Fixed Point Theorems in Dislocated Quasi-b-Metric Space for Two Self Maps

Venkatesh Bhatt ${ }^{\# 11}$, Giniswamy ${ }^{* 2}$, Jeyanthi C. ${ }^{\# 3}$
${ }^{*}$ Research Scholar, Department of Mathematics, PES College of Science, Arts and Commerce, Mandya, Karnataka, India-571401
\#2Associative Professor and Head, Department of Mathematics, ,PES College of Science, Arts and Commerce, Mandya, Karnataka, India-571401
\#3Assistant Professor, Department of Mathematics, Teresian College, Mysore, Karnataka, India-560104

Abstract

The purpose of this paper is to establish a common fixed point result for two self-maps, using generalised contraction condition in dislocated quasi-b-metric space. This result is an extension and generalisation of the result of Mujeeb Ur Rahman[8].

Keywords-fixed point, b-metric spaces, quasi-b-metric spaces.

I. INTRODUCTION

Fixed point theory is one of the most dynamic research subjects in non-linear analysis. In 1912 Brouwer [3] proved a result that a unit closed ball in R^{n} has a fixed point. The most remarkable result in fixed point theory was given by Banach[2] in 1922. He proved that each contraction in a complete metric space has a unique fixed point. Later on, many authors generalized the Banach fixed point theorem in various ways [6,7,10,11,12,14]. P. Hitzler and A.K.Seda generalized, the well-knownBanach Contraction Principle of metric space to the dislocated metric space. This result played a key role in the development of logic programming semantics [5].

The quasi metric spaces were introduced by Wilson [13]in 1931 as a generalisation of metric spaces. In 1989 Bakhtin [1] introduced the notion of b-metric space as generalisation of metric space. Klin-eamet.al [4] introduced dislocated quasi-b-metric space which generalize quasi-b-metric space and b-metric like space. $\$ I

In this present paper we prove a common fixed-point theorem in dislocated quasi b-metric space for two selfmaps. This resultextends and generalise the result of Mujeeb Ur Rahman [8]and many results in literature.

II. Preliminaries

The following definitions are necessary to prove our result, which is found in [9].
Definition 2.1.Let \mathbf{X} be a non-empty set, $k \geq 1$ be a given real number and d: $X \quad X \rightarrow R+$ be a function. Is called dislocated quasi-b-metric for all x, y and z in X if the following conditions are satisfied:

1. $d(x, y)=0=d(y, x)$ if and only if $x=y$.
2. $d(x, z) \leq k[d(x, y)+d(y, z)]$

A pair (X, d) is called a dislocated quasi-b-metric space or dq-b-metric space. If $\mathrm{k}=1$, then dq-b-metric reduces to dislocated quasi metric space.
Remark: If $\mathrm{k}=1$ the dislocated quasi-b-metric space reduce to dislocated quasi metricspace.Therefore, every dislocated quasi metric space is dislocated quasi-b-metric space andevery b-metric space is dislocated quasi-bmetric space with same coefficient k and zero self-distance, but converse is not true.
Example: Let $X=R$ and suppose $d(x, y)=|2 x-y|^{2}+|2 x+y|^{2}$ Then (X,d) is a dislocatedquasi-b-metric space with the coefficient $\mathrm{k}=2$. But it is neither dislocated quasi-metricspace nor b -metric space.

Definition 2.2.The sequence $\left\{x_{n}\right\}$ is called dq-b-convergent sequence in (X, d) if forn $\geq N$ we have $d\left(x_{n}, x\right)<\varepsilon$ where $\varepsilon>0$ then x is called the dq-b-limit of sequence $\left\{x_{n}.\right\}$.

Definition 2.3. Let (X, d) be a dq-b-metric space. The sequence $\left\{x_{n}\right\}$ in X is called aCauchy sequence if and only if for all $\varepsilon>0$ there exist $n_{0} \in N$ such that for each $m, n \geq n_{0}$ we have $d\left(x_{n}, x_{m}\right)<\varepsilon$.

Definition 2.4. A dq-b-metric space (X, d) is said to be complete if every Cauchy sequence
in X converges to a point of X .
The following results are from [9].
Lemma 2.5. Limit of a convergent sequence in dislocated quasi-b-metric space is unique.

Lemma 2.6. Let (X, d) be a dislocated quasi-b-metric space and $\left\{x_{n}\right\}$ be a sequence indq-b-metric space such that $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$ for $\mathrm{n}=1,2,3, \ldots$ and $0 \leq \alpha \mathrm{k} \leq 1, \alpha \in[0,1)$ and k is defined in dq-b-metric space. Then $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a Cauchy sequence in X.

III.MAIN RESULT

Theorem 3.1. Let (X, d) be a complete dq-b-metric space with $\mathrm{k} \geq 1$ and S and T aretwo self-mappings S,T: $\mathrm{X} \rightarrow \mathrm{X}$ satisfying the condition $d(S x, T y) \leq h \max \{d(x, y), d(x, S x), d(y, T y), d(x, T y), d(y, S x)\}$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $2 \mathrm{hk}<1$ and $0 \leq \mathrm{h} \leq 1$ then S and T have unique common fixedpoint.
Proof.Let x_{0} be arbitrary point in X and we define $\left\{x_{n}\right\}$ in X as

$$
\begin{equation*}
\mathrm{x}_{\mathrm{n}+1}=\mathrm{S} \mathrm{x}_{\mathrm{n}} \text { and } \mathrm{x}_{\mathrm{n}+2}=\mathrm{T} \mathrm{x}_{\mathrm{n}+1} \tag{1}
\end{equation*}
$$

for $\mathrm{n}=0,1,2, \ldots$
Consider
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right)=\mathrm{d}\left(\mathrm{Sx}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}+1}\right)$
$\leq h \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, S x_{n}\right), d\left(x_{n+1}, T x_{n+1}\right), d\left(x_{n}, T x_{n+1}\right), d\left(x_{n+1}, S x_{n}\right)\right\}$, $\leq h \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right), d\left(x_{n}, x_{n+2}\right), d\left(x_{n+1}, x_{n+1}\right)\right\}$, $\leq h \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right), d\left(x_{n}, x_{n+2}\right)\right\}$. now different cases arise.

Case 1.If $\max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+2}\right)\right\}=\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)$
then $d\left(x_{n+1}, x_{n+2}\right) \leq \operatorname{hd}\left(x_{n}, x_{n+1}\right)$.
similarly, $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{hd}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$
Continuing this process, we get $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right) \leq \mathrm{h}^{\mathrm{n}+1} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$.
Case 2. If $\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right), d\left(x_{n}, x_{n+2}\right)\right\}=d\left(x_{n+1}, x_{n+2}\right)$
Thend $\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right) \leq \mathrm{h}\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right)\right]$,
$(1-h) d\left(x_{n+1}, x_{n+2}\right) \leq 0$, this implies $d\left(x_{n+1}, x_{n+2}\right)=0$.
Case 3.If $\max \left\{d\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+2}\right)\right\}=\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+2}\right)$
$\operatorname{Thend}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right) \leq \mathrm{h}\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right)\right]$,

$$
\begin{aligned}
& \leq \mathrm{hk}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right)\right], \\
& \leq \frac{\mathrm{hk}}{1-\mathrm{hk}}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right],
\end{aligned}
$$

Where $\alpha=\frac{\mathrm{hk}}{1-\mathrm{hk}}<1$
Continuing the process, we get $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right) \leq \alpha^{\mathrm{n}+1} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$.
Using lemma 2.6 we get $\left\{X_{n}\right\}$ is Cauchy sequence in complete dq-b-metric space. So there exists $u \in X$ such that $\lim _{n \rightarrow \infty} X_{n}=u$.
Now we show that u is a fixed point of T .
Consider

$$
\begin{aligned}
\mathrm{d}(\mathrm{u}, \mathrm{Tu}) & \leq \mathrm{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{Tu}\right), \\
& \leq \mathrm{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{kd}\left(\mathrm{Sx}_{\mathrm{n}}, \mathrm{Tu}\right), \\
& \leq \mathrm{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{k}\left[\mathrm{hmax}\left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{u}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Sx}, \mathrm{n}\right), \mathrm{d}(\mathrm{u}, \mathrm{Tu}), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tu}\right), \mathrm{d}\left(\mathrm{u}, \mathrm{~S} \mathrm{x}_{\mathrm{n}}\right)\right\}\right], \\
& \leq \mathrm{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{k}\left[\operatorname{hmax}\left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{u}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{d}(\mathrm{u}, \mathrm{Tu}), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tu}\right), \mathrm{d}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)\right\}\right],
\end{aligned}
$$

now different cases arise.
Case 1. If $\max \left\{d\left(x_{n}, u\right), d\left(x_{n}, x_{n+1}\right), d(u, T u), d\left(x_{n}, T u\right), d\left(u, x_{n+1}\right)\right\}=d\left(x_{n}, u\right)$ then

$$
\mathrm{d}(\mathrm{u}, \mathrm{Tu}) \leq \operatorname{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)+\operatorname{khd}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{u}\right)
$$

as $\mathrm{n} \rightarrow \infty, \mathrm{d}(\mathrm{u}, \mathrm{Tu})=0$.
Therefore, u is a fixed point of T.
Case 2. Ifmax $\left\{d\left(x_{n}, u\right), d\left(x_{n}, x_{n+1}\right), d(u, T u), d\left(x_{n}, T u\right), d\left(u, x_{n+1}\right)\right\}=d\left(x_{n}, x_{n+1}\right)$ then $d(u, T u) \leq \operatorname{kd}\left(u, x_{n+1}\right)+\operatorname{khd}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)$ as $\mathrm{n} \rightarrow \infty, \mathrm{d}(\mathrm{u}, \mathrm{Tu})=0$.
Therefore, u is a fixed point of T.
Case 3. Ifmax $\left\{d\left(x_{n}, u\right), d\left(x_{n}, x_{n+1}\right), d(u, T u), d\left(x_{n}, T u\right), d\left(u, x_{n+1}\right)\right\}=d\left(x_{n}, T u\right)$ then $\mathrm{d}(\mathrm{u}, \mathrm{Tu}) \leq \mathrm{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)+\operatorname{khd}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tu}\right)$
as $\mathrm{n} \rightarrow \infty,(1-\mathrm{kh}) \mathrm{d}(\mathrm{u}, \mathrm{Tu})=0$
implies $\mathrm{d}(\mathrm{u}, \mathrm{Tu})=0$ therefore is a fixed point of T .
Case 4. Ifmax $\left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{u}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{d}(\mathrm{u}, \mathrm{Tu}), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tu}\right), \mathrm{d}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)\right\}=\mathrm{d}(\mathrm{u}, \mathrm{Tu})$ then $\mathrm{d}(\mathrm{u}, \mathrm{Tu}), \leq \mathrm{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)+\operatorname{khd}(\mathrm{u}, \mathrm{Tu})$
$\mathrm{d}(\mathrm{u}, \mathrm{Tu}), \leq \frac{\mathrm{hk}}{1-\mathrm{hk}} \mathrm{d}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)$
as $\mathrm{n} \rightarrow \infty, \mathrm{d}(\mathrm{u}, \mathrm{Tu})=0$
Therefore, u is a fixed point of T.
Case 5.If $\max \left\{d\left(\mathrm{x}_{\mathrm{n}}, \mathrm{u}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{d}(\mathrm{u}, \mathrm{Tu}), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tu}\right), \mathrm{d}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)\right\}=\mathrm{d}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)$ then $\mathrm{d}(\mathrm{u}, \mathrm{Tu}) \leq \operatorname{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)+\operatorname{khd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)$,

$$
\leq \mathrm{k}(1+\mathrm{h}) \mathrm{d}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)
$$

as $d(u, T u)=0$ then u is a fixedpointof T.
Nowwe show that u is fixed point of S .
Consider

$$
\begin{aligned}
& \mathrm{d}(\mathrm{u}, \mathrm{Su}) \leq \mathrm{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+2}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+2}, \mathrm{Su}\right), \\
& \quad \leq \mathrm{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+2}\right)+\mathrm{kd}\left(\mathrm{Su}, \mathrm{Tx}_{\mathrm{n}+1}\right), \\
& \leq \mathrm{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+2}\right)+\mathrm{k}\left[h \operatorname{hax}\left\{\mathrm{~d}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{Tx}_{\mathrm{n}+1}\right), \mathrm{d}(\mathrm{u}, \mathrm{Su}), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{Su}\right), \mathrm{d}\left(\mathrm{u}, \mathrm{Tx}_{\mathrm{n}+1}\right)\right\}\right], \\
& \quad \leq \mathrm{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+2}\right)+\mathrm{k}\left[\mathrm{hmax}\left\{\mathrm{~d}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right), \mathrm{d}(\mathrm{u}, \mathrm{Su}), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{Su}\right), \mathrm{d}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+2}\right)\right\}\right]
\end{aligned}
$$

Now different cases arise
Case 1. Ifmax $\left.\left\{d\left(u, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right), d(u, S u), d\left(x_{n+1}, S u\right), d\left(u, x_{n+2}\right)\right\}\right]=d\left(u, x_{n+1}\right)$ then $\mathrm{d}(\mathrm{u}, \mathrm{Su}) \leq \mathrm{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+2}\right)+\operatorname{khd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+1}\right)$
as $n \rightarrow \infty, d(u, S u)=0$.therefore u is a fixed point of S.
Case 2.If max $\left.\left\{d\left(u, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right), d(u, S u), d\left(x_{n+1}, S u\right), d\left(u, x_{n+2}\right)\right\}\right]=d(u, S u)$ then $\mathrm{d}(\mathrm{u}, \mathrm{Su}) \leq \operatorname{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+2}\right)+\operatorname{khd}(\mathrm{u}, \mathrm{Su})$,
$\leq \frac{\mathrm{k}}{1-\mathrm{kh}} \mathrm{d}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+2}\right)$
as $n \rightarrow \infty, d(u, S u)=0$. then u is a fixed point of S.

Case 3If $\left.\max \left\{d\left(u, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right), d(u, S u), d\left(x_{n+1}, S u\right), d\left(u, x_{n+2}\right)\right\}\right]=d\left(x_{n+1}, x_{n+2}\right)$ then $\mathrm{d}(\mathrm{u}, \mathrm{Su}) \leq \mathrm{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+2}\right)+\operatorname{khd}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right)$, as $n \rightarrow \infty, d(u, S u)=0$. then u is a fixed point of S.

Case 4.If $\left.\max \left\{d\left(u, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right), d(u, S u), d\left(x_{n+1}, S u\right), d\left(u, x_{n+2}\right)\right\}\right]=d\left(u, x_{n+2}\right)$ then $\mathrm{d}(\mathrm{u}, \mathrm{Su}) \leq \mathrm{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+2}\right)+\operatorname{khd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+2}\right)$,
$\leq \mathrm{k}(1+\mathrm{h}) \mathrm{d}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+2}\right)$ as $\mathrm{n} \rightarrow \infty, \mathrm{d}(\mathrm{u}, \mathrm{Su})=0$. then u is a fixed point of S .

Case 5. If $\left.\max \left\{d\left(u, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right), d(u, S u), d\left(x_{n+1}, S u\right), d\left(u, x_{n+2}\right)\right\}\right]=d\left(x_{n+1}, S u\right)$ then $d(u, S u) \leq \operatorname{kd}\left(u, x_{n+2}\right)+\operatorname{khd}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{Su}\right)$,

$$
\begin{aligned}
& \leq \mathrm{kd}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+2}\right)+\mathrm{k}^{2} \mathrm{~h}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{u}\right),+\mathrm{d}(\mathrm{u}, \mathrm{Su})\right] \\
& \quad \leq \frac{\mathrm{k}}{1-\mathrm{kh}} \mathrm{~d}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}+2}\right)+\frac{\mathrm{k}^{2} \mathrm{~h}}{1-\mathrm{k}^{2} \mathrm{~h}} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{u}\right),
\end{aligned}
$$

as $n \rightarrow \infty, d(u, S u)=0$. then u is a fixed point of S.
So u a common fixed point of S and T.
Uniqueness
Now we show that u is unique fixed point of S and T. let u and v be two different fixed point of S and T.
i.e. $S u=u=T u$, and $S v=v=T v$

Consider $\mathrm{d}(\mathrm{u}, \mathrm{v})=\mathrm{d}(\mathrm{Su}, \mathrm{Tv})$.

$$
\begin{aligned}
& \leq \operatorname{hmax}\{\mathrm{d}(\mathrm{u}, \mathrm{v}), \mathrm{d}(\mathrm{u}, \mathrm{Su}), \mathrm{d}(\mathrm{v}, \mathrm{Tv}), \mathrm{d}(\mathrm{u}, \mathrm{Tv}), \mathrm{d}(\mathrm{v}, \mathrm{Su})\} \\
& \leq \operatorname{hmax}\{\mathrm{d}(\mathrm{u}, \mathrm{v}), \mathrm{d}(\mathrm{u}, \mathrm{u}), \mathrm{d}(\mathrm{v}, \mathrm{v}), \mathrm{d}(\mathrm{u}, \mathrm{v}), \mathrm{d}(\mathrm{v}, \mathrm{u})\} \\
& \leq \operatorname{hmax}\{\mathrm{d}(\mathrm{u}, \mathrm{v}), \mathrm{d}(\mathrm{v}, \mathrm{u})\} \\
& \leq \operatorname{hd}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

$(1-\mathrm{h}) \mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 0$
$\mathrm{d}(\mathrm{u}, \mathrm{v})=0$ implies $\mathrm{u}=\mathrm{v}$
Therefore, u is a unique common fixed point of S and T.

References

[1] Bakhtin, IA: The contraction principle in quasimetric spaces. In: Functional Analysis, vol. 30, pp. 26-37 (1989)
[2] Banach S.,Surles operations dans les ensembles abstraites et leurs applications, Fund. Math., 3 (1922), 133-187.
[3] Brouwer L.E.S., Uber Abbildungen Von Mannigfaltigkeiten, Math. Ann., 77 (1912), 97-115.
[4] Hitzler P. and Seda A.K., Dislocated Topologies, J. Electr. Engg., 51 (12/s), (2000), 3-7.
[5] Imoru C.O. and Olatinwo M.O., On The Stability Of Picard And Mann Iteration Processes, Carpathian J. Math., 19 (2) (2003), 155-160.
[6] Kannan R., Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968), 71-76.
[7] Mujeeb Ur Rahman,"New Fixed Point Theorems in Dislocated Quasi-b-Metric Space",Appl. Math. Inf. Sci. Lett. 5, No. 1, 7-11 (2017).
[8] M.U.Rahman and M.Sarwar,"Dislocated Quasi-b-metric and fixed point theorem",Electronic Journal of Mathematical Analysis and Applications, 4 (2016)
[9] Osilike M.O., Stability Results For Fixed Point Iteration Procedures, J. The Nigerian Math. Society, 14 (15) (1995), 17-29.
[10] Rhoades B.E., A fixed point theorem for generalized metric spaces, Internat. J. Math. and Math. Sci., 19 (3) (1996), 457460.
[11] Schauder J., Fixed point theorem in continuous mapping, Math. Ann., 174 (1930), 285-290.
[12] Wilson, WA: On quasi-metric spaces. Am. J. Math. 53(3), 675-684 (1931).
[13] Zamfirescu T., Fixed Point Theorems In Metric Spaces, Arch. Math., 23 (1972), 292-298.

