Pseudo Arithmetic Operations on Fuzzy Measure

N.Sarala ${ }^{1}$ S.Jothi ${ }^{2}$
(1. Associate Professor,A.D.M.College for women,Nagapattinam,Tamil nadu,India 2.Guest
Lecturer,Thiru.vi.ka.govt.arts college,Thiruvarur,Tamil nadu,India)

Abstract

: In this paper the axiomatic approach to the Pseudo arithmetical operations of pseudo addition and pseudo multiplication is discussed.Also several properties of \oplus and \otimes their consequences are discussed and illustrated by examples.

Keywords:

Pseudo addition,pseudo multiplication,semi ring,distributivity, decomposable measure, Lebesgue measure.

Introduction:

Taking into account human subjective measures in engineering,science fuzzy measures have been intensively discussed. Since sugeno (5) defined a fuzzy measure as a measure having monotonicity property instead of additivity. Weber(6) proposed \perp decomposable measures where the additivity of measures is weakend t-conorm \perp is an appropriate semigroup operation in $[0,1]$ and \perp is considered to be a generalization of addition \perp decomposable measures can be written as $m(A \cup B)=m(A) \perp m(B)$

For the archimedian case \perp is written as
$\mathrm{a} \perp \mathrm{b}=\mathrm{g}^{(-1)}(\mathrm{g}(\mathrm{a})+\mathrm{g}(\mathrm{b}))$
where $g^{(-1)}$ is a pseudo inverse of g.
if a law of composition
$\oplus: X \times X \rightarrow X$ is defined on a set X and its fulfills the laws of assciativity then (X, \oplus) is a semi group.
Lebesgue measure is defined on a set $[0, \infty] .([0, \infty],+)$ is a semi group and the operation + has no inverse element . In $\sec 2$ define an integral by pseudo addition
\oplus and pseudo multiplication \otimes that are distributive and associative semiring operations. In sec 3 define fuzzy measure derived from pseudo addition.

1.PREMILINARIES:

1.1Definition:

Let $[\mathrm{a}, \mathrm{b}]$ be a closed real interval and $\quad ` \oplus:[\mathrm{a}, \mathrm{b}] \times[\mathrm{a}, \mathrm{b}] \rightarrow[\mathrm{a}, \mathrm{b}]$
be a 2 place function satisfying the following conditions
(1) \oplus is commutative
(2) \oplus is non decreasing in each place
(3) \oplus is associative
(4) \oplus has either $a($ or $) b$ as zero element
ie) either $\oplus(a, x)=x$ (or)

$$
\oplus(b, x)=x
$$

\oplus will be called a pseudo addition.

1.2 Definition:

A pseudo multiplication \otimes is a 2 place function
$\otimes:[\mathrm{a}, \mathrm{b}] \times[\mathrm{a}, \mathrm{b}] \rightarrow[\mathrm{a}, \mathrm{b}]$
Satisfying the following conditions
(1) \otimes is commutative
(2) \otimes is non decreasing in each place
(3) \otimes is associative
(4) There exist a unit element $e \in[a, b]$ $\otimes(\mathrm{x}, \mathrm{e})=\mathrm{x} \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}]$

1.3 theorem:

If the function \oplus is continuous and strictly increasing in
$(a, b) \times(a, b)$ then there exists a monotone function

$$
\mathrm{g}:[\mathrm{a}, \mathrm{~b}] \rightarrow[0, \infty] \text { such that either } g(a)=0(\text { or }) g(b)=0
$$

$\oplus(x, y)=g^{-1}(\mathrm{~g}(\mathrm{x})+\mathrm{g}(\mathrm{y})$
Proof:
Trivial from aczel's theorem (5)

1.4 REMARK :

By applying g to both sides
We have
$\mathrm{g}(\oplus(\mathrm{x}, \mathrm{y}))=\mathrm{g}(\mathrm{x})+\mathrm{g}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y}$ in [a,b]. hence g is nothing but an isomorphism of semigroup [a,b] relative to \oplus with a semigroup of the non negative real numbers relative to addition. g is called a generator of \oplus.

2.PSEUDO ADDITIONS AND PSEUDO MULTIPLICATIONS:

2.1 Definition:

A pseudo multiplication \otimes with the generator g of strict pseudo addition \oplus is defined as $\otimes(x, y)=g^{-1}(g(x)$ $. g(y))$
$g(x) \cdot g(y)$ is always in $[0, \infty]$ because g is a monotone function from $[a, b]$ to
$[0, \infty]$.Thus g^{-1} is always exists and g is an isomorphism of semigroup $([\mathrm{a}, \mathrm{b}], \otimes)$ with a subgroup $([0, \infty], \mathrm{x})$.

2.2 REMARK:

For the sake of simplicity we write $\oplus(\mathrm{x}, \mathrm{y})$ as $\mathrm{x} \oplus \mathrm{y}$ and $\otimes(\mathrm{x}, \mathrm{y})$ as $\mathrm{x} \otimes \mathrm{y}$

Respectively. Distributive pseudo multiplication \otimes has the distributive property with pseudo addition \oplus

```
x\otimes(y\oplusz)=(x\otimesy)\oplus(x\otimesz)
```

$(\mathrm{y} \oplus \mathrm{z}) \otimes \mathrm{x}=(\mathrm{y} \otimes \mathrm{x}) \oplus(\mathrm{z} \otimes \mathrm{x})$

2.3 EXAMPLE:

$x \vee y=\max (x, y)$
$x \wedge y=\min (x, y)$
are continuous nonstrict pseudo addition \oplus and pseudo multiplication \otimes in $[\mathrm{a}, \mathrm{b}] \subset[-\infty,+\infty]$ respectively.

2.4 THEOREM:

When any pseudo addition, \oplus, $($ pseudo multiplication $\oplus)$ defined on
$\left[a_{1} \times b_{1}\right] \times\left[a_{1} \times b_{1}\right]$ a strict monotone function g_{1} from $\left[a_{2}, b_{2}\right]$ onto $\left[a_{1}, b_{1}\right]$
are given a 2 place function \oplus_{2}

$$
\begin{aligned}
& \oplus_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\mathrm{g}_{1}^{-1}\left(\oplus_{1}\left(\mathrm{~g}_{1}\left(\mathrm{x}_{2}\right), \mathrm{g}_{1}\left(\mathrm{y}_{2}\right)\right)\right. \\
& \otimes_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\mathrm{g}_{1}^{-1}\left(\otimes_{1}\left(\mathrm{~g}_{1}\left(\mathrm{x}_{2}\right), \mathrm{g}_{1}\left(\mathrm{y}_{2}\right)\right)\right.
\end{aligned}
$$

is a pseudo addition.
proof:
The commutative and associative property of \oplus_{2} is a immediate consequence of
That of \oplus_{1} similarly the non decreasingness of \oplus_{2} follows directly from the non decreasingness of \oplus_{1} and the monotonicity of g_{1} as for the zero element .if a_{1} is a zero element and g_{1} is an increasing function

Then $g_{1}\left(a_{2}\right)=a_{1}$
For all $x \in\left[a_{2}, b_{2}\right]$

$$
\begin{aligned}
\oplus_{2}\left(\mathrm{x}, \mathrm{a}_{2}\right) & =\mathrm{g}_{1}^{-1}\left(\oplus_{1}\left(\mathrm{~g}_{1}(\mathrm{x}), \mathrm{a}_{1}\right)\right) \\
& =\mathrm{g}_{1}^{-1}\left(\mathrm{~g}_{1}(\mathrm{x})\right) \\
& =\mathrm{x}
\end{aligned}
$$

2.5 Definition:

The pseudo operation on the set I is a binary operation $*: \mathrm{I} \times \mathrm{I} \rightarrow \mathrm{I}$
Which is commutative associative "positively non-decreasing" in the sense that
For all $\mathrm{u} \in \mathrm{I}^{*}, \mathrm{x} \leq \mathrm{y}$ implies $\mathrm{x}^{*} \mathrm{u} \leq \mathrm{y}^{*} \mathrm{u}$ and for which there exists a neutral element $\mathrm{e} \in \mathrm{I}$

2.6 Definition:

The element $u \in I$ is a null element of the operation $*: I^{2} \rightarrow I$ if for any $x \in I$
$\mathrm{x} * \mathrm{u}=\mathrm{u}^{*} \mathrm{x}=\mathrm{u}$ holds.

3.SOME ADDITIONAL PROPERTIES OF PSEUDO MEASURE:

3.1THEOREM:

Let \otimes be a continuous pseudo multiplication for the sub measure ' m ' and a family of functions $f_{j}: \Omega \rightarrow[0, \infty)$, $j \in J$

It holds

$$
\int_{\Omega}^{\text {sup }}\left(\sup _{\mathrm{j} \in \mathrm{~J}} \mathrm{f}_{\mathrm{j}}\right) \otimes \mathrm{dm}=\sup _{\mathrm{j} \in \mathrm{~J}} \int_{\Omega}^{\text {sup }}\left(\mathrm{f}_{\mathrm{j}} \otimes \mathrm{dm}\right)
$$

Let us consider now the semi ring $([0, \infty], \min , \otimes)$
With continuous operation \otimes. Let $\boldsymbol{\phi}$ be a density function of inf measure m.

3.2 THEOREM:

For the inf decomposable measure m and a family of functions $f_{j}: \Omega \rightarrow(0, \infty]$
$j \in J$ it holds

$$
\int_{\Omega}^{\sup }\left(\sup _{\mathrm{j} \in \mathrm{~J}} \mathrm{f}_{\mathrm{j}}\right) \otimes \mathrm{dm}=\sup _{\mathrm{j} \in \mathrm{~J}} \int_{\Omega}^{\text {sup }}\left(\mathrm{f}_{\mathrm{j}} \otimes \mathrm{dm}\right)
$$

Proof:

$$
\int_{\Omega}^{\inf }\left(\inf _{\mathrm{j} \in \mathrm{~J}} \mathrm{f}_{\mathrm{j}}\right) \otimes \mathrm{dm}=\inf _{\mathrm{w} \in \Omega}
$$

$$
=\inf _{w \in \Omega}
$$

$$
\left\{\inf _{j \in J} f_{j}(w) \otimes \boldsymbol{\phi}(w)\right\}
$$

$$
=\inf _{w \in \Omega}
$$

$$
\inf _{\mathrm{j} \in \mathrm{~J}}\left\{\mathrm{f}_{\mathrm{j}}(\mathrm{w}) \otimes \boldsymbol{\phi}(\mathrm{w})\right\}
$$

$$
=\inf _{w \in \Omega} \quad \inf _{w \in \Omega}\left\{\mathrm{f}_{\mathrm{j}}(\mathrm{w}) \otimes \boldsymbol{\phi}(\mathrm{w})\right\}
$$

$$
=\inf _{\mathrm{j} \in \mathrm{~J}} \int_{\Omega}^{\inf } f_{\mathrm{j}} \otimes \mathrm{dm}
$$

3.3PROPOSITION:

If the pseudo multiplication \otimes has the property $\left({ }^{*}\right)$ then for $\mathrm{f}: \Omega \rightarrow[0, \infty]$
And h : $\Omega \rightarrow[0, \infty]$ holds
$\int_{\Omega}^{\text {sup }}(f+h) \otimes d m \leq \int_{\Omega}^{\text {sup }} f \otimes d m+\int_{\Omega}^{\text {sup }} h \otimes d m$

Proof:

$$
\begin{aligned}
\int_{\Omega}^{s u p}(f+h) \otimes d m & =\sup _{\mathrm{w} \in \Omega}\{(\mathrm{f}+\mathrm{h}) \mathrm{w} \otimes(\mathrm{w})\} \\
& =\sup _{\mathrm{w} \in \Omega}\{(\mathrm{f}(\mathrm{w})+\mathrm{h}(\mathrm{w}) \otimes \boldsymbol{\phi}(\mathrm{w})\} \\
& \leq \sup _{\mathrm{w} \in \Omega}\{\mathrm{f}(\mathrm{w}) \otimes \boldsymbol{\phi}(\mathrm{w})+\mathrm{h}(\mathrm{w}) \otimes \boldsymbol{\phi}(\mathrm{w})\} \\
& \leq \sup _{\mathrm{w} \in \Omega}\{\mathrm{f}(\mathrm{w}) \otimes \boldsymbol{\phi}(\mathrm{w})\}+\sup _{\mathrm{w} \in \Omega}\{\mathrm{~h}(\mathrm{w}) \otimes \boldsymbol{\phi}(\mathrm{w})\} \\
& =\int_{\Omega}^{s u p} f \otimes d m+\int_{\Omega}^{\sup } h \otimes d m
\end{aligned}
$$

3.4 PROPOSITION:

If the pseudo multiplication has the property $\mathrm{f}: \Omega \rightarrow[0, \infty]$ and
$\mathrm{h}: \Omega \rightarrow[0, \infty]$ holds

$$
\left|\int_{\Omega}^{\text {sup }} f \otimes d m+\int_{\Omega}^{\text {sup }} h \otimes d m\right| \leq \int_{[0, \infty]}^{\text {sup }}|\mathrm{f}-\mathrm{h}| \otimes d m
$$

Proof:
Suppose that

$$
\left.\begin{gathered}
\int_{\Omega}^{s u p} f \otimes d m \geq \int_{\Omega}^{s u p} h \otimes d m \\
\mid \int_{[0, \infty]}^{s u p} f \otimes d m-\int_{[0, \infty]}^{s u p} h \otimes d m
\end{gathered} \right\rvert\,=\int_{[0, \infty]}^{s u p} f \otimes d m-\int_{[0, \infty]}^{s u p} h \otimes d m \quad .
$$

positive function f and h satisfies $\mathrm{f}(\mathrm{w})=|\mathrm{f}-\mathrm{h}|(\mathrm{w})+\mathrm{h}(\mathrm{w})$. density function $\boldsymbol{\phi}$ is also positive.so that $\mathrm{f}(\mathrm{w}) \otimes \boldsymbol{\phi}(\mathrm{w}) \leq(|\mathrm{f}-\mathrm{h}|(\mathrm{w})+\mathrm{h}(\mathrm{w})) \otimes \boldsymbol{\phi}(\mathrm{w})$
hence using above proposition

$$
\begin{aligned}
\int_{\Omega}^{s u p} f \otimes d m & =\sup _{\mathrm{w} \in \Omega}\{\mathrm{f}(\mathrm{w}) \otimes \boldsymbol{\phi}(\mathrm{w})\} \\
& \leq \sup _{\mathrm{w} \in \Omega}\{|\mathrm{f}-\mathrm{h}|(\mathrm{w})+\mathrm{h}(\mathrm{w}) \otimes \boldsymbol{\phi}(\mathrm{w})\}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\Omega}^{\text {sup }}(|f-h|+h) \otimes d m \\
& \leq \int_{\Omega}^{\text {Sup }}|f-h| \otimes d m+\int_{\Omega}^{\text {sup }} h \otimes d m
\end{aligned}
$$

So that

$$
\begin{aligned}
\left|\int_{[0, \infty]}^{s u p} f \otimes d m-\int_{[0, \infty]}^{\text {sup }} h \otimes d m\right|=\int_{[0, \infty]}^{\text {sup }} f \otimes d m & -\int_{[0, \infty]}^{\text {sup }} h \otimes d m \\
& \leq \int_{[0, \infty]}^{\text {sup }}|f-h| \otimes d m
\end{aligned}
$$

3.5 Definition:

A fuzzy integral based on \oplus decmposable measure m is defined as

$$
\mathrm{S}=\sum_{i=1}^{n} a_{\mathrm{I} .} 1_{\mathrm{Bi}}
$$

With disjoint B_{i}
$\int_{B} S \otimes \mathrm{~m}=\oplus_{\mathrm{i}=1}{ }^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \otimes \mathrm{m}\left(\mathrm{B}_{\mathrm{i}}\right), \mathrm{a} \leq \mathrm{a}_{\mathrm{i}} \leq \mathrm{b}$

3.6 THEOREM:

The functional $\mathrm{F}_{\mathrm{B}}: \mathrm{u} \rightarrow \int_{B} u \otimes \mathrm{~m}$
has the following properties
(i) $\quad \mathrm{F}_{\mathrm{B}}(\mathrm{u} \oplus \mathrm{v})=\mathrm{F}_{\mathrm{B}}(\mathrm{u}) \oplus \mathrm{F}_{\mathrm{B}}(\mathrm{v})$
(ii) $\quad \mathrm{F}_{\mathrm{B}}(\mathrm{s} \otimes \mathrm{u})=\mathrm{s} \otimes \mathrm{F}_{\mathrm{B}}(\mathrm{u})$
(iii) $\quad \mathrm{B}_{\mathrm{i}} \cap \mathrm{B}_{\mathrm{j}}=\boldsymbol{\phi} \Rightarrow \mathrm{F}_{\mathrm{Bi} \cup \mathrm{Bj}}(\mathrm{u})=\mathrm{F}_{\mathrm{Bi}}(\mathrm{u}) \oplus \mathrm{F}_{\mathrm{Bj}}(\mathrm{u})$

Proof:
(i) $\quad \mathrm{F}_{\mathrm{B}}(\mathrm{u} \oplus \mathrm{v})=\mathrm{g}^{-1}\left(\int_{B}(g(\mathrm{u})+\mathrm{g}(\mathrm{v})) \mathrm{d}(\mathrm{g} \circ \mathrm{m})\right.$

$$
\begin{aligned}
& =\mathrm{g}^{-1}\left(\int _ { B } \left(g(\mathrm{u}) \mathrm{d}(\mathrm{~g} \circ \mathrm{~m})+\int_{B}(g(\mathrm{v}) \mathrm{d}(\mathrm{~g} \circ \mathrm{~m})\right.\right. \\
& =\mathrm{g}^{-1}\left(\mathrm{~g}\left(\mathrm{~F}_{\mathrm{B}}(\mathrm{u})\right)+\mathrm{g}\left(\mathrm{~F}_{\mathrm{B}}(\mathrm{v})\right)\right) \\
& =\mathrm{F}_{\mathrm{B}}(\mathrm{u})+\mathrm{F}_{\mathrm{B}}(\mathrm{v})
\end{aligned}
$$

(ii) $\quad \mathrm{F}_{\mathrm{B}}(\mathrm{s} \otimes \mathrm{u})=\mathrm{g}^{-1}\left(\int_{B} g(s) \cdot g(u) d(g \circ m)\right)$

$$
\begin{aligned}
& =\mathrm{g}^{-1}\left(\mathrm{~g}(\mathrm{~s}) \int_{B} g(u) d(g \circ m)\right) \\
& =\mathrm{g}^{-1}\left(\mathrm{~g}(\mathrm{~s}) \circ \mathrm{g}\left(\mathrm{~F}_{\mathrm{B}}(\mathrm{u})\right)\right) \\
& =\mathrm{s} \otimes \mathrm{~F}_{\mathrm{B}}(\mathrm{u})
\end{aligned}
$$

(iii)

$$
\mathrm{F}_{\mathrm{BiU} \cup \mathrm{Bj}}(\mathrm{u})=\mathrm{g}^{-1}\left(\int_{B i \cup B j} g(u) d(g \circ \mathrm{~m})\right)
$$

$$
\begin{aligned}
& =\mathrm{g}^{-1}\left(\int_{B i} g(u) d(g \circ \mathrm{~m})+\int_{B j} g(u) d(g \circ \mathrm{~m})\right) \\
& =\mathrm{g}^{-1}\left(\mathrm{~g}\left(\mathrm{~F}_{\mathrm{Bi}}(\mathrm{u})\right)+\mathrm{g}\left(\mathrm{~F}_{\mathrm{Bj}}(\mathrm{u})\right)\right) \\
& =\mathrm{F}_{\mathrm{Bi}}(\mathrm{u}) \oplus \mathrm{F}_{\mathrm{Bj}}(\mathrm{u})
\end{aligned}
$$

REFERENCES:

1) A .Chateauneuf Decomposable capacities distorted probabilities and concave capacities math social sci 31(1996)
2) R.Mesiar E.pap idempotent integral as limit of g integral Fuzzy sets and systems 102 (1999)
3) Lj.Nedovie ,T.Grabic ,the pseudo probability,journal of electrical engineering vol 53, no 12(2002)
4) E.Pap An integral generated by decomposable measure university novom sadu zh rad priod mat fak ser mat 20(1) 1990
5) M.Sugeno,Theory of fuzzy integral and its applications doctoral dissertion Tokyo institute of technology 1974.
6) S.Weber,\perp decomposable measure and integral for archimedian t conorms \perp
