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ABSTRACT
The aim of the present paper is to evaluate four finite integrals involving the product of Jacobi polynomials and the generalized multivariable Gimel-
function with general arguments. These integrals have been utilized to derive the expansion formula for  generalized multivariable Gimel-function in 
series involving Jacobi polynomials.
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1. Introduction and preliminaries.

Throughout this paper, let   and   be set of complex numbers, real numbers and positive integers respectively.
Also . 

In  this  paper,  we  establish  four  single   Fourier-Jacobi  expansions  formulae  for  generalized  multivariable  Gimel-
function.

We define a generalized transcendental function of several complex variables.
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and

                    (1.3)

   
1)  stands for .

2)   
and verify : 

.

3) .

4) 
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5) 

The  contour  is in the - plane and run from  to  where  if is a real number with 

loop, if necessary to ensure that the poles of  

, to 

the right of the contour  and the poles of  

,  lie to the left  of the 

contour . The condition for absolute convergence of multiple Mellin-Barnes type contour (1.1) can be obtained of the
corresponding conditions for multivariable H-function given by as :

 where 

                                                          (1.4)

Following  the  lines  of  Braaksma  ([3]  p.  278),  we  may  establish  the  the  asymptotic  expansion  in  the  following
convenient form :

     ,     

    ,      where   : 

 and 

Remark 1.
If   and 

,  then  the  generalized  multivariable  Gimel-function  reduces  in  the   generalized
multivariable Aleph- function ( extension of multivariable Aleph-function defined by Ayant [2]).

Remark 2. 
If  and 

,  then the generalized multivariable Gimel-function reduces in a generalized  
multivariable I-function (extension of multivariable I-function defined by Prathima et al. [5]). 
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Remark 3.
If and  

 ,  then the  generalized  multivariable  Gimel-function reduces  in  generalized of
multivariable I-function (extension of multivariable I-function  defined by Prasad [4]). 

Remark 4.
If the three above conditions are satisfied at the same time, then the generalized multivariable Gimel-function reduces in
the generalized multivariable H-function (extension of multivariable H-function defined by Srivastava and panda [7,8]).

In your investigation, we shall use the following notations.          

 

                                                               (1.5)
                                      

                                                        (1.6)

 

                                                                                     (1.7)

 

                                                                (1.8)

                                                       (1.9)

 

                                                         

                                                                                   (1.10)

                                           (1.11)

           (1.12)

2. Required results.

In this section, we give four finite integrals involving Jacobi polynomials, see Anandani and Shrivastava [1].

Lemma1.
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                                                  (2.1)

Lemma2.

                                 (2.2)

3. Main integrals.

In this section, we prove the following four finite integrals.

Theorem 1.

                                      (3.1)

where

                                                      (3.2)

                                                                                                       (3.3)

                                                                                                       (3.4)

                                 (3.5)

provided 

 

 and

 where  is defined by (1.4).

Proof
To prove (2.1), expressing the generalized multivariable Gimel-function with the help of (1.1), interchanging the order
of integration which is justified under the conditions mentioned above, evaluating the inner integral with the help of the
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lemma 1, and interpreting the  Mellin-Barnes multiple integrals contour in terms of  the multivariable Gimel-function,
we get the desired result (3.1).

Theorem 2.

 

 (3.6) 

provided 

 

 and

 where  is defined by (1.4).

Theorem 3.

 

(3.7)

provided 

 

 and

 where  is defined by (1.4).

Theorem 4.
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                                       (3.8)

where

                                                   (3.9)

                               (3.10)

provided 

 

 and

 where  is defined by (1.4).

To prove the theorem3 2 to 4, we use the similar method that theorem 1.

4. Expansion formulae.

In  this  section,  we  establish  the  following  expansions  for  the  generalized  multivariable  Gimel-function  in  series
involving product of Jacobi polynomials and  generalized multivariable Gimel-function.

Theorem 5.

 

                                                                                              (4.1)

where

                                     (4.2)

                                 (4.3)
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provided 

 

 and

Proof
To prove (4.1), let 

                                                                          (4.4)

The above equation is valid since the expression on the left-hand side is continuous and bounded variation in the
interval  .  Multiplying both  sides  of  the  equation  (4.4)  by   and  integrating  with
respect to  from 1 to 1. 

Theorem 6.

 

(4.5)

provided 

 

 

Theorem 7.

  (4.6)

                                    
provided 
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Theorem 8.

                                       (4.7)

where

                                                   (4.8)

                                (4.9)

provided 

 

5. Conclusion.

The importance of our all the results lies in their manifold generality. Firstly, in view of Jacobi polynomials making use
of special cases, they can be reduced to a large number of formulae involving simpler special functions ( Ultraspherical
polynomials, Chebyshev, Legendre, Bateman’s, Hermite, Laguerre polynomials and others). Secondly by specialising
the various parameters as well as variables in the generalized multivariable Gimel-function, we get a several formulae
involving remarkably wide variety of useful functions ( or product of such functions) which are expressible in terms of
E, F, G, H, I, Aleph-function of one and several variables and simpler special functions of one and several variables.
Hence the formulae derived in this paper are most general in character and may prove to be useful in several intersting
cases appearing in literature of Pure and Applied Mathematics and Mathematical Physics.
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