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I.INTRODUCTION 

W. J. Pervin [11] was define connectedness in a bitopological space. I.L. Reilly [12], J. Swart [15] and T. Birsan [1] 

studied connectedness in bitopological spaces .B. Dvalishi [3] studied connectedness in bitopological space. A. 

Kandil and others[5] studied connectedness in bitopological ordered spaces and in ideal bitopological spaces.  

Tri topological space is a generalization of bitopological space. The tri topological space was first initiated by 

Martin Kovar [8]. S. Palaniammal [10] studied tri topological space and he also introduced fuzzy tri topological 

space. N.F. Hameed and Moh. Yahya Abid [4] gives the definition of 123 open set in tri topological spaces. D.V. 

Mukundan [9] introduced quad topological space. We [16] [17] introduced tri connectedness in tri topological space 

and quad connectedness in quad topological space. 

In 1965, Zadeh L.A. [18] introduced the concept of fuzzy sets. In 1968 Change C.L. [2] introduced the concept of 

fuzzy topological spaces. K.S. Sethupathy Raja and S. Lakshmivarahan [14] introduced connectedness in fuzzy 

topological space. Kandil A. [6] [7] introduced fuzzy bitopological spaces. We [13] introduced fuzzy connectedness 

in fuzzy tri topological space. In this paper, we introduce fuzzy connectedness and fuzzyseparated setsin fuzzy quad 

topological space. 

II. PRELIMINARIES 

Definition 2.1[10]: Let X  be a nonempty set and 
1 2
,T T and

3
T  are three topologies on X .The set X together with 

three topologies is called a tri topological space and is denoted by 
1 2 3

( , , , )X T T T  

Definition 2.2[11]: A bitopological space is 
1 2

( , , )X T T said to be connected if and only if X cannot be expressed as 

the union of two non-empty disjoint sets A and B such that A is 1
T  open and B is 2

T open. When X can be so 

expressed, we write X A B and called this a separation of X . 

Definition 2.3[16]: Let 
1 2 3

( , , , )X T T T be a tri topological space, a subset A  of X  is said to be tri disconnected if 

and only if it is the union of two non-empty tri separated sets. That is, if and only if there exist two non-empty 

separated sets C  and D  such that ( )C tr i c l D   , ( )tr i c l C D   and A C D   , A  is said to be tri 

connected if and only if it is not tri disconnected. 

Definition 2.4[14]: A fuzzy topology X  is said to be disconnected if X A B  , where A a n d B  are non-

empty open fuzzy sets in X  such that A B   . A fuzzy topological X  is said to be connected if X cannot 

be represented as the union of two non-empty, disjoint open sets on X . 
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Definition 2.5[9]: Let X be a nonempty set
1

  ,
2


3

 and 
4

 are fuzzy  topologies on X .Then a  fuzzy subset 


 of 

space X is said to be fuzzy q-open if 
1 2

3 4
       and its complement is said to be fuzzy  q-closed and set X 

with four fuzzy  topologies called  fuzzy q-topological spaces 
1 2

3 4
( , , , , )X     . 

Definition 2.6[9]: Let 
1 2

3 4
( , , , , )X     be a fuzzy quad topological space and let X


  . The intersection of all 

fuzzy q-closed sets containing


  is called the fuzzy q-closure of 


 & denoted by ( )q c l


 . We will denote the 

fuzzy q-interior(resp. fuzzy q-closure) of any fuzzy subset,say of 


  by fuzzy in t( ) ( ( ) )q q c l
 

   ,where 

in t( )q


  is the union of all fuzzy q-open sets contained in


 , and ( )q c l


 is the intersection of all fuzzy q-

closed sets containing


 . 

 

III. Fq-CONNECTEDNESS IN Fq-TOPOLOGICAL SPACE 

Definition3.1: Let 
1 2

3 4
( , , , , )X     be a fuzzy quad topological space. 𝑋 is said to be Fq-connected if X cannot be 

written as the union of two disjoint non-emptyFq-open sets. 

Example 3.2:Let X= {1, 2, 3, 4} be a nonempty fuzzy set. Consider four fuzzy topologies 

1
{1} {1,2} 2 {1} {1,3} 3 { 4} 4 { 2}

{1 , 0 , , } , {1 , 0 , , } , {1 , 0 , } , {1 , 0 , }
X X X X X X X X

                    Fq-open sets are

{1} { 4} { 2} {1,2} {1,3}
{1 , 0 , , , , , }

X X
      , X cannot be written as the union of two non-empty disjoint Fq-open sets. Hence 

XisFq-connected.  

Theorem3.3:Fq-topological space X is called Fq-connected if and only if X cannot be written as the union of two 

non-empty disjointFq-closed sets. 

Proof: Suppose X isFq-connected. If
1 2

X
 

    where
1


   and 

2


  are two non-empty disjointFq-closed sets.

1 2

1
X 

   And
2 1

1
X 

   . Since 
1


  and 

2


  are Fq-closed sets and
2


 , 

1


 are Fq-open sets.

1 2

X
 

   Where
1


 and 

2


  are non-empty disjoint Fq-open sets.  

Claim: X is Fq-connected. 

If not, let
1 2

X
 

   where 
1


  and

2


 are two nonempty disjoint Fq-open sets.
2 1

1
X 

   And
1 2

1
X 

   ,

1


 and 
2


 are Fq-closed sets. 

1 2

X
 

   Where
1


 and 

2


 are non-empty disjoint Fq-closed sets. 

Hence X is Fq-connected. 

Theorem 3.4:An Fq-topological space X is Fq-connected if and only if there does not exist a non-emptyfuzzy set 

which is both Fq-open and Fq-closed. 

Proof: Suppose X is Fq-connected. If there exists a non-emptyfuzzy set 


  which is both Fq-open and Fq-

closed.Then 1
X 

  is a non-emptyfuzzy subset of 𝑋 which is both Fq-open and Fq-closed. Hence 

1
X

X
 

    where 


  and1
X 

  are non-empty disjointFq-open sets. Hence there does not exist a non-

emptyfuzzy set which is both Fq-open and Fq-closed. 

Conversely, if there does not exist a fuzzy non-empty set which is both Fq-open and Fq-closed. 

Claim: X is Fq-connected. If not, let 
1 2

1
X 

     where 
1


  and 

2


  are disjoint non-emptyFq-open sets. Since

2 1

1
X 

   ,
1

1
X 

 is Fq-open set. 

1


 isFq-closed set. 
1


 is a non-emptyfuzzy set which is both Fq-open and Fq-closed.Hence X is Fq-connected. 

Theorem 3.5:X is Fq-connected if and only if X cannot be written as the union of two non-emptyfuzzy sets 
1


  and 

2


  where 
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1. 
1 2

0
X

F q cl
 

      

2. 
2 1

0
X

F q cl
 

      

Proof:Suppose X is Fq-connected. 

If 
1 2

1
X 

    where 
1


  and 

2


  are non-empty fuzzy sets such that 

1 2

0
X

F q cl
 

     And
2 1

0
X

F q cl
 

     . 

Since
1 2 1 2

0
X

F q cl
   

        ,
1 2

0
X 

     

Hence
1


  and 

2


  are disjoint non-empty fuzzy sets. 

Let
1 2 1

{ } { } { }x x x
F q c l

  
          [Since

1 2

1
X 

     ] 

1 1

F q c l
 

   Always
1 1

F q c l
 

    

Hence
1 1

F q c l
 

    

Let
2 1 2

{ } { } { }x x x
F q c l

  
          , 

2 2 2 2

F q c l F q c l
   

         , since
2 2

F q c l
 

    

1


  And 
2


 are Fq-closed sets. 

Hence
1 2

1
X 

     where
1


  and 

2


  are disjoint non-emptyFq-closed sets. Hence X is Fq-connected. 

Hence X cannot be written as the union of two nonempty fuzzy sets A and B where
1 2

0
X

F q cl
 

     and

2 1

0
X

F q cl
 

      

Conversely, X cannot be written as the union of two nonempty sets
1


  and 

2


 where
1 2

0
X

F q cl
 

      and

2 1

0
X

F q cl
 

      

Claim: X is Fq-connected. If not,
1 2

1
X 

     where
1


  and 

2


 disjoint non-emptyFq-closed sets. 

1 1

F q c l
 

    And
2 2

F q c l
 

   . 

And
1 2

1
X 

     and
2 1

1
X 

   Hence 

1 1

(1 ) 0
X X 

      ,
1 2

0
X 

     

1 2

0
X

F q cl
 

      . Similarly
2 2

(1 ) 0
X X 

    
2 1

0
X 

     . 

Hence
1 2

1
X 

     where
1


  and 

2


 are non-empty fuzzy sets such that 

1 2

0
X

F q cl
 

     and
2 1

0
X

F q cl
 

     . Hence X is Fq-connected. 

 

IV.Fq-SEPARATED SETS IN Fq-TOPOLOGICAL SPACE 

 

Definition 4.1 Let
1 2

3 4
( , , , , )X     be a fuzzy quad topological space. Two non-empty fuzzy subsets 

1


  and 

2


 of X are called Fq-separated if
1 2

0
X

F q cl
 

     and
2 1

0
X

F q cl
 

     . 

Theorem 4.2:If 
1


  and 

2


 are Fq-separated then
1


  and 

2


 are disjoint. 

Proof:
1 2 1 2

0
X

F q cl
   

        Since
1


  and 

2


 are Fq-separated. 

2 1

0
X 

     . 
1


  And 

2


 are disjoint sets. 

Result 4.3:Converse is not true. 

Example4.4:Let 𝑋 =   𝑎, 𝑏, 𝑐  be a non-empty fuzzy set, consider four topologies 

1
{a} 2 {a} {a,b} 3 {a} {a,c} 4 {a,b}

{1 , 0 , } , {1 , 0 , , } , {1 , 0 , , } , {1 , 0 , }
X X X X X X X X

                     
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Fq-open sets are
{a} {a, b } {a,c}

{1 , 0 , , , }
X X

     

Fq-closed sets are
{b ,c} {c} {b }

{1 , 0 , , , }
X X

     

Let
1

{ a , b }
  and

2
{ c }

  ,
1


  and 

2


 are disjoint sets.
1

{a,b}
1

X
F q cl F q cl


       

2 1
{ } {a,b} { } { }

1 [ 0 ]
c c X c X

F q cl F q cl
 

                

Since
2 1

0
X

F q cl
 

     ,
1


  and 

2


 are not Fq- separated. 

Definition4.5:Let
1 2

3 4
( , , , , )X     be anFq-topological space. Let 1

X
   . 

  is called Fq-dense if 1
X

F q cl


   . 

Example 4.6:Let 𝑋 =   𝑎, 𝑏, 𝑐  be a non-empty fuzzy set, consider four topologies 

1
{a} 2 {a} {a,b} 3 {a} {a,c} 4 {a,b}

{1 , 0 , } , {1 , 0 , , } , {1 , 0 , , } , {1 , 0 , }
X X X X X X X X

                     

Fq-open sets are 
{a} {a,b } { a,c}

{1 , 0 , , , }
X X

     

Fq-closed sets are 
{b ,c} {c} {b }

{1 , 0 , , , }
X X

     

Let
{ , } { , }

, F q cl 1
a b a b X

F q cl
 

         . Hence


  is Fq-dense. 

  

V. Fq-HYPER CONNECTED Fq-TOPOLOGICAL SPACE 

 

Definition 5.1:AnFq-topological space 
1 2

3 4
( , , , , )X      is said to be Fq-hyper connected if every non-empty Fq-

open set is Fq-dense in X. 

Example 5.2:Let 𝑋 =   𝑎, 𝑏, 𝑐  be a non-empty fuzzy set, consider four topologies 

1
{a} 2 {a} {a,b} 3 {a} {a,c} 4 {a,b}

{1 , 0 , } , {1 , 0 , , } , {1 , 0 , , } , {1 , 0 , }
X X X X X X X X

                     

Fq-open sets are 
{a} {a,b } {a,c}

{1 , 0 , , , }
X X

     

Fq-closed sets are 
{b ,c} {c} {b }

{1 , 0 , , , }
X X

     

{ }
1

a X
F q cl     

{ , }
1

a b X
F q cl     

{ ,c}
1

a X
F q cl     

Every non-empty Fq-open set is Fq-dense in X.  

Hence X is Fq-hyper connected Fq-topological space. 

Theorem 5.3:A Fq-topological space X is Fq-hyper connected if and only ifany two non-empty Fq-opensets 

intersect. 

Proof:Let X be Fq-hyper connected. 

Let 
1


  and 

2


 are two non-empty Fq-open sets. 

Claim:
1 2

0
X 

     

Suppose not then,Hence
1 2

1
X 

    

1 2

(1 )
X

F q cl F q cl
 

     

Since X is Fq-hyper connected,
1

1
X

F q cl


   . 

Hence
2

1 (1 )
X X

F q cl


    

Now
2

1
X 

 is Fq-closed
2 2

F q cl(1 ) 1
X X 

        

2 2

1 (1 ) 1 (1 )
X X X X 

        Which implies
2

0
X

    
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Since
2

0
X

  
1 2

0
X 

    . 

Hence any two non-emptyFq-open sets intersect. 

Conversely if any two non-empty Fq-open sets intersect. 

Claim: X is Fq-hyper connected. 

Let
1


 be a non-empty Fq-open set. 

Claim:
1

1
X

F q cl


    

If not,
1

1
X

F q cl


    

Then,
1

1 ( ) 0
X

F q cl


     

Let
2 1

1 ( )F q c l
 

     

1 1

F q c l
 

    

Hence
1 2

0
X 

     

But
1


  and 

2


  are non-emptyFq-open sets. 

Hence
1

1
X

F q cl


    

Hence 
1


  is Fq-dense in X. 

Theorem 5.4:X is Fq-hyper connected if and only if any Fq-closed set not equal to X has empty Fq-interior. 

Proof:X is Fq-hyper connected. 

Let 
2


  be a q-closed set where

2

1
X

    

Claim:
2

in t 0
X

F q


    

If not, Let
1 2 1

in t 0 , 0
X X

F q
  

        

Now 
1


  is a non-empty Fq-open set because

2

in tF q


 is Fq-open and X is Fq-hyper connected. Hence

1

1
X

F q cl


   now 
2


  is anFq-closed set containing 

1


  

1 2

F q c l
 

     

2

1
X 

    

Hence
2

1
X 

 . Since
2

1
X 

 Hence
2

in t 0
X

F q


    

Hence any Fq-closed set not equal to X has empty Fq-interior. 

Conversely, 

Now every Fq-closed set not equal to X has empty Fq-interior. 

Claim: X is Fq-hyper connected. 

Let 
1


  be a non-emptyq-open set. 

Claim:
1

1
X

F q cl


    

If not,
1

F q c l


  is anFq-closed set not equal to X. 

Hence
1

F q in t( ) 0
X

F q cl


     

Now
1 1

( )F q c l
 

   

1 1

F q in t F q in t(F q c l )
 

     

Since 
1


  is Fq-open,

1 1

in tF q
 

    
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Hence
1 1

X
F q in t F q in t(F q cl ) 0

 
       

Hence
1

0
X

   

Since 
1


  is non-empty. 

Hence
1

1
X

F q cl


    

Hence X is Fq-hyper connected. 

Theorem 5.5:If 𝑋 is Fq-hyper connected, then 𝑋 is Fq-connected. 

Proof:Since 𝑋 is Fq-hyper connected, any two nonemptyFq-open sets intersect .If X is not Fq-connected. Then

1 2

1
X 

    where
1


 and

2


 are two non-empty disjoint Fq-open sets. 

1


 And
2


 are nonempty disjoint Fq-open sets contradicts the fact that X is Fq-hyperconnected. Hence X is Fq-

connected. 

VI. CONCLUSION 

In this paper the idea of fuzzy connectedness and fuzzy separated sets in fuzzy quad topological space were 

introduced and studied. 
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