Fixed Point Theorems in Dislocated Quasi-b-Metric Space for Two Self Maps

Venkatesh Bhatt^{#1}, Giniswamy^{*2}, Jeyanthi C.^{#3}

*1Research Scholar, Department of Mathematics, PES College of Science, Arts and Commerce, Mandya, Karnataka, India-571401

#2Associative Professor and Head, Department of Mathematics, ,PES College of Science, Arts and Commerce, Mandya, Karnataka, India-571401

#3Assistant Professor, Department of Mathematics, Teresian College, Mysore, Karnataka, India-560104

Abstract: The purpose of this paper is to establish a common fixed point result for two self-maps, using generalised contraction condition in dislocated quasi-b-metric space. This result is an extension and generalisation of the result of Mujeeb Ur Rahman[8].

Keywords—fixed point, b-metric spaces, quasi-b-metric spaces.

I. INTRODUCTION

Fixed point theory is one of the most dynamic research subjects in non-linear analysis. In 1912 Brouwer [3] proved a result that a unit closed ball in Rⁿ has a fixed point. The most remarkable result in fixed point theory was given by Banach[2] in 1922. He proved that each contraction in a complete metric space has a unique fixed point. Later on, many authors generalized the Banach fixed point theorem in various ways [6,7,10,11,12,14]. P. Hitzler and A.K.Seda generalized, the well-knownBanach Contraction Principle of metric space to the dislocated metric space. This result played a key role in the development of logic programming semantics [5].

The quasi metric spaces were introduced by Wilson [13]in 1931 as a generalisation of metric spaces. In 1989 Bakhtin [1] introduced the notion of b-metric space as generalisation of metric space. Klin-eamet.al [4] introduced dislocated quasi-b-metric space which generalize quasi-b-metric space and b-metric like space.

In this present paper we prove a common fixed-point theorem in dislocated quasi b-metric space for two selfmaps. This resultextends and generalise the result of Mujeeb Ur Rahman [8] and many results in literature.

II. PRELIMINARIES

The following definitions are necessary to prove our result, which is found in [9].

Definition 2.1.Let **X** be a non-empty set, $k \ge 1$ be a given real number and d: $X \times X \rightarrow R_+$ be a function. Is called dislocated quasi-b-metric for all x, y and z in X if the following conditions are satisfied:

1. d(x, y) = 0 = d(y, x) if and only if x = y.

2. $d(x, z) \le k[d(x, y) + d(y, z)]$

A pair (X, d) is called a dislocated quasi-b-metric space or dq-b-metric space. If k = 1, then dq-b-metric reduces to dislocated quasi metric space.

Remark: If k = 1 the dislocated quasi-b-metric space reduce to dislocated quasi metricspace. Therefore, every dislocated quasi metric space is dislocated quasi-b-metric space and every b-metric space is dislocated quasi-b-metric space with same coefficient k and zero self-distance, but converse is not true.

Example: Let X = R and suppose $d(x, y) = |2x-y|^2 + |2x+y|^2$ Then (X, d) is a dislocated quasi-b-metric space with the coefficient k = 2. But it is neither dislocated quasi-metric space nor b-metric space.

Definition 2.2. The sequence $\{x_n\}$ is called dq-b-convergent sequence in (X, d) if forn $\ge N$ we have $d(x_n, x) \le \epsilon$ where $\epsilon > 0$ then x is called the dq-b-limit of sequence $\{x_n\}$.

Definition 2.3. Let (X,d) be a dq-b-metric space. The sequence $\{x_n\}$ in X is called aCauchy sequence if and only if for all $\epsilon > 0$ there exist $n_0 \in N$ such that for each m, $n \ge n_0$ we have $d(x_n, x_m) < \epsilon$.

Definition 2.4. A dq-b-metric space (X,d) is said to be complete if every Cauchy sequence in X converges to a point of X.

The following results are from [9].

Lemma 2.5. Limit of a convergent sequence in dislocated quasi-b-metric space is unique.

Lemma 2.6. Let (X,d) be a dislocated quasi-b-metric space and $\{x_n\}$ be a sequence indq-b-metric space such that $d(x_n, x_{n+1}) \le d(x_{n-1}, x_n)$ for n = 1, 2, 3, ... and $0 \le \alpha k \le 1, \alpha \in [0, 1)$ and k is defined in dq-b-metric space. Then $\{x_n\}$ is a Cauchy sequence in X.

III.MAIN RESULT

Theorem 3.1. Let (X,d) be a complete dq-b-metric space with $k \ge 1$ and S and T aretwo self-mappings S,T: X \rightarrow X satisfying the condition

 $d(Sx,Ty) \le h \max\{ d(x, y), d(x,Sx), d(y,Ty), d(x,Ty), d(y,Sx) \}$ for all x,y $\in X$ with 2hk < 1 and $0 \le h \le 1$ then S and T have unique common fixed point.

Proof.Let x_0 be arbitrary point in X and we define $\{x_n\}$ in X as

$$x_{n+1} = Sx_n \text{ and } x_{n+2} = Tx_{n+1}$$
 (1)

$$\begin{split} & \text{for } n = 0, \, 1, \, 2, \, \dots \\ & \text{Consider} \\ & d(x_{n+1}, \, x_{n+2}) = d(Sx_n, \, Tx_{n+1}) \\ & \leq h \max\{d(x_n, \, x_{n+1}), \, d(x_n, \, Sx_n), \, d(x_{n+1}, Tx_{n+1}), d(x_n, \, Tx_{n+1}), \, d(x_{n+1}, Sx_n)\}, \\ & \leq h \max\{d(x_n, \, x_{n+1}), \, d(x_n, \, x_{n+1}), \, d(x_{n+1}, x_{n+2}), d(x_n, \, x_{n+2}), \, d(x_{n+1}, \, x_{n+1})\}, \\ & \leq h \max\{d(x_n, \, x_{n+1}), \, d(x_{n+1}, x_{n+2}), d(x_n, \, x_{n+2})\}. \\ & \text{now different cases arise.} \end{split}$$

Case 1. If max { $d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), d(x_n, x_{n+2})$ } = $d(x_n, x_{n+1})$

then $d(x_{n+1}, x_{n+2}) \le hd(x_n, x_{n+1})$. similarly, $d(x_n, x_{n+1}) \le hd(x_{n-1}, x_n)$

Continuing this process, we get $d(x_{n+1}, x_{n+2}) \le h^{n+1}d(x_0, x_1)$.

Case 2. If $\max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), d(x_n, x_{n+2})\} = d(x_{n+1}, x_{n+2})$ Thend $(x_{n+1}, x_{n+2}) \le h[d(x_{n+1}, x_{n+2})],$ $(1 - h)d(x_{n+1}, x_{n+2}) \le 0$, this implies $d(x_{n+1}, x_{n+2}) = 0$.

Case 3.If max $\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), d(x_n, x_{n+2})\} = d(x_n, x_{n+2})$

Thend $(x_{n+1}, x_{n+2}) \le h[d(x_{n+1}, x_{n+2})],$

 $\leq hk[d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2})],$

$$\leq \frac{hk}{1-hk}[d(x_n,\!x_{n+1})],$$

Where $\alpha = \frac{hk}{1-hk} < 1$

Continuing the process, we get $d(x_{n+1}, x_{n+2}) \le \alpha^{n+1} d(x_0, x_1)$.

Using lemma 2.6 we get $\{x_n\}$ is Cauchy sequence in complete dq-b-metric space. So there exists $u \in X$ such that $\lim_{n\to\infty} x_n = u$.

Now we show that u is a fixed point of T.

Consider

$$\begin{split} d(u,Tu) &\leq kd(u,x_{n+1}) + d(x_{n+1},Tu), \\ &\leq kd(u,x_{n+1}) + kd(Sx_n,Tu), \\ &\leq kd(u,x_{n+1}) + k[hmax\{d(x_n,u),d(x_n,Sx_n),d(u,Tu),d(x_n,Tu),d(u,Sx_n)\}], \\ &\leq kd(u,x_{n+1}) + k[hmax\{d(x_n,u),d(x_n,x_{n+1}),d(u,Tu),d(x_n,Tu),d(u,x_{n+1})\}], \\ &\text{now different cases arise.} \end{split}$$

Case 1. If $\max\{d(x_n, u), d(x_n, x_{n+1}), d(u, Tu), d(x_n, Tu), d(u, x_{n+1})\} = d(x_n, u)$ then

 $d(u,Tu) \leq kd(u, x_{n+1}) + khd(x_n,u)$

as $n \rightarrow \infty$, d(u,Tu) = 0. Therefore, u is a fixed point of T. **Case 2.** Ifmax $\{d(x_n, u), d(x_n, x_{n+1}), d(u, Tu), d(x_n,Tu), d(u,x_{n+1})\} = d(x_n,x_{n+1})$ then $d(u,Tu) \le kd(u, x_{n+1}) + khd(x_n,x_{n+1})$ as $n \rightarrow \infty$, d(u,Tu) = 0. Therefore, u is a fixed point of T. **Case 3.** Ifmax $\{d(x_n, u), d(x_n, x_{n+1}), d(u,Tu), d(x_n,Tu), d(u,x_{n+1})\} = d(x_n,Tu)$ then $d(u,Tu) \le kd(u,x_{n+1}) + khd(x_n,Tu)$

as $n \rightarrow \infty$, (1 - kh)d(u, Tu) = 0

implies d(u,Tu) = 0 therefore is a fixed point of T.

Case 4. If max $\{d(x_n, u), d(x_n, x_{n+1}), d(u, Tu), d(x_n, Tu), d(u, x_{n+1})\} = d(u, Tu)$ then $d(u, Tu), \le kd(u, x_{n+1}) + khd(u, Tu)$ $d(u, Tu), \le \frac{hk}{1-hk} d(u, x_{n+1})$ as $n \to \infty$, d(u, Tu) = 0

Therefore, u is a fixed point of T.

$$\begin{split} & \textbf{Case 5.If max } \{d(x_n, u), d(x_n, x_{n+1}), d(u, Tu), d(x_n, Tu), d(u, x_{n+1})\} = d(u, x_{n+1}) \text{ then } \\ & d(u, Tu) \leq kd(u, x_{n+1}) + khd(u, x_{n+1}), \\ & \leq k(1 + h)d(u, x_{n+1}) \\ & \text{as } d(u, Tu) = 0 \text{ then } u \text{ is a fixedpoint of } T. \end{split}$$

Nowwe show that u is fixed point of S. Consider

$$\begin{split} d(u,Su) &\leq kd(u,x_{n+2}) + d(x_{n+2},Su), \\ &\leq kd(u,x_{n+2}) + kd(Su,Tx_{n+1}), \\ &\leq kd(u,x_{n+2}) + k[hmax\{d(u,x_{n+1}),d(x_{n+1},Tx_{n+1}),d(u,Su),d(x_{n+1},Su),d(u,Tx_{n+1})\}], \end{split}$$

 $\leq kd(u,x_{n+2}) + k[hmax\{d(u,x_{n+1}),d(x_{n+1},x_{n+2}),d(u,Su),d(x_{n+1},Su),d(u,x_{n+2})\}]$

Now different cases arise

 $\begin{aligned} & \textbf{Case 1. Ifmax } \{d(u, x_{n+1}), d(x_{n+1}, x_{n+2}), d(u, Su), d(x_{n+1}, Su), d(u, x_{n+2})\}] = d(u, x_{n+1}) \text{ then } \\ & d(u, Su) \leq kd(u, x_{n+2}) + khd(u, x_{n+1}) \\ & \text{ as } n \to \infty, \ d(u, Su) = 0. \text{therefore } u \text{ is a fixed point of } S. \end{aligned}$

$$\begin{split} & \textbf{Case 2.If max } \{d(u, x_{n+1}), d(x_{n+1}, x_{n+2}), d(u, Su), d(x_{n+1}, Su), d(u, x_{n+2})\}] = d(u, Su) \text{ then } \\ & d(u, Su) \leq kd(u, x_{n+2}) + khd(u, Su), \\ & \leq \frac{k}{1-kh}d(u, x_{n+2}) \end{split}$$

as $n \to \infty$, d(u,Su) = 0. then u is a fixed point of S.

Case 3If max { $d(u, x_{n+1}), d(x_{n+1}, x_{n+2}), d(u, Su), d(x_{n+1}, Su), d(u, x_{n+2})$ }] = $d(x_{n+1}, x_{n+2})$ then

 $d(u, Su) \le kd(u, x_{n+2}) + khd(x_{n+1}, x_{n+2}),$

as $n \to \infty$, d(u, Su) = 0. then u is a fixed point of S.

$$\begin{split} & \textbf{Case 4.If } \max\{d(u, x_{n+1}), d(x_{n+1}, x_{n+2}), d(u,Su), d(x_{n+1}, Su), d(u,x_{n+2})\}] = d(u, x_{n+2}) \text{ then } \\ & d(u, Su) \leq kd(u, x_{n+2}) + khd(u, x_{n+2}), \\ & \leq k(1+h)d(u, x_{n+2}) \\ & \text{ as } n \to \infty, d(u, Su) = 0. \text{ then } u \text{ is a fixed point of } S. \end{split}$$

Case 5. If max{d(u, x_{n+1}), d(x_{n+1} , x_{n+2}), d(u, Su), d(x_{n+1} , Su), d(u, x_{n+2})}] = d(x_{n+1} , Su) then

 $d(u, Su) \le kd(u, x_{n+2}) + khd(x_{n+1}, Su),$

$$\begin{split} &\leq kd(u,\,x_{n+2})+k^2h[d(x_{n+1,}\,u),\,+d(u,\,Su)]\\ &\leq &\frac{k}{1-kh}d(u,\,x_{n+2})+\frac{k^2h}{1-k^2h}d(x_{n+1,}\,u),\\ &\text{as }n\to\infty,\,d(u,\,Su)=0. \text{ then }u \text{ is a fixed point of }S. \end{split}$$

So u a common fixed point of S and T.

Uniqueness

Now we show that u is unique fixed point of S and T. let u and v be two different fixed point of S and T.

i.e. Su = u = Tu, and Sv = v = Tv

Consider d(u,v) = d(Su,Tv).

 \leq hmax{d(u,v),d(u,Su),d(v,Tv),d(u,Tv),d(v,Su)}

 \leq hmax{d(u,v),d(u,u),d(v,v),d(u,v),d(v,u)}

 $\leq \max\{d(u,v),d(v,u)\}$

 \leq hd(u,v)

 $(1-h)d(u,v) \leq 0$

d(u,v) = 0 implies u = v

Therefore, u is a unique common fixed point of S and T.

REFERENCES

- [1] Bakhtin, IA: The contraction principle in quasimetric spaces. In: Functional Analysis, vol. 30, pp. 26-37 (1989)
- [2] Banach S., Surles operations dans les ensembles abstraites et leurs applications, Fund. Math., 3 (1922), 133-187.
- [3] Brouwer L.E.S., Uber Abbildungen Von Mannigfaltigkeiten, Math. Ann., 77 (1912), 97-115.
- [4] Hitzler P. and Seda A.K., Dislocated Topologies, J. Electr. Engg., 51 (12/s), (2000), 3-7.
- [5] Imoru C.O. and Olatinwo M.O., On The Stability Of Picard And Mann Iteration Processes, Carpathian J. Math., 19 (2) (2003), 155-160.
- [6] Kannan R., Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968), 71-76.
- [7] Mujeeb Ur Rahman,"New Fixed Point Theorems in Dislocated Quasi-b-Metric Space", Appl. Math. Inf. Sci. Lett. 5, No. 1, 7-11 (2017).
- [8] M.U.Rahman and M.Sarwar,"Dislocated Quasi-b-metric and fixed point theorem", Electronic Journal of Mathematical Analysis and Applications,4 (2016)
- [9] Osilike M.O., Stability Results For Fixed Point Iteration Procedures, J. The Nigerian Math. Society, 14 (15) (1995), 17-29.
- [10] Rhoades B.E., A fixed point theorem for generalized metric spaces, Internat. J. Math. and Math. Sci., 19 (3) (1996), 457-460.
- [11] Schauder J., Fixed point theorem in continuous mapping, Math. Ann., 174 (1930), 285-290.
- [12] Wilson, WA: On quasi-metric spaces. Am. J. Math. 53(3), 675-684 (1931).
- [13] Zamfirescu T., Fixed Point Theorems In Metric Spaces, Arch. Math., 23 (1972), 292-298.