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Introduction: 

                  Taking into account human subjective measures in engineering,science fuzzy measures have been 

intensively discussed. Since sugeno (5) defined a fuzzy measure as a measure having monotonicity property instead 

of additivity. Weber(6) proposed  ┴ decomposable measures where the additivity of measures is weakend t-conorm  

┴ is an appropriate semigroup operation in [0,1] and ┴ is considered to be a generalization of addition ┴ 

decomposable measures can be written as m(A⋃B) = m(A) ┴ m(B) 

For the archimedian case ┴  is written as  

a ┴ b = g (-1) (g(a) +g (b)) 

where g (-1)  is a pseudo inverse of g. 

if  a law of composition 

⨁ : X ×  X → X is defined on a set X and its fulfills the laws of assciativity then  (X,⨁) is a semi group. 

Lebesgue measure is defined on a set [0, ∞] . ([0, ∞],+ ) is a semi group and the operation + has no inverse element 

. In sec 2 define an integral by pseudo addition  

⨁  and pseudo multiplication ⨂ that are distributive and associative semiring operations .In sec 3 define fuzzy 

measure derived from pseudo addition. 

1.PREMILINARIES: 

1.1Definition: 

     Let [a,b] be a closed real interval and  `⨁ : [a,b] × [a,b] → [a,b] 

be  a  2 place function satisfying the following  conditions 

(1) ⨁ is commutative 

(2) ⨁ is non decreasing in each place 

(3) ⨁ is associative 

(4) ⨁ has either a (or) b as zero element 
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ie) either ⨁ (a, x) = x (or) 

               ⨁ (b, x) = x 

⨁ will be called a pseudo addition. 

1.2 Definition: 

          A pseudo multiplication ⨂ is a 2 place function 

      ⨂: [a,b] × [a,b]→[ a,b] 

Satisfying the following conditions 

(1)  ⨂ is commutative 

(2)  ⨂  is non decreasing in each place 

(3)  ⨂ is associative 

(4)  There exist a unit element e ∈ [a,b] 

⨂( x,e ) = x ⩝ x∈ [a,b] 

 

1.3 theorem: 

          If the function ⨁ is continuous and strictly increasing in  

(a,b) × (a,b) then there exists a monotone function 

    g : [a,b] →[0 ,∞ ] such that either g(a) =0 (or) g (b) =0 

⨁ 𝑥, 𝑦 =  𝑔-1 (g(x) +g(y) 

Proof: 

  Trivial from aczel‟s theorem (5) 

1.4 REMARK : 

        By applying g to both sides  

We have 

      g( ⨁ (x ,y) ) = g(x) +g (y) ⩝ x ,y in [a, b]. hence g is nothing but an isomorphism of semigroup [a,b] relative 

to ⨁ with a semigroup of the non negative real numbers relative to addition.  g is called a generator of ⨁. 

2.PSEUDO ADDITIONS AND PSEUDO MULTIPLICATIONS: 

2.1 Definition: 

       A pseudo multiplication ⨂ with the generator g of strict pseudo addition ⨁ is defined as ⨂( x ,y) = g-1 (g(x) 

.g(y)) 

       g (x).g(y) is always in [0,∞ ] because g is a monotone function from [a ,b] to 

 [ 0,∞ ] .Thus g -1 is always exists and g is an isomorphism of semigroup ([ a,b] ,⨂) with a subgroup ([0,∞ ] ,x). 

2.2 REMARK: 

       For the sake of simplicity we write ⨁ (x, y) as x ⨁ y and ⨂ (x,y) as x ⨂ y 
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Respectively. Distributive pseudo multiplication ⨂ has the distributive property with pseudo addition ⨁ 

     x ⨂ (y ⨁ z) = (x ⨂ y) ⨁ (x ⨂ z) 

     ( y ⨁ z) ⨂ x =(y ⨂ x) ⨁ (z ⨂ x) 

2.3 EXAMPLE: 

     x ∨ y = max (x,y) 

     x ∧ y = min (x,y) 

are continuous nonstrict pseudo addition ⨁ and pseudo multiplication ⨂ in 

 [a ,b] ⊂ [ -∞,+∞] respectively. 

 2.4 THEOREM: 

    When any pseudo addition, ⨁ ,( pseudo multiplication ⨁ ) defined on  

[ a1 × b1 ] × [ a1 × b 1]  a strict monotone function g 1 from [a 2, b2 ] onto [a1 ,b1]  

are given a 2 place function ⨁2 

  ⨁2 (x2 ,y2 ) = g 1
-1 (⨁ 1( g1 (x2), g1 (y2 )) 

 ⨂2 (x2 ,y2 ) = g 1
-1 (⨂ 1 (g1 (x2), g1 (y2 )) 

is a pseudo addition. 

proof: 

    The commutative and associative property of ⨁2  is a immediate consequence of 

That of ⨁1  similarly the non decreasingness of ⨁2 follows directly from the non decreasingness of ⨁1 and the 

monotonicity of g1 as for the zero element .if a1 is a zero element and g1 is an increasing function 

          Then g1(a2) = a1 

For all x∈ [a2 ,b2 ] 

⨁2 (x,a2 ) = g1
-1 (⨁1 (g1(x) ,a1)) 

                = g1
-1 (g1(x)) 

                = x 

 

2.5 Definition: 

      The pseudo operation on the set I is a binary operation * :I × I→I 

Which is commutative associative “positively non-decreasing” in the sense that 

For all u ∈ I* ,x ≤ y implies x* u ≤ y* u and for which there exists a neutral element e ∈ I 
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2.6 Definition: 

     The element u∈I is a null element of the operation * : I2 → I if for any x ∈ I 

x*u = u* x = u holds. 

3.SOME ADDITIONAL PROPERTIES OF PSEUDO MEASURE: 

3.1THEOREM: 

   Let ⨂ be a continuous pseudo multiplication for the sub measure „m‟ and a family of functions fj  : Ω →[0,∞) ,  

j∈J 

It holds 

      
𝑠𝑢𝑝

Ω
(sup j ∈ J f j) ⨂ dm = sup  j ∈ J   

𝑠𝑢𝑝

Ω
(f j ⨂ dm) 

Let us consider now the semi ring ([0,∞], min,⨂ ) 

With continuous operation  ⨂. Let 𝟇 be a density function of inf measure m. 

3.2 THEOREM: 

   For the inf decomposable measure m and a family of functions fj  : Ω → (0,∞] 

j ∈ J it holds          

      
𝑠𝑢𝑝

Ω
(sup j ∈ J f j) ⨂ dm = sup  j ∈ J   

𝑠𝑢𝑝

Ω
(f j ⨂ dm) 

Proof: 

  
𝑖𝑛𝑓

Ω
(inf j ∈ J f j) ⨂ dm = inf  w ∈ Ω             inf j∈ J f j w ⨂ 𝟇(w) 

                                   

 

                                    =  inf  w ∈ Ω             inf j∈ J f j (w) ⨂ 𝟇(w)  

 

                                    = inf  w ∈ Ω    inf j∈ J    f j (w) ⨂ 𝟇(w) 

 

                                    = inf  w ∈ Ω    infw ∈ Ω         f j (w) ⨂ 𝟇(w)  

 

                                         =inf j ∈J    𝑓
𝑖𝑛𝑓

Ω j ⨂ dm 

3.3PROPOSITION: 

       If the pseudo multiplication ⨂ has the property (*)  then for f : Ω → [0,∞] 

And h : Ω → [0,∞] holds 

     𝑓 +  ⨂𝑑𝑚
𝑠𝑢𝑝

Ω
 ≤  𝑓 ⨂𝑑𝑚 + 

𝑠𝑢𝑝

Ω
  ⨂𝑑𝑚

𝑠𝑢𝑝

Ω
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Proof: 

     𝑓 +  ⨂𝑑𝑚
𝑠𝑢𝑝

Ω
 = sup w∈Ω {(f + h) w ⨂ (w)} 

 

                                    =  sup w∈Ω {(f(w) + h(w)  ⨂ 𝟇(w)} 

 

                                    ≤  supw∈Ω  {f(w) ⨂ 𝟇(w) + h(w) ⨂ 𝟇(w)} 

 

                                    ≤  supw∈Ω  {f(w) ⨂ 𝟇(w) }+ supw∈Ω  {h(w) ⨂ 𝟇(w)} 

 

                                    =     𝑓 ⨂𝑑𝑚 + 
𝑠𝑢𝑝

Ω
  ⨂𝑑𝑚

𝑠𝑢𝑝

Ω
 

 

3.4 PROPOSITION: 

      If the pseudo multiplication has the property  f : Ω→ [0,∞] and  

h : Ω→[0,∞] holds 

                    𝑓 ⨂𝑑𝑚 + 
𝑠𝑢𝑝

Ω
  ⨂𝑑𝑚

𝑠𝑢𝑝

Ω
     ≤   

𝑠𝑢𝑝

[0,∞]
    f - h     ⨂𝑑𝑚    

 

 

Proof: 

Suppose that 

   𝑓 ⨂𝑑𝑚 ≥ 
𝑠𝑢𝑝

Ω
  ⨂𝑑𝑚

𝑠𝑢𝑝

Ω
 

 

       

      𝑓 ⨂𝑑𝑚 − 
𝑠𝑢𝑝

[0,∞]
  ⨂𝑑𝑚

𝑠𝑢𝑝

[0,∞]
    =  𝑓 ⨂𝑑𝑚 − 

𝑠𝑢𝑝

[0,∞]
  ⨂𝑑𝑚

𝑠𝑢𝑝

[0,∞]
     

 

positive function f and h satisfies f(w) = | f-h| (w) +h(w).density function 𝟇 is also  

positive.so that f(w) ⨂ 𝟇(w) ≤  ( |f-h| (w) + h(w)) ⨂ 𝟇(w) 

hence using above proposition 

  𝑓 ⨂𝑑𝑚 
𝑠𝑢𝑝

Ω
= sup w∈Ω { f(w) ⨂   𝟇(w) } 

                        ≤ sup w∈Ω { | f-h| (w) + h(w) ⨂   𝟇(w) } 
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                        =  (|𝑓 − | +  ) ⨂𝑑𝑚 
sup 

Ω
 

                                      ≤   𝑓 −  ⨂𝑑𝑚 +  ⨂𝑑𝑚
𝑠𝑢𝑝

Ω

𝑆𝑢𝑝

Ω
 

So that     

       𝑓 ⨂𝑑𝑚 − 
𝑠𝑢𝑝

[0,∞]
  ⨂𝑑𝑚

𝑠𝑢𝑝

[0,∞]
  =  𝑓 ⨂𝑑𝑚 − 

𝑠𝑢𝑝

[0,∞]
  ⨂𝑑𝑚

𝑠𝑢𝑝

[0,∞]
 

 

  ≤  (|𝑓 − | ⨂𝑑𝑚 
sup 

[0,∞]
 

   3.5  Definition: 

           A fuzzy integral based on ⨁ decmposable measure m is defined as 

  S=    𝑎𝑛
𝑖=1  I .1Bi 

With disjoint Bi 

 𝑆
𝐵

 ⨂ m =  ⨁ i=1
n a i ⨂ m(Bi )  ,a ≤  ai ≤ b 

3.6 THEOREM: 

    The functional FB : u→   𝑢 
𝐵

⨂ m 

has the following properties 

(i) FB (u ⨁ v) = FB (u) ⨁ FB (v) 

(ii) FB (s ⨂ u)  = s ⨂ FB (u) 

(iii) Bi ∩ B j =𝟇 ⇒ F Bi ⋃ Bj (u) = FBi (u) ⨁ F Bj (u) 

Proof: 

(i) FB (u ⨁ v) = g-1 ( (𝑔
𝐵

(u)+ g(v) ) d (g ∘ m) 

 

                  = g -1( (𝑔
𝐵

(u) d (g ∘ m) +  (𝑔
𝐵

(v) d (g ∘ m) 

 

                  = g -1( g(FB (u)) + g (FB (v))) 

 

                  = F B (u) + FB (v) 

 

(ii) FB (s ⨂ u ) = g-1 ( 𝑔 𝑠 . 𝑔 𝑢 𝑑(𝑔 ∘ 𝑚))
𝐵

   

 

                   = g-1 (g(s)  𝑔 𝑢 𝑑(𝑔 ∘ 𝑚))
𝐵

 

 

                   =g-1( g(s) ∘  g (FB (u))) 

 

                   = s ⨂FB (u) 

 

(iii)  FBi⋃Bj (u)    = g-1(  𝑔 𝑢 𝑑(𝑔
𝐵𝑖⋃𝐵𝑗

 ∘ m)) 



International Journal of Mathematics Trends and Technology (IJMTT) – volume 57 Issue 2 – May 2018 

 

ISSN: 2231 – 5373                                  http://www.ijmttjournal.org  Page 84 

 

                              = g-1 ( 𝑔 𝑢 𝑑(𝑔
𝐵𝑖

 ∘ m) +  𝑔 𝑢 𝑑(𝑔
𝐵𝑗

 ∘ m)) 

 

                              = g-1 ( g(F Bi (u)) + g (FBj (u))) 

 

                              = FBi  (u) ⨁ FBj  (u) 
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