(G,D)-Bondage and (G,D)-Nonbondage Number of a Graph

S. Kalavathi ${ }^{1}$ K. Palani ${ }^{2}$
${ }^{1}$ Research Scholar, ManonmaniamSundaranar University, Tirunelveli, Tamil Nadu, India
${ }^{2}$ Department of Mathematics, A.P.C Mahalaxmi College for Women, Thoothukudi., ManonmaniamSundaranar University, Tamil Nadu, India

Abstract

The (G, D)-bondage number of a graph G denoted by $b \gamma_{G}(G)$ is the least positive integer k such that there exists $F \subseteq E(G)$ with $|F|=k$ and $\gamma_{G}(G-F)>\gamma_{G}(G)$. If no such k exists, it is defined to be ∞. The (G,D)-nonbondage number of a graph G denoted by $b_{n} \gamma_{G}(G)$ is defined as the maximum cardinality among all sets of edges $X \subseteq E(G)$ such that $\gamma_{G}(G-X)=\gamma_{G}(G)$. If $b_{n} \gamma_{G}(G)$ does not exist, we define $b_{n} \gamma_{G}(G)=0$. In this paper we initiate a study of these two parameters.

Keywords: Domination, Geodomination, (G, D)-number, (G, D)-bondage number and (G, D)-nonbondage number.

AMS Subject Classification: 05C69

1. Introduction: Throughout this paper, we consider G as a finite undirected graph with no loops and multiple edges. The study of domination in graphs was begun by Ore and Berge[6]. Let $G=(V, E)$ be any graph. A dominating set of a graph G is a set D of vertices of G such that every vertex in $V-D$ is adjacent to atleast one vertex in D and the minimum cardinality among all dominating sets is called the domination number $\gamma(\mathrm{G})$. The concept of geodominating (or geodetic) set was introduced by Buckley and Harary in [1] and Chartrand, Zhang and Harary in $[2,3,4]$. Let $u, v \in V(G)$. A $u-v$ geodesic is a $u-v$ path of length $d(u, v)$. A vertex x $\in V(G)$ is said to lie on a $u-v$ geodesic P if x is a vertex of P including the vertices u and v. A set S of vertices of G is a geodominating(or geodetic) set if every vertex of G lies on an $x-y$ geodesic for some x, y in S. The minimum cardinality of a geodominating set is the geodomination(or geodetic) number of G and is denoted as $\mathrm{g}(\mathrm{G})[1,2,3,4]$. A (G, D)-set of G is a subset S of $V(G)$ which is both a dominating and geodetic set of G. A (G, D)-set S of G is said to be a minimal (G, D)-set of G if no proper subset of S is a (G, D)-set of G. The minimum cardinality of all (G, D)-sets of G is called the (G, D)-number of G and it is denoted by $\gamma_{G}(G)$. Any (G, D)-set of G of cardinality γ_{G} is called a γ_{G}-set of $\mathrm{G}[8,9,10]$.

Fink et al. [5] introduced the bondage number of a graph in 1990. The bondage number $b(G)$ of a graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than $\gamma(G)$.

In [7], Kulli and Janakiram introduced the concept of the nonbondage number as follows: The nonbondage number $b_{n}(G)$ of G is the maximum cardinality of all sets of edges $X \subseteq E$ for which $\gamma(G-X)=\gamma(G)$ for an edge set X, then X is called the nonbondage set and the maximum one the maximum nonbondage set. If $b_{n}(G)$ does not exist, we define $b_{n}(G)=0$.

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be any graph and $\mathrm{v} \in \mathrm{V}(\mathrm{G})$. The neighbourhood of v , written as $\mathrm{N}_{\mathrm{G}}(\mathrm{v})$ or $\mathrm{N}(\mathrm{v})$ is defined by $\mathrm{N}(\mathrm{v})=\{\mathrm{x} \in \mathrm{V}(\mathrm{G}): \mathrm{x}$ is adjacent to v$\}$. The degree of a vertex v in a graph G is defined to be the number of edgesincident with v and is denoted by degv. A vertex of degree zero is an isolated vertex and a vertex of degree one is a pendant vertex (or end vertex). Any vertex which is adjacent to a pendant vertex is called a support. A graph G is complete if every pair of distinct vertices of G are adjacent in G. A complete graph on p vertices denoted by K_{p}.A graph G is called acyclic if it has no cycles. A connected acyclic graph is called a tree.

Remark1.1: $[8]\left\lceil\frac{n-4}{3}\right\rceil+2=\left\{\begin{array}{l}\left\lceil\frac{n}{3}\right\rceil \text { ifn } \equiv 1(\bmod 3) \\ \left\lceil\frac{n}{3}\right\rceil+1 \quad \text { otherwise } .\end{array}\right.$

Theorem1.2:[8]

$$
\gamma_{G}\left(P_{n}\right)=\left\{\begin{array}{cr}
\left\lceil\frac{n-4}{3}\right\rceil+2 \\
2 & \text { ifn } \geq 5 \\
\text { ifn }=2,3 \text { or } 4
\end{array}\right.
$$

Proposition 1.3:[8] For $n>5, \gamma_{G}\left(C_{n}\right)=\gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right]$.
Theorem 1.4:[8] Let $W_{p}=C_{p-1}+K_{1}, p \geq 5$ denote the wheel graph on p vertices. Then, $\gamma_{G}\left(W_{p}\right)=\left\lfloor\frac{p}{2}\right\rfloor$.
Corollary 1.5:[8] Let $G=(V, E)$ be a connected graph on p vertices. Then, $\gamma_{G}(G)=p$ if and only if G is complete.

Notation 1.6: $K_{n}\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ denotes the graph obtained from K_{n} by pasting $m_{1}, m_{2}, \ldots, m_{n}$ edges to the vertices $u_{1}, u_{2}, \ldots, u_{n}$ of K_{n} respectively.

2. (G,D)-BONDAGE NUMBER OF A GRAPH

Definition 2.1: The (G,D)-bondage number of a graph G denoted by $\mathrm{b} \gamma_{G}(G)$ is the least positive integer k such that there exists $\mathrm{F} \subseteq \mathrm{E}(\mathrm{G})$ with $|F|=k$ and $\gamma_{G}(G-F)>\gamma_{G}(G)$. If no such k exists, it is defined to be ∞.

Remark 2.2: (i) If $\gamma_{G}(G)=p$, then $\mathrm{b} \gamma_{G}(G)=\infty$. Hence, $\mathrm{b} \gamma_{G}\left(K_{p}\right)=\infty$. (ii) (G,D)-number is defined for connected graphs with atleast two vertices [8]. So, let us assume that (G,D)-number of a disconnected graph is the sum of (G,D)-number of its components. (iii) Also, assume that (G,D)-number of a graph with less than two vertices, that is, graph is a single vertex is 1 .

Proposition 2.3: $\mathrm{b} \gamma_{G}\left(P_{n}\right)=1$ for all $\mathrm{n} \geq 3$.
Proof: Obviously, $\mathrm{b} \gamma_{G}\left(P_{3}\right)=\mathrm{b} \gamma_{G}\left(P_{4}\right)=\mathrm{b} \gamma_{G}\left(P_{5}\right)=\mathrm{b} \gamma_{G}\left(P_{6}\right)=1$.Let $\mathrm{n} \geq 7$. Remove an edge e from P_{n} such that $P_{n}-\{e\}=P_{5} \cup P_{n-5}$.

Then, $\gamma_{G}\left(P_{n}-\{e\}\right)=\gamma_{G}\left(P_{5}\right)+\gamma_{G}\left(P_{n-5}\right)$.
Case 1: $n=7,8$ or 9

$$
\gamma_{G}\left(P_{n}-\{e\}\right)=\gamma_{G}\left(P_{5}\right)+\gamma_{G}\left(P_{n-5}\right)
$$

$=3+2($ by theorem 1.2$)$

$$
=5
$$

But, $\gamma_{G}\left(P_{7}\right)=3$ and $\gamma_{G}\left(P_{8}\right)=\gamma_{G}\left(P_{9}\right)=4$.
Therefore, $\gamma_{G}\left(P_{n}-\{e\}\right)=5>\gamma_{G}\left(P_{n}\right)$.
Hence, $\mathrm{b} \gamma_{G}\left(P_{n}\right)=1$.
Case 2: $n \geq 10$

$$
\gamma_{G}\left(P_{n}-\{e\}\right)=\gamma_{G}\left(P_{5}\right)+\gamma_{G}\left(P_{n-5}\right)
$$

$=3+\left\lceil\frac{n-5-4}{3}\right\rceil+2($ by theorem 1.2$)$

$$
=3+\left\lceil\frac{n-9}{3}\right\rceil+2 .
$$

By theorem 1.2, $\gamma_{G}\left(P_{n}\right)=\left\lceil\frac{n-4}{3}\right\rceil+2$.

Now, $3+\left\lceil\frac{n-9}{3}\right\rceil=\left\lceil\frac{9}{3}\right\rceil+\left\lceil\frac{n-9}{3}\right\rceil \geq\left\lceil\frac{n}{3}\right\rceil>\left\lceil\frac{n-4}{3}\right\rceil$.
Therefore, $\gamma_{G}\left(P_{n}-\{e\}\right)=3+\left\lceil\frac{n-9}{3}\right\rceil+2$

$$
>\left\lceil\frac{n-4}{3}\right\rceil+2
$$

$=\gamma_{G}\left(P_{n}\right)$.
Hence, $\mathrm{b} \gamma_{G}\left(P_{n}\right)=1$ for all $\mathrm{n} \geq 3$.
Proposition 2.4:For $n>5$,
$\mathrm{b} \gamma_{G}\left(C_{n}\right)=\left\{\begin{array}{lr}1 & \text { ifn } \equiv 0(\bmod 3) \text { orn } \equiv 2(\bmod 3) \\ 2 & \text { otherwise } .\end{array}\right.$

Proof:

Case 1: $n \equiv 0$ or $2(\bmod 3)$
Then, $\gamma_{G}\left(C_{n}-\{e\}\right)=\gamma_{G}\left(P_{n}\right)$
$=\left\lceil\frac{n}{3}\right\rceil+1($ by theorem $1.2 \&$ remark 1.1)
$>\left\lceil\frac{n}{3}\right\rceil=\gamma_{G}\left(C_{n}\right)($ by proposition 1.3)
Therefore, $\mathrm{b} \gamma_{G}\left(C_{n}\right)=1$.
Case 2: $n \equiv 1(\bmod 3)$
Then, $\gamma_{G}\left(C_{n}-\{e\}\right)=\gamma_{G}\left(P_{n}\right)$
$=\left[\frac{n}{3}\right]($ by theorem $1.2 \&$ remark 1.1)
$=\gamma_{G}\left(C_{n}\right)($ by proposition 1.3 $)$.
But, $\mathrm{b} \gamma_{G}\left(P_{n}\right)=1$ (by proposition 2.3).
Therefore, $\mathrm{b} \gamma_{G}\left(C_{n}\right)=2$.
Proposition 2.5: $\mathrm{b} \gamma_{G}\left(K_{1, n}\right)=n-1$.
Proof: $\gamma_{G}\left(K_{1, n}\right)=n$ and it becomes $n+1$ only if we remove $n-1$ of its n edges. That is, $\gamma_{G}\left(K_{1, n}-F\right)=$ $n+1$ only when $|F|=n-1$. Therefore, $\mathrm{b} \gamma_{G}\left(K_{1, n}\right)=|F|=n-1$.

Proposition 2.6: $\mathrm{b} \gamma_{G}\left(W_{p}\right)=\left\{\begin{array}{cc}1 \text { ifpisodd } \\ 2 & \text { otherwise } .\end{array}\right.$
Proof: We know that, $W_{p}=C_{p-1}+K_{1}$.
By theorem (1.4), $\gamma_{G}\left(W_{p}\right)=\left\lfloor\frac{p}{2}\right\rfloor$.
When p is odd, $p-1$ is even. Now, if we remove any one edge from the cycle C_{p-1}, then any set containing $\left\lfloor\frac{p}{2}\right\rfloor$ vertices of W_{p} is not a (G, D)-set. Therefore, $\gamma_{G}\left(W_{p}-\{e\}\right)=\left\lfloor\frac{p}{2}\right\rfloor+1>\gamma_{G}\left(W_{p}\right)$. Hence, $\mathrm{b} \gamma_{G}\left(W_{p}\right)=1$ if p is odd.

If p is even, then only by removing atleast two consecutive edges from C_{p-1}, we get the γ_{G}-value increased. Therefore, $\mathrm{b} \gamma_{G}\left(W_{p}\right)=2$ if p is even.

Proposition 2.7:If $\gamma_{G}(G) \neq p$, then $1 \leq b \gamma_{G}(G) \leq e$, where e is the cardinality of the edge set of G.
Proof: Obviously, $\mathrm{b} \gamma_{G}(G) \geq 1$. By removing all the edges from G , obviously $G-E$ is a totally disconnected graph and so $\gamma_{G}(G-E)=p>\gamma_{G}(G)$. Therefore, $\mathrm{b} \gamma_{G}(G) \leq|E|=e$. Hence, $1 \leq b \gamma_{G}(G) \leq e$.

Theorem 2.8: Let T be any tree with $k \geq 2$ support vertices and l end vertices such that $l+k=p$.Let L and K be the set of all end and support vertices of T respectively. Then, $\mathrm{b} \gamma_{G}(T)=\min _{v \in K}\{|N(v) \cap L|\}$.

Proof: Let v be a support vertex of T such that $|N(v) \cap L|$ is minimum. Assume that v is adjacent toh end vertices in T.

Case 1: v is adjacent to exactly one support vertex
Remove all the edges incident with the end vertices adjacent to v. In the resultant graph T^{\prime}, v is an end vertex. Any minimum (G, D)-set of T together with v forms a minimum (G, D) - set of T^{\prime}. Therefore, $\gamma_{G}\left(T^{\prime}\right)=$ $\gamma_{G}(T)+1>\gamma_{G}(T)$. Obviously, $h=|N(v) \cap L|$. Also, removal of no set of less than hedges, increases the (G, D) - number of the resulting graph. Therefore, $\mathrm{b} \gamma_{G}(T)=\min _{v \in K}\{|N(v) \cap L|\}$.

Case 2: v is adjacent to atleast two support vertices
Let $T^{\prime \prime}$ be the graph obtained by removing all the edges incident with the end vertices of v. In $T^{\prime \prime}$, no minimum (G, D)- set of T dominates v. Further, any minimum (G, D)-set of T together with v forms a minimum (G, D)-set of $T^{\prime \prime}$. Therefore, $\gamma_{G}\left(T^{\prime \prime}\right)=\gamma_{G}(T)+1>\gamma_{G}(T)$.As before, $h=|N(v) \cap L|$ and removal of no set of less than h edges, increases the (G, D)-number of the resulting graph.

Therefore, $b \gamma_{G}(T)=\min _{v \in K}\{|N(v) \cap L|\}$.
Theorem 2.9: For every positive integer $k \geq 1$, there exists a graph G with $b \gamma_{G}(G)=k$.
Proof: Let $k \geq 1$. Consider $G \cong K_{n}(k, 0,0, \ldots)$ and $|V(G)|=n+k=p$.Let $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then, G is obtained by pasting k edges to v_{1} say, $u_{i} v_{1}(i=1,2, \ldots, k)$. Clearly, $V(G)-\left\{v_{1}\right\}$ is the unique minimum (G, D) - set of G and so, $\gamma_{G}(G)=n-1+k=p-1$. Obviously, removal of any set of $t<k$ edges from G, does not increase the (G, D) - number of G. Let G^{\prime} be the graph obtained by removing the kedges pasted to v_{1} from G. Then, $G^{\prime} \cong K_{n} \cup\left[K_{1} \cup K_{1} \cup \ldots(k t i m e s)\right]$ and so, $\gamma_{G}\left(G^{\prime}\right)=n+k=p>\gamma_{G}(G)$. Also, $\left\{u_{i} v_{1}: 1 \leq\right.$ $i \leq k\}$ is the unique $\mathrm{b} \gamma_{G}$-set of G. Again, removal of no set of less than kedges increases the (G, D) - number of the resulting graph. Therfore, $b \gamma_{G}(G)=k$.

Proposition 2.10:

$\mathrm{b} \gamma_{G}\left(G_{1} \cup G_{2}\right)=\min \left\{b \gamma_{G}\left(G_{1}\right), b \gamma_{G}\left(G_{2}\right)\right\}$, for any two graphs G_{1} and G_{2}.
Proof: Let $\mathrm{b} \gamma_{G}\left(G_{1}\right)=m\left(\leq q_{1}\right)$ and $\mathrm{b} \gamma_{G}\left(G_{2}\right)=n\left(\leq q_{2}\right)$ Where, $\left|E\left(G_{1}\right)\right|=q_{1}$ and $\left|E\left(G_{2}\right)\right|=q_{2}$. Then, removal of m edges from G_{1} increases the γ_{G} - value of G_{1} and removal of nedges from G_{2} increases the γ_{G}-value of G_{2}. Take $\gamma_{G}\left(G_{1}\right)=r$ and $\gamma_{G}\left(G_{2}\right)=t$. So, $\gamma_{G}\left(G_{1} \cup G_{2}\right)=r+t$. Thus, removal of m edges from G_{1}, $\gamma_{G}\left(G_{1} \cup G_{2}\right)$ is strictly greater than $r+t$. Also removal of n edges from $G_{2}, \gamma_{G}\left(G_{1} \cup G_{2}\right)$ is strictly greater than $r+t$.Therefore, $\mathrm{b} \gamma_{G}\left(G_{1} \cup G_{2}\right)=\min \{m, n\}=\min \left\{\mathrm{b} \gamma_{G}\left(G_{1}\right), \mathrm{b} \gamma_{G}\left(G_{2}\right)\right\}$.

3. (G,D)-NONBONDAGE NUMBER OF A GRAPH

Definition 3.1: The (G,D)-nonbondage number of a graph G denoted by $b_{\mathrm{n}} \gamma_{G}(G)$ is defined as the maximum cardinality among all sets of edges $X \subseteq E(G)$ such that $\gamma_{G}(G-X)=\gamma_{G}(G)$.

Proposition3.2:Forn > 5,

$\mathrm{b}_{\mathrm{n}} \gamma_{G}\left(C_{n}\right)= \begin{cases}1 & \text { ifn } \equiv 1(\bmod 3) \\ 0 & \text { otherwise } .\end{cases}$

Proof:

Case 1: $n \equiv 1(\bmod 3)$

Removal of any one edge from C_{n} results in P_{n}. Further, $\gamma_{G}\left(C_{n}\right)=\gamma_{G}\left(P_{n}\right)$ if and only if $n=3 k+1$. That is, $n \equiv 1(\bmod 3)$. Therefore, $\mathrm{b}_{\mathrm{n}} \gamma_{G}\left(C_{n}\right) \geq 1$. Further, removal of more edges from C_{n} results in a disconnected graph with atleast two components. And, sum of their γ_{G}-values is greater than $\gamma_{G}\left(C_{n}\right)$. Therefore, $\mathrm{b}_{\mathrm{n}} \gamma_{G}\left(C_{n}\right)=$ 1.

Case 2: $n \equiv 0(\bmod 3)$ or $n \equiv 2(\bmod 3)$

$$
\gamma_{G}\left(C_{n}-\{e\}\right)=\gamma_{G}\left(P_{n}\right)
$$

$=\left\lceil\frac{n}{3}\right\rceil+1($ by theorem $1.2 \&$ remark 1.1)
$=\gamma_{G}\left(C_{n}\right)+1($ by proposition 1.3$)$
$>\gamma_{G}\left(C_{n}\right)$.
Therefore, $\mathrm{b}_{\mathrm{n}} \gamma_{G}\left(C_{n}\right)=0$.
Proposition 3.3: $\mathrm{b}_{\mathrm{n}} \gamma_{G}\left(K_{1, n}\right)=n-2$.
Proof: In a star graph, even if we remove $n-2$ of the n edges incident with the central vertex, γ_{G}-value is not changed and is equal to n. But, if we remove $n-1$ of the n edges incident with the central vertex, the resultant graph is $\left[K_{1} \cup K_{1} \cup \ldots(n-1)\right.$ times $] \cup K_{2}$. So,

$$
\begin{gathered}
\gamma_{G}\left(K_{1, n}-\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}\right)=n-1+\gamma_{G}\left(K_{2}\right) \\
=n-1+2 \\
=n+1
\end{gathered}
$$

$>\gamma_{G}\left(K_{1, n}\right)$.
Therefore, $b_{n} \gamma_{G}\left(K_{1, n}\right)=n-2$.
Proposition 3.4: Let G be a connected graph on p vertices. Then, $\mathrm{b}_{\mathrm{n}} \gamma_{G}(G)=q$ if and only if G is complete, where $q=|E(G)|$.

Proof: Let G be a graph on p vertices. Suppose $\mathrm{b}_{\mathrm{n}} \gamma_{G}(G)=q$. Then, $\gamma_{G}(G)=\gamma_{G}(G-E(G))$ \qquad Since $q=|E(G)|, G-E(G)$ is the totally disconnected graph on p vertices and $\gamma_{G}(G-E(G))=p$. Therefore, $\gamma_{G}(G)=p$ [by equation (1)]. By corollary $1.5, \mathrm{G}$ is complete. Conversely, suppose G is complete. Then, by corollary $1.5, \gamma_{G}(G)=p$. Since G is complete, $\gamma_{G}(\mathrm{G}-E(G))=p=\gamma_{G}(G)$.Therefore, $\mathrm{b}_{\mathrm{n}} \gamma_{G}(G)=q$.

Objective 3.5:0 $\leq \gamma_{G}(G) \leq q$.
Here, the bounds are strict. For example, $\mathrm{b}_{\mathrm{n}} \gamma_{G}\left(C_{6}\right)=0$ and
$\mathrm{b}_{\mathrm{n}} \gamma_{G}\left(K_{p}\right)=q$.

Result 3.6: $\mathrm{b}_{\mathrm{n}} \gamma_{G}\left(K_{p}-\{v\}\right)<\mathrm{b}_{\mathrm{n}} \gamma_{G}\left(K_{p}\right)$ for all $v \in V\left(K_{p}\right)$. This is true, since $K_{p}-\{v\} \cong K_{p-1}$.
Remark 3.7: The above result can be extended to any number of vertices. That is, $\mathrm{b}_{\mathrm{n}} \gamma_{G}\left(K_{p}-V^{\prime}\right)<\mathrm{b}_{\mathrm{n}} \gamma_{G}\left(K_{p}\right)$ for every proper subset V^{\prime} of $V\left(K_{p}\right)$ [since, $\left.K_{p}-V^{\prime}=K_{p-\left|V^{\prime}\right|}\right]$.

Theorem 3.8: If two adjacent vertices $u, v \in S$ for every γ_{G}-set S of G , then the edge $e=u v$ lies in every $b_{n} \gamma_{\mathrm{G}}$-set of G.

Proof: Let $e=u v$ be an edge such that $u, v \in S$ for every γ_{G}-set S of G. Then, $\gamma_{G}[G-\{e\}]=\gamma_{G}(G)$ and so e lies in every $b_{n} \gamma_{G}$-set.

Remark 3.9: Converse of the above theorem is not true. Consider the graph G given in figure (2.1).

Figure (2.1)

Here, $S=\{u, v\}$ is the unique γ_{G}-set of G and so $\gamma_{G}(G)=2$. Non-bondage (G, D)-sets $\left(b_{n} \gamma_{G}(G)\right.$-sets) of G are $X_{1}=\{a b, a v\}, X_{2}=\{a b, v b\}, X_{3}=\{b u, a b\}$ and $X_{4}=\{a b, a u\}$. Here, the edge $e=a b$ lies in every nonbondage (G,D)-sets of G. But, the vertices of $\mathrm{e}(\mathrm{a}$ and b) not belonging to S .

References:

[1] Buckley F, Harary F and Quintas V L, Extremal results on the geodetic number of a graph, Scientia, volume A2 (1988), 17-26.
[2] Chartrand G, Harary F and Zhang P, Geodetic sets in graphs, DiscussionesMathematicae Graph theory, 20 (2000), 129-138e.
[3] Chartrand G, Harary F and Zhang P, On the Geodetic number of a graph, Networks, Volume 39(1) (2002), 1-6.
[4] Chartrand G, Zhang P and Harary F, Extremal problems in Geodetic graph Theory, CongressusNumerantium 131 (1998), 55-66.
[5] Fink J F, Jacobson M S, Kinch I F and Roberts J, The bondage number of a graph, Discrete Math., 86(1-3), (1990), 47-57.
[6] Haynes T W, Hedetniemi S T and Slater P J, Fundamentals of Domination in Graphs, Marcel Decker Inc., 1998.
[7] Kulli V R and Janakiram B, The nonbondage number of a graph, Graph Theory Notes of New York, New York Academy of Sciences, 30 (1996) 14-16.
[8] Palani K and Nagarajan A, (G,D)-Number of a graph, International Journal of Mathematics Research, Volume 3, Number 3 (2011), 285-299.
[9] Palani K and Kalavathi S, (G,D)-Number of some special graphs, International Journal of Engineering and Mathematical Sciences, January-June 2014, Volume 5, Issue-1, pp.7-15, ISSN(Print) - 2319 - 4537, (Online) - 2319 - 4545.
[10] Palani K, Nagarajan A and Mahadevan G, Results connecting domination, geodetic and (G,D)-number of graph, International Journal of Combinatorial graph theory and applications, Volume 3, No.1, January - June (2010)(pp.51-59).

