}.
If $b=1$, then polynomial $2 x^{3}+x^{2}+2 x+1$ is reducible over Z_{3}.
If $\mathrm{b}=2$, then polynomial $2 \mathrm{x}^{3}+2 \mathrm{x}^{2}+2 \mathrm{x}+1$ is irreducible over Z_{3}.
Sub Case (iii) If $\mathrm{d}=2$, then polynomial becomes
$2 x^{3}+b x^{2}+c x+2$, here C has 3 choices.
(A)

If $\mathrm{C}=0$, then polynomial becomes $\quad 2 \mathrm{x}^{3}+b \mathrm{x}^{2}+2$, here b has three choices.
If $b=0$, then polynomial $2 x^{3}+2$ is reducible over Z_{3}.
If $\mathrm{b}=1$, then polynomial $2 \mathrm{x}^{3}+\mathrm{x}^{2}+2$ is reducible over Z_{3}.
If $\mathrm{b}=2$, then polynomial $2 \mathrm{x}^{3}+2 \mathrm{x}^{2}+2$ is irreducible over Z_{3}.
(B)

If $\mathrm{C}=1$, then polynomial becomes $2 \mathrm{x}^{3}+b \mathrm{x}^{2}+\mathrm{x}+2$, here b has three choices.
If $b=0$, then polynomial $2 x^{3}+x+2$ is irreducible over Z_{3}.
If $b=1$, then polynomial $2 x^{3}+x^{2}+x+2$ is reducible over Z_{3}.
If $\mathrm{b}=2$, then polynomial $2 \mathrm{x}^{3}+2 \mathrm{x}^{2}+\mathrm{x}+2$ is irreducible over Z_{3}.
(C)

If $\mathrm{C}=2$, then polynomial becomes $2 \mathrm{x}^{3}+\mathrm{bx}^{2}+2 \mathrm{x}+2$, here b has 3 choices.
If $b=0$, then polynomial $2 x^{3}+2 x+2$ is reducible over Z_{3}.
If $b=1$, then polynomial $2 x^{3}+x^{2}+2 x+2$ is reducible over Z_{3}.
If $b=2$, then polynomial $2 x^{3}+2 x^{2}+2 x+2$ is irreducible over Z_{3}.

CONCLUSION

Irreducible polynomial of degree 2 over Z_{2} is
$x^{2}+x+1$
Irreducible polynomials of degree 2 over Z_{3} are
$x^{2}+1, x^{2}+x+2, x^{2}+2 x+2,2 x^{2}+x+1,2 x^{2}+2 x+1$
Irreducible polynomials of degree 3 over Z_{2} are
$x^{3}+x^{2}+1, x^{3}+x+1$
Irreducible polynomials of degree 3 over Z_{3} are
$x^{3}+2 x^{2}+1, x^{3}+2 x^{2}+x+1, x^{3}+2 x+1, x^{3}+x^{2}+1, x^{3}+x^{2}+2, x^{3}+x^{2}+x+2, x^{3}+2 x+2, x^{3}+$
$2 \mathrm{x}^{2}+2 \mathrm{x}+1, \quad 2 \mathrm{x}^{3}+2 \mathrm{x}^{2}+1,2 \mathrm{x}^{3}+\mathrm{x}+1, \quad 2 \mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1,2 \mathrm{x}^{3}+2 \mathrm{x}^{2}+2 \mathrm{x}+1,2 \mathrm{x}^{3}+\mathrm{x}^{2}+2$,
$2 x^{3}+x+2, x^{3}+2 x^{3} 2 x^{2}+x+2, x^{3}+2 x^{3}+x^{2}+2 x+2$,

Reference

1) "Contemporary Abstract Algebra" by Joseph A. Gallian. ISBN - 1305887859, 9781305887855
2) "A Course in Abstract Algebra" by V.K. Khanna \& S.K. Bhambri, Second Edition,Vikas Publication House Pvt Limmited, 1999,070698675X, 9780706986754.
3) "A first Court in Abstract Algebra" ($7^{\text {th }}$ Edition) by - J.B. Fraleigh. ISBN - 13:9780201763904
4) "Abstract Algebra" ($3^{\text {rd }}$ Edition) by David S. Dummit, Richard M.Foote,ISBN - 9780471433347
5) "Abstract Algebra" by I.N. Hersterin. ISBN-10:0471368792
