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Abstract: The (G,D)-bondage number of a graph G denoted by b𝛾
𝐺

(𝐺) is the least positive integer k such that 

there exists 𝐹 ⊆ 𝐸(𝐺) with  𝐹 = 𝑘 and 𝛾
𝐺

(𝐺 − 𝐹) > 𝛾
𝐺

(𝐺).  If no such k exists, it is defined to be ∞.   The 

(G,D)-nonbondage number of a graph G denoted by bn𝛾𝐺
(𝐺) is defined as the maximum cardinality among all 

sets of edges 𝑋 ⊆ 𝐸(𝐺) such that 𝛾
𝐺
 𝐺 − 𝑋 = 𝛾

𝐺
 𝐺 .  If bn𝛾𝐺

(𝐺)does not exist, we define bn𝛾𝐺
 𝐺 = 0.In this 

paper we initiate a study of these two parameters. 
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number. 

AMS Subject Classification: 05C69 

1. Introduction: Throughout this paper, we consider G as a finite undirected graph with no loops and multiple 

edges.  The study of domination in graphs was begun by Ore and Berge[6].  Let G = (V, E) be any graph.  A 

dominating set of a graph G is a set D of vertices of G such that every vertex in V–D is adjacent to atleast one 

vertex in D and the minimum cardinality among all dominating sets is called the domination number 𝛾(G).  The 

concept of geodominating       (or geodetic) set was introduced by Buckley and Harary in [1] and Chartrand, 

Zhang and Harary in [2, 3, 4].  Let u, v ∈V(G).  A u-v geodesic is a u-v path of length d(u, v).  A vertex x 

∈V(G) is said to lie on a u-v geodesic P if x is a vertex of P including the vertices u and v.  A set S of vertices of 

G is a geodominating(or geodetic) set if every vertex of G lies on an x-y geodesic for some x, y in S.  The 

minimum cardinality of a geodominating set is the geodomination(or geodetic) number of G and is denoted as 

g(G)[1, 2, 3, 4].  A (G, D)-set of G is a subset S of V(G) which is both a dominating and geodetic set of G.  A 

(G, D)-set S of G is said to be a minimal (G, D)-set of G if no proper subset of S is a (G, D)-set of G.  The 

minimum cardinality of all (G, D)-sets of G is called the (G, D)-number of G and it is denoted by 𝛾G(G).  Any 

(G, D)-set of G of cardinality 𝛾G is called a 𝛾G-set of G [8, 9, 10].  

     Fink et al. [5] introduced the bondage number of a graph in 1990.  The bondage number 𝑏(𝐺) of a graph G is 

the cardinality of a smallest set of edges whose removal from 𝐺 results in a graph with domination number 

greater than 𝛾(𝐺). 

     In [7], Kulli and Janakiram introduced the concept of the nonbondage number as follows: The  nonbondage 

number 𝑏𝑛(𝐺) of 𝐺 is the maximum cardinality of all sets of edges 𝑋 ⊆ 𝐸 for which 𝛾 𝐺 − 𝑋 = 𝛾(𝐺) for an 

edge set  𝑋, then 𝑋 is called the nonbondage set and the maximum one the maximum nonbondage set.  If 𝑏𝑛(𝐺) 

does not exist, we define 𝑏𝑛 𝐺 = 0. 

     Let G = (V, E) be any graph and v ∈V(G).  The neighbourhood of v, written as NG(v) or N(v) is defined by 

N(v) = {x∈ V(G) : x is adjacent to v}.  The degree of a vertex 𝑣 in a graph 𝐺 is defined to be the number of 

edgesincident with 𝑣 and is denoted by deg𝑣.  A vertex of degree zero is an isolated vertex and a vertex of 

degree one is a pendant vertex (or end vertex).  Any vertex which is adjacent to a pendant vertex is called a 

support.  A graph 𝐺 is complete if every pair of distinct vertices of 𝐺are adjacent in G.  A complete graph on 𝑝 

vertices denoted by 𝐾𝑝.A graph 𝐺 is called acyclic if it has no cycles.  A connected acyclic graph is called a tree. 

Remark1.1:[8] 
𝑛−4

3
 + 2 =  

 
𝑛

3
 𝑖𝑓𝑛 ≡ 1(𝑚𝑜𝑑 3)

 
𝑛

3
 + 1        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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Theorem1.2:[8] 

𝛾
𝐺
 𝑃𝑛 =  

 
𝑛 − 4

3
 + 2                      𝑖𝑓𝑛 ≥ 5 

      2                   𝑖𝑓𝑛 = 2, 3 𝑜𝑟 4.

  

Proposition 1.3:[8]  For 𝑛 > 5, 𝛾𝐺 𝐶𝑛 = 𝛾(𝐶𝑛) =  
𝑛

3
 . 

Theorem 1.4:[8] Let 𝑊𝑝 = 𝐶𝑝−1 + 𝐾1, 𝑝 ≥ 5 denote the wheel graph on 𝑝 vertices.  Then, 𝛾
𝐺
 𝑊𝑝 =  

𝑝

2
 . 

Corollary 1.5:[8] Let 𝐺 = (𝑉, 𝐸) be a connected graph on 𝑝  vertices.  Then, 𝛾
𝐺
 𝐺 = 𝑝 if and only if 𝐺 is 

complete. 

Notation 1.6:𝐾𝑛(𝑚1, 𝑚2, … , 𝑚𝑛) denotes the graph obtained from 𝐾𝑛 by pasting 𝑚1, 𝑚2, … , 𝑚𝑛 edges to the 

vertices 𝑢1, 𝑢2, … , 𝑢𝑛 of 𝐾𝑛 respectively. 

2. (G,D)-BONDAGE NUMBER OF A GRAPH 

Definition 2.1: The (G,D)-bondage number of a graph G denoted by b𝛾
𝐺

(𝐺) is the least positive integer 𝑘 such 

that there exists F ⊆ E(G) with  𝐹 = 𝑘 and 𝛾
𝐺

(𝐺 − 𝐹) > 𝛾
𝐺

(𝐺).  If no such 𝑘 exists, it is defined to be ∞. 

Remark 2.2: (i) If 𝛾
𝐺
 𝐺 = 𝑝, then b𝛾

𝐺
(𝐺)=∞.  Hence, b𝛾

𝐺
(𝐾𝑝)=∞.  (ii) (G,D)-number is defined for 

connected graphs with atleast two vertices [8].  So, let us assume that (G,D)-number of a disconnected graph is 

the sum of (G,D)-number of its components.  (iii) Also, assume that (G,D)-number of a graph with less than two 

vertices, that is, graph is a single vertex is 1. 

Proposition 2.3: b𝛾
𝐺
 𝑃𝑛 = 1 for all n ≥ 3. 

Proof: Obviously,  b𝛾
𝐺
 𝑃3 = b𝛾

𝐺
 𝑃4 = b𝛾

𝐺
 𝑃5 = b𝛾

𝐺
 𝑃6 =1.Let n ≥ 7.  Remove an edge 𝑒 from 𝑃𝑛 

such that 𝑃𝑛 −  𝑒 = 𝑃5 ∪ 𝑃𝑛−5. 

Then, 𝛾
𝐺
 𝑃𝑛 − {𝑒} =  𝛾

𝐺
 𝑃5 + 𝛾

𝐺
 𝑃𝑛−5 . 

Case 1: 𝑛 = 7, 8 or 9 

𝛾
𝐺
 𝑃𝑛 − {𝑒} =  𝛾

𝐺
 𝑃5 + 𝛾

𝐺
 𝑃𝑛−5  

= 3 + 2( by theorem 1.2) 

= 5 

But, 𝛾
𝐺
 𝑃7 = 3 and 𝛾

𝐺
 𝑃8 = 𝛾

𝐺
 𝑃9 = 4. 

Therefore, 𝛾
𝐺
 𝑃𝑛 − {𝑒} = 5 > 𝛾

𝐺
(𝑃𝑛). 

Hence, b𝛾
𝐺
 𝑃𝑛 = 1. 

Case 2: 𝑛 ≥ 10 

𝛾
𝐺
 𝑃𝑛 − {𝑒} =  𝛾

𝐺
 𝑃5 + 𝛾

𝐺
 𝑃𝑛−5  

= 3 +  
𝑛−5−4

3
 + 2( by theorem 1.2) 

= 3 +  
𝑛 − 9

3
 + 2. 

By theorem 1.2, 𝛾
𝐺
 𝑃𝑛 =  

𝑛−4

3
 + 2. 
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Now, 3 +  
𝑛−9

3
 =  

9

3
 +  

𝑛−9

3
 ≥  

𝑛

3
 >  

𝑛−4

3
 . 

Therefore, 𝛾
𝐺
 𝑃𝑛 − {𝑒} = 3 +  

𝑛−9

3
 + 2 

>  
𝑛 − 4

3
 + 2 

= 𝛾𝐺(𝑃𝑛). 

Hence, b𝛾
𝐺
 𝑃𝑛 = 1 for all n ≥ 3. 

Proposition 2.4:For n > 5,  

b𝛾
𝐺
 𝐶𝑛 =  1    𝑖𝑓𝑛 ≡ 0 𝑚𝑜𝑑 3 𝑜𝑟𝑛 ≡ 2 𝑚𝑜𝑑 3 

2                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  

Proof: 

Case 1: 𝑛 ≡ 0 𝑜𝑟 2 (𝑚𝑜𝑑 3) 

Then, 𝛾
𝐺
 𝐶𝑛 − {𝑒} = 𝛾

𝐺
 𝑃𝑛  

=  
𝑛

3
 + 1( by theorem 1.2 & remark 1.1) 

>  
𝑛

3
 = 𝛾𝐺 𝐶𝑛 ( by proposition 1.3) 

Therefore, b𝛾
𝐺
 𝐶𝑛 = 1. 

Case 2:𝑛 ≡ 1 (𝑚𝑜𝑑 3) 

 Then, 𝛾
𝐺
 𝐶𝑛 −  𝑒  = 𝛾

𝐺
 𝑃𝑛  

=  
𝑛

3
 ( by theorem 1.2 & remark 1.1)                  

= 𝛾
𝐺
 𝐶𝑛 ( by proposition 1.3). 

But, b𝛾
𝐺
 𝑃𝑛 = 1( by proposition 2.3).   

Therefore, b𝛾
𝐺
 𝐶𝑛 = 2. 

Proposition 2.5: b𝛾
𝐺
 𝐾1,𝑛 = 𝑛 − 1. 

Proof:γ
G
 𝐾1,𝑛 = 𝑛 and it becomes 𝑛 + 1 only if we remove 𝑛 − 1 of its 𝑛 edges.  That is, 𝛾

𝐺
 𝐾1,𝑛 − 𝐹 =

𝑛 + 1 only when  𝐹 = 𝑛 − 1.  Therefore, b𝛾
𝐺
 𝐾1,𝑛 =  𝐹 = 𝑛 − 1. 

Proposition 2.6:  b𝛾
𝐺
 𝑊𝑝 =  

1   𝑖𝑓𝑝𝑖𝑠𝑜𝑑𝑑

2   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  

Proof:  We know that, 𝑊𝑝 = 𝐶𝑝−1 + 𝐾1. 

By theorem (1.4), 𝛾
𝐺
 𝑊𝑝 =  

𝑝

2
 .   

When 𝑝 is odd, 𝑝 − 1 is even.  Now, if we remove any one edge from the cycle 𝐶𝑝−1, then any set containing 

 
𝑝

2
  vertices of Wp is not a (G,D)-set.  Therefore, 𝛾

𝐺
 𝑊𝑝 − {𝑒} =  

𝑝

2
 + 1 > 𝛾

𝐺
 𝑊𝑝 .  Hence, b𝛾

𝐺
 𝑊𝑝 = 1 if 

𝑝 is odd. 
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If 𝑝 is even, then only by removing atleast two consecutive edges from 𝐶𝑝−1, we get the 𝛾
𝐺
-value increased.  

Therefore, b𝛾
𝐺
 𝑊𝑝 = 2 if 𝑝 is even. 

Proposition 2.7:If 𝛾
𝐺

(𝐺) ≠ 𝑝, then 1 ≤ 𝑏𝛾𝐺(𝐺) ≤ 𝑒, where 𝑒 is the cardinality of the edge set of G. 

Proof: Obviously, b𝛾
𝐺

(𝐺) ≥ 1.  By removing all the edges from G, obviously 𝐺 − 𝐸 is a totally disconnected 

graph and so 𝛾
𝐺
 𝐺 − 𝐸 = 𝑝 > 𝛾

𝐺
(𝐺).  Therefore, b𝛾

𝐺
 𝐺 ≤  𝐸 = 𝑒.  Hence, 1 ≤ 𝑏𝛾𝐺 𝐺 ≤ 𝑒. 

Theorem 2.8: Let 𝑇 be any tree with 𝑘 ≥ 2 support vertices and 𝑙  end vertices such that 𝑙 + 𝑘 = 𝑝.Let  𝐿and 𝐾 

be the set of all end and support vertices of 𝑇 respectively. Then, b𝛾
𝐺
 𝑇 = 𝑚𝑖𝑛𝑣𝜖𝐾  𝑁 𝑣 ∩ 𝐿  . 

Proof:  Let 𝑣 be a support vertex of𝑇 such that  𝑁(𝑣) ∩ 𝐿 is  minimum.  Assume that 𝑣 is adjacent toℎ end 

vertices in 𝑇. 

Case 1:𝑣 is adjacent to exactly one support vertex 

Remove all the edges incident with the end vertices adjacent to 𝑣.  In the resultant graph 𝑇′, 𝑣 is an end vertex.  

Any minimum (𝐺, 𝐷)-set of 𝑇 together with 𝑣 forms a minimum  (𝐺, 𝐷)- set of 𝑇′.  Therefore, 𝛾
𝐺
 𝑇′ =

𝛾
𝐺
 𝑇 + 1 > 𝛾

𝐺
 𝑇 . Obviously, ℎ =  𝑁(𝑣) ∩ 𝐿 . Also, removal of  no set of less than ℎedges, increases the 

(𝐺, 𝐷)- number of the resulting graph.  Therefore, b𝛾
𝐺
 𝑇 = 𝑚𝑖𝑛𝑣𝜖𝐾{ 𝑁(𝑣) ∩ 𝐿 }. 

Case 2:𝑣is adjacent  to atleast two support vertices 

Let 𝑇′′ be the graph  obtained by removing all the edges incident with the end vertices  of 𝑣.  In 𝑇′′, no minimum 

(𝐺, 𝐷)- set of 𝑇dominates 𝑣.  Further, any minimum (𝐺, 𝐷)-set of 𝑇 together with 𝑣forms a minimum (𝐺, 𝐷)-set 

of 𝑇′′.  Therefore, 𝛾
𝐺
 𝑇′′ = 𝛾

𝐺
 𝑇 + 1 > 𝛾

𝐺
 𝑇 .As before, ℎ =  𝑁(𝑣) ∩ 𝐿  and removal of no set of less than 

ℎ edges, increases the (𝐺, 𝐷)-number of the resulting graph.   

Therefore,  𝑏𝛾𝐺 𝑇 = 𝑚𝑖𝑛𝑣𝜖𝐾 { 𝑁(𝑣) ∩ 𝐿 }. 

Theorem 2.9:  For every positive integer 𝑘 ≥ 1, there exists a graph 𝐺 with 𝑏𝛾
𝐺
 𝐺 = 𝑘. 

Proof: Let 𝑘 ≥ 1.  Consider 𝐺 ≅ 𝐾𝑛 𝑘, 0,0, …   and  𝑉 𝐺  = 𝑛 + 𝑘 = 𝑝.Let 𝑉 𝐾𝑛 =  𝑣1 , 𝑣2, … , 𝑣𝑛 .  Then, 𝐺 

is obtained by pasting 𝑘 edges to 𝑣1 say, 𝑢𝑖𝑣1 𝑖 = 1, 2, … , 𝑘 .  Clearly, 𝑉 𝐺 −  𝑣1  is the unique minimum 

 𝐺, 𝐷 - set of 𝐺 and so, 𝛾
𝐺
 𝐺 = 𝑛 − 1 + 𝑘 = 𝑝 − 1.  Obviously, removal of any set of 𝑡 < 𝑘 edges from 𝐺, 

does not increase the  𝐺, 𝐷 - number of 𝐺.  Let  𝐺′ be the  graph obtained by removing the 𝑘edges pasted to 𝑣1 

from 𝐺.  Then, 𝐺′ ≅ 𝐾𝑛 ∪ [𝐾
1
∪ 𝐾1 ∪ … (𝑘𝑡𝑖𝑚𝑒𝑠)] and  so, 𝛾

𝐺
 𝐺′ = 𝑛 + 𝑘 = 𝑝 > 𝛾

𝐺
 𝐺 .  Also, {𝑢

𝑖
𝑣1: 1 ≤

𝑖 ≤ 𝑘} is the unique b𝛾
𝐺
-set of G.  Again, removal of no set of less than 𝑘edges increases the  (𝐺, 𝐷)- number of 

the resulting graph.  Therfore, 𝑏𝛾
𝐺
 𝐺 = 𝑘. 

Proposition 2.10: 

b𝛾
𝐺
 𝐺𝟏 ∪ 𝐺𝟐 = min 𝑏𝛾

𝐺
 𝐺1 , 𝑏𝛾

𝐺
 𝐺2  , for any two graphs 𝐺1and𝐺2. 

Proof:  Let b𝛾
𝐺
 𝐺1 = 𝑚 ≤ 𝑞

1
  and b𝛾

𝐺
 𝐺2 = 𝑛 ≤ 𝑞

2
  Where,  𝐸(𝐺1) = 𝑞

1
 and  𝐸(𝐺2) = 𝑞

2
.  Then, 

removal of 𝑚 edges from 𝐺1increases the 𝛾
𝐺
- value of 𝐺1 and removal of 𝑛edges from 𝐺2 increases the 𝛾

𝐺
-value 

of 𝐺2.  Take 𝛾
𝐺
 𝐺1 = 𝑟 and 𝛾

𝐺
(𝐺2) = 𝑡.  So, 𝛾

𝐺
 𝐺1 ∪ 𝐺2 = 𝑟 + 𝑡.  Thus, removal of 𝑚 edges from 𝐺1, 

𝛾
𝐺

 (𝐺1 ∪ 𝐺2) is strictly greater than 𝑟 + 𝑡.  Also removal of  𝑛 edges from 𝐺2, 𝛾
𝐺

(𝐺1 ∪ 𝐺2) is strictly greater 

than 𝑟 + 𝑡.Therefore, b𝛾
𝐺
 𝐺1 ∪ 𝐺2 = min  𝑚, 𝑛 = min {b𝛾

𝐺
 𝐺1 , b𝛾

𝐺
(𝐺2)}. 

3. (G,D)-NONBONDAGE NUMBER OF A GRAPH 

Definition 3.1: The (G,D)-nonbondage number of a graph G denoted by bn𝛾𝐺
(𝐺) is defined as the maximum 

cardinality among all sets of edges 𝑋 ⊆ 𝐸(𝐺) such that 𝛾
𝐺
 𝐺 − 𝑋 = 𝛾

𝐺
 𝐺 . 
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Proposition3.2:For𝑛 > 5, 

bn𝛾𝐺
 𝐶𝑛 =  1   𝑖𝑓𝑛 ≡ 1 𝑚𝑜𝑑 3 

 0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.            
 
 

Proof: 

Case 1: 𝑛 ≡ 1(𝑚𝑜𝑑 3) 

Removal of any one edge from 𝐶𝑛 results in 𝑃𝑛.  Further, 𝛾
𝐺
 𝐶𝑛 = 𝛾

𝐺
 𝑃𝑛  if and only if 𝑛 = 3𝑘 + 1.  That is, 

𝑛 ≡ 1(𝑚𝑜𝑑 3).  Therefore, bn𝛾𝐺
 𝐶𝑛 ≥ 1.  Further, removal of more edges from 𝐶𝑛 results in a disconnected 

graph with atleast two components.  And, sum of their 𝛾
𝐺
-values is greater than 𝛾

𝐺
 𝐶𝑛 .  Therefore, bn𝛾𝐺

 𝐶𝑛 =

1.  

Case 2: 𝑛 ≡ 0(𝑚𝑜𝑑 3) or 𝑛 ≡ 2(𝑚𝑜𝑑 3) 

𝛾
𝐺
 𝐶𝑛 −  𝑒  = 𝛾

𝐺
 𝑃𝑛  

=  
𝑛

3
 + 1( by theorem 1.2 & remark 1.1)                  

= 𝛾
𝐺
 𝐶𝑛 + 1( by proposition 1.3) 

> 𝛾
𝐺
 𝐶𝑛 . 

Therefore, bn𝛾𝐺
 𝐶𝑛 = 0. 

Proposition 3.3: bn𝛾𝐺
 𝐾1,𝑛 = 𝑛 − 2. 

Proof:  In a star graph, even if we remove 𝑛 − 2 of the 𝑛 edges incident with the central vertex, 𝛾
𝐺
-value is not 

changed and is equal to 𝑛.  But, if we remove 𝑛 − 1 of the 𝑛 edges incident with the central vertex, the resultant 

graph is  [𝐾1 ∪ 𝐾1 ∪ … (𝑛 − 1)𝑡𝑖𝑚𝑒𝑠] ∪ 𝐾2.  So,  

𝛾
𝐺
 𝐾1,𝑛 − {𝑒1, 𝑒2, … , 𝑒𝑛−1} = 𝑛 − 1 + 𝛾

𝐺
 𝐾2  

= 𝑛 − 1 + 2 

= 𝑛 + 1 

> 𝛾𝐺 𝐾1,𝑛 . 

Therefore, 𝑏𝑛𝛾𝐺
 𝐾1,𝑛 = 𝑛 − 2. 

Proposition 3.4: Let G be a connected graph on 𝑝 vertices.  Then, bn𝛾𝐺
 𝐺 = 𝑞if and only if G is complete, 

where 𝑞 =  𝐸(𝐺) . 

Proof: Let G be a graph on 𝑝 vertices.  Suppose bn𝛾𝐺
 𝐺 = 𝑞.  Then, 𝛾

𝐺
 𝐺 = 𝛾

𝐺
 𝐺 − 𝐸(𝐺) ………… ( 1).  

Since 𝑞 =  𝐸(𝐺) , 𝐺 − 𝐸(𝐺) is the totally disconnected graph on 𝑝 vertices and 𝛾
𝐺
 𝐺 − 𝐸(𝐺) = 𝑝.  Therefore, 

𝛾
𝐺
 𝐺 = 𝑝 [ by equation (1) ].  By corollary 1.5, G is complete.  Conversely, suppose G is complete.  Then, by 

corollary 1.5, 𝛾
𝐺
 𝐺 = 𝑝.  Since G is complete, 𝛾

𝐺
(G−𝐸(𝐺)) = 𝑝 = 𝛾𝐺 𝐺 .Therefore, bn𝛾𝐺

 𝐺 = 𝑞. 

Objective 3.5:0 ≤ 𝛾𝐺 𝐺 ≤ 𝑞. 

Here, the bounds are strict.  For example, bn𝛾𝐺
 𝐶6 = 0 and  

bn𝛾𝐺
 𝐾𝑝 = 𝑞. 
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Result 3.6:bn𝛾𝐺
 𝐾𝑝 − {𝑣} < bn𝛾𝐺

 𝐾𝑝  for all 𝑣 ∈ 𝑉 𝐾𝑝 .  This is true, since 𝐾𝑝 − {𝑣} ≅ 𝐾𝑝−1. 

Remark 3.7: The above result can be extended to any number of vertices.  That is, bn𝛾𝐺
 𝐾𝑝 − 𝑉′ < bn𝛾𝐺

 𝐾𝑝  

for every proper subset V′ of 𝑉 𝐾𝑝  [since, 𝐾𝑝 − 𝑉′ = 𝐾𝑝− 𝑉′ ]. 

Theorem 3.8:  If two adjacent vertices 𝑢, 𝑣 ∈ 𝑆 for every 𝛾
𝐺
-set S of G, then the edge 𝑒 = 𝑢𝑣 lies in every 

𝑏𝑛γ
G
-set of G. 

Proof: Let 𝑒 = 𝑢𝑣 be an edge such that 𝑢, 𝑣 ∈ 𝑆 for every 𝛾
𝐺
-set S of G.  Then, 𝛾

𝐺
 𝐺 −  𝑒  = 𝛾

𝐺
(𝐺) and so e 

lies in every 𝑏𝑛𝛾𝐺
-set. 

Remark 3.9: Converse of the above theorem is not true.  Consider the graph G given in figure (2.1). 

 

 

 

 

 

 

 

 

 

 

 

Here, 𝑆 = {𝑢, 𝑣} is the unique 𝛾
𝐺
-set of G and so 𝛾

𝐺
 𝐺 = 2.  Non-bondage (𝐺, 𝐷)-sets  (𝑏𝑛𝛾𝐺

 𝐺 -sets) of G 

are 𝑋1 = {𝑎𝑏, 𝑎𝑣}, 𝑋2 = {𝑎𝑏, 𝑣𝑏}, 𝑋3 = {𝑏𝑢, 𝑎𝑏} and 𝑋4 = {𝑎𝑏, 𝑎𝑢}.  Here, the edge 𝑒 = 𝑎𝑏 lies in every 

nonbondage (G,D)-sets of G.  But, the vertices of e(a and b) not belonging to S. 
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