Fuzzy Connectedness in Fuzzy Quad Topological Space

Ranu Sharma^{1, a}, Bhagyashri A. Deole^{2,b} and Smita Verma^{3,c} ^{1, 3}Department of Applied Mathematics and Computational Science, SGSITS, Indore (M.P.), India,

Abstract- *The purpose of this paper is to study fuzzy connected space and fuzzy separation in fuzzy quad topological space (Fq-topological space) and study some of their properties.*

Keywords- *Quad topological spaces, q-connected space and q-separation, Fq- topological spaces, Fq-connected space and Fq-separation.*

Mathematics subject classification:54A40

I.INTRODUCTION

W. J. Pervin [11] was define connectedness in a bitopological space. I.L. Reilly [12], J. Swart [15] and T. Birsan [1] studied connectedness in bitopological spaces .B. Dvalishi [3] studied connectedness in bitopological space. A. Kandil and others[5] studied connectedness in bitopological ordered spaces and in ideal bitopological spaces.

Tri topological space is a generalization of bitopological space. The tri topological space was first initiated by Martin Kovar [8]. S. Palaniammal [10] studied tri topological space and he also introduced fuzzy tri topological space. N.F. Hameed and Moh. Yahya Abid [4] gives the definition of 123 open set in tri topological spaces. D.V. Mukundan [9] introduced quad topological space. We [16] [17] introduced tri connectedness in tri topological space and quad connectedness in quad topological space.

In 1965, Zadeh L.A. [18] introduced the concept of fuzzy sets. In 1968 Change C.L. [2] introduced the concept of fuzzy topological spaces. K.S. Sethupathy Raja and S. Lakshmivarahan [14] introduced connectedness in fuzzy topological space. Kandil A. [6] [7] introduced fuzzy bitopological spaces. We [13] introduced fuzzy connectedness in fuzzy tri topological space. In this paper, we introduce fuzzy connectedness and fuzzyseparated sets fuzzy quad topological space.

II. PRELIMINARIES

Definition 2.1[10]: Let X be a nonempty set and T_1, T_2 and T_3 are three topologies on X. The set X together with three topologies is called a tri topological space and is denoted by (X, T_1, T_2, T_3)

Definition 2.2[11]: A bitopological space is (X, T_1, T_2) said to be connected if and only if X cannot be expressed as the union of two non-empty disjoint sets A and B such that A is T_1 open and B is T_2 open. When X can be so expressed, we write X = A/B and called this a separation of X.

Definition 2.3[16]: Let (X, T_1, T_2, T_3) be a tri topological space, a subset A of X is said to be tri disconnected if and only if it is the union of two non-empty tri separated sets. That is, if and only if there exist two non-empty separated sets C and D such that $C \cap tricl(D) = \phi$, $tricl(C) \cap D = \phi$ and $A = C \cup D$, A is said to be tri connected if and only if it is not tri disconnected.

Definition 2.4[14]: A fuzzy topology X is said to be disconnected if $X = A \cup B$, where A and B are nonempty open fuzzy sets in X such that $A \cap B = \phi$. A fuzzy topological X is said to be connected if X cannot be represented as the union of two non-empty, disjoint open sets on X. **Definition 2.5[9]:** Let X be a nonempty set τ_1, τ_2, τ_3 and τ_4 are fuzzy topologies on X. Then a fuzzy subset χ_{λ} of space X is said to be fuzzy q-open if $\chi_{\lambda} \prec \tau_1 \cup \tau_2 \cup \tau_3 \cup \tau_4$ and its complement is said to be fuzzy q-closed and set X with four fuzzy topologies called fuzzy q-topological spaces $(X, \tau_1, \tau_3, \tau_4)$.

Definition 2.6[9]: Let $(\chi, \tau_1, \tau_2, \tau_3, \tau_4)$ be a fuzzy quad topological space and let $\chi_{\lambda} \prec \chi$. The intersection of all fuzzy q-closed sets containing χ_{λ} is called the fuzzy q-closure of χ_{λ} & denoted by $q - cl(\chi_{\lambda})$. We will denote the fuzzy q-interior(resp. fuzzy q-closure) of any fuzzy subset, say of χ_{λ} by fuzzy $q - int(\chi_{\lambda})(q - cl(\chi_{\lambda}))$, where $q - int(\chi_{\lambda})$ is the union of all fuzzy q-open sets contained in χ_{λ} , and $q - cl(\chi_{\lambda})$ is the intersection of all fuzzy q-closed sets containing χ_{λ} .

III. Fq-CONNECTEDNESS IN Fq-TOPOLOGICAL SPACE

Definition3.1: Let $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ be a fuzzy quad topological space. X is said to be Fq-connected if X cannot be written as the union of two disjoint non-emptyFq-open sets.

Example 3.2:Let X= {1, 2, 3, 4} be a nonempty fuzzy set. Consider four fuzzy topologies

 $\tau_{1} = \{\tilde{1}_{x}, \tilde{0}_{x}, \chi_{\{1\}}, \chi_{\{1,2\}}\}, \tau_{2} = \{\tilde{1}_{x}, \tilde{0}_{x}, \chi_{\{1\}}, \chi_{\{1,3\}}\}, \tau_{3} = \{\tilde{1}_{x}, \tilde{0}_{x}, \chi_{\{4\}}\}, \tau_{4} = \{\tilde{1}_{x}, \tilde{0}_{x}, \chi_{\{2\}}\}$ Fq-open sets are $\{\tilde{1}_{x}, \tilde{0}_{x}, \chi_{\{1\}}, \chi_{\{4\}}, \chi_{\{2\}}, \chi_{\{1,2\}}, \chi_{\{1,3\}}\}$, X cannot be written as the union of two non-empty disjoint Fq-open sets. Hence XisFq-connected.

Theorem3.3: Fq-topological space X is called Fq-connected if and only if X cannot be written as the union of two non-empty disjoint Fq-closed sets.

Proof: Suppose X is Fq-connected. If $X = \chi_{\lambda_1} \vee \chi_{\lambda_2}$ where χ_{λ_1} and χ_{λ_2} are two non-empty disjoint Fq-closed sets.

 $\chi_{\lambda_1} = \tilde{1}_{\chi} - \chi_{\lambda_2} \text{ And } \chi_{\lambda_2} = \tilde{1}_{\chi} - \chi_{\lambda_1}.$ Since χ_{λ_1} and χ_{λ_2} are Fq-closed sets and χ_{λ_2} , χ_{λ_1} are Fq-open sets. $X = \chi_{\lambda_1} \vee \chi_{\lambda_1}$ Where χ_{λ_1} and χ_{λ_2} are non-empty disjoint Fq-open sets.

Claim: X is Fq-connected.

If not, let $X = \chi_{\lambda_1} \vee \chi_{\lambda_2}$ where χ_{λ_1} and χ_{λ_2} are two nonempty disjoint Fq-open sets. $\chi_{\lambda_2} = \tilde{1}_x - \chi_{\lambda_1}$ And $\chi_{\lambda_1} = \tilde{1}_x - \chi_{\lambda_2}$, χ_{λ_1} and χ_{λ_2} are Fq-closed sets.

X = $\chi_{\lambda_1} \lor \chi_{\lambda_2}$ Where χ_{λ_1} and χ_{λ_2} are non-empty disjoint Fq-closed sets.

Hence X is Fq-connected.

Theorem 3.4: An Fq-topological space X is Fq-connected if and only if there does not exist a non-emptyfuzzy set which is both Fq-open and Fq-closed.

Proof: Suppose X is Fq-connected. If there exists a non-emptyfuzzy set χ_{δ} which is both Fq-open and Fq-closed. Then $\tilde{1}_x - \chi_{\delta}$ is a non-emptyfuzzy subset of X which is both Fq-open and Fq-closed. Hence $\chi_{\delta} \vee \tilde{1}_x - \chi_{\delta} = x$ where χ_{δ} and $\tilde{1}_x - \chi_{\delta}$ are non-empty disjoint Fq-open sets. Hence there does not exist a non-emptyfuzzy set which is both Fq-open and Fq-closed.

Conversely, if there does not exist a fuzzy non-empty set which is both Fq-open and Fq-closed.

Claim: X is Fq-connected. If not, let $\chi_{\delta_1} \vee \chi_{\delta_2} = \tilde{1}_x$ where χ_{δ_1} and χ_{δ_2} are disjoint non-emptyFq-open sets. Since $\chi_{\delta_2} = \tilde{1}_x - \chi_{\delta_1}$, $\tilde{1}_x - \chi_{\delta_1}$ is Fq-open set.

 χ_{δ_1} is Fq-closed set. χ_{δ_1} is a non-emptyfuzzy set which is both Fq-open and Fq-closed. Hence X is Fq-connected.

Theorem 3.5: X is Fq-connected if and only if X cannot be written as the union of two non-emptyfuzzy sets χ_{δ_1} and χ_{δ_2} where

ISSN: 2231 – 5373

- 1. $\chi_{\delta_1} \wedge Fq cl\chi_{\delta_2} = \tilde{0}_X$
- 2. $\chi_{\delta_x} \wedge Fq cl\chi_{\delta_y} = \tilde{0}_x$

Proof: Suppose X is Fq-connected.

If $\chi_{\delta_1} \vee \chi_{\delta_2} = \tilde{1}_{\chi}$ where χ_{δ_1} and χ_{δ_2} are non-empty fuzzy sets such that

 $\chi_{\delta_{1}} \wedge Fq - cl\chi_{\delta_{2}} = \tilde{0}_{\chi} \operatorname{And}_{\chi_{\delta_{1}}} \wedge Fq - cl\chi_{\delta_{2}} = \tilde{0}_{\chi}.$

Since $\chi_{\delta_1} \wedge \chi_{\delta_2} \prec \chi_{\delta_1} \wedge Fq - cl\chi_{\delta_2} = \tilde{0}_x, \chi_{\delta_1} \wedge \chi_{\delta_2} = \tilde{0}_x$

Hence $\chi_{\delta_{1}}$ and $\chi_{\delta_{2}}$ are disjoint non-empty fuzzy sets.

Let $\chi_{\{x\}} \leq Fq - cl\chi_{\delta_1} \Rightarrow \chi_{\{x\}} \succ \chi_{\delta_2} \Rightarrow \chi_{\{x\}} \leq \chi_{\delta_1}$ [Since $\chi_{\delta_1} \lor \chi_{\delta_2} = \tilde{1}_x$] $Fq - cl\chi_{\delta_1} \leq \chi_{\delta_1}$ Always $\chi_{\delta_1} \leq Fq - cl\chi_{\delta_1}$ Hence $\chi_{\delta_1} = Fq - cl\chi_{\delta_1}$ Let $\chi_{\{x\}} \leq Fq - cl\chi_{\delta_2} \Rightarrow \chi_{\{x\}} \succ \chi_{\delta_1} \Rightarrow \chi_{\{x\}} \leq \chi_{\delta_2}$, $Fq - cl\chi_{\delta_2} \leq \chi_{\delta_2} \Rightarrow Fq - cl\chi_{\delta_2} = \chi_{\delta_2}$, since $\chi_{\delta_2} \leq Fq - cl\chi_{\delta_2}$ χ_{δ_1} And χ_{δ_2} are Fq-closed sets.

Hence $\chi_{\delta_x} \vee \chi_{\delta_y} = \tilde{1}_x$ where χ_{δ_y} and χ_{δ_y} are disjoint non-emptyFq-closed sets. Hence X is Fq-connected.

Hence X cannot be written as the union of two nonempty fuzzy sets A and B where $\chi_{\delta_1} \wedge Fq - cl\chi_{\delta_2} = \tilde{0}_x$ and $\chi_{\delta_2} \wedge Fq - cl\chi_{\delta_1} = \tilde{0}_x$

Conversely, X cannot be written as the union of two nonempty sets χ_{δ_1} and χ_{δ_2} where $\chi_{\delta_1} \wedge Fq - cl\chi_{\delta_2} = \tilde{0}_x$ and $\chi_{\delta_1} \wedge Fq - cl\chi_{\delta_1} = \tilde{0}_x$

Claim: X is Fq-connected. If not, $\chi_{\delta_1} \vee \chi_{\delta_2} = \tilde{1}_x$ where χ_{δ_1} and χ_{δ_2} disjoint non-emptyFq-closed sets. $\Rightarrow \chi_{\delta_1} = Fq - cl\chi_{\delta_1} \operatorname{And} \chi_{\delta_2} = Fq - cl\chi_{\delta_2}.$ And $\Rightarrow \chi_{\delta_1} = \tilde{1}_x - \chi_{\delta_2}$ and $\chi_{\delta_2} = \tilde{1}_x - \chi_{\delta_1}$ Hence $\Rightarrow \chi_{\delta_1} \wedge (\tilde{1}_x - \chi_{\delta_1}) = \tilde{0}_x, \chi_{\delta_1} \wedge \chi_{\delta_2} = \tilde{0}_x$ $\Rightarrow \chi_{\delta_1} \wedge Fq - cl\chi_{\delta_2} = \tilde{0}_x.$ Similarly $\chi_{\delta_2} \wedge (\tilde{1}_x - \chi_{\delta_2}) = \tilde{0}_x \Rightarrow \chi_{\delta_2} \wedge \chi_{\delta_1} = \tilde{0}_x.$ Hence $\chi_{\delta_1} \vee \chi_{\delta_2} = \tilde{1}_x$ where χ_{δ_1} and χ_{δ_2} are non-empty fuzzy sets such that $\chi_{\delta_1} \wedge Fq - cl\chi_{\delta_2} = \tilde{0}_x$ and $\chi_{\delta_2} \wedge Fq - cl\chi_{\delta_1} = \tilde{0}_x.$ Hence X is Fq-connected.

IV.Fq-SEPARATED SETS IN Fq-TOPOLOGICAL SPACE

Definition 4.1 Let $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ be a fuzzy quad topological space. Two non-empty fuzzy subsets χ_{δ_1} and χ_{δ_2} of X are called Fq-separated if $\chi_{\delta_1} \wedge Fq - cl\chi_{\delta_2} = \tilde{0}_x$ and $\chi_{\delta_2} \wedge Fq - cl\chi_{\delta_1} = \tilde{0}_x$. **Theorem 4.2:** If χ_{δ_1} and χ_{δ_2} are Fq-separated then χ_{δ_1} and χ_{δ_2} are disjoint. **Proof:** $\chi_{\delta_1} \wedge \chi_{\delta_2} \prec \chi_{\delta_1} \wedge Fq - cl\chi_{\delta_2} = \tilde{0}_x$ Since χ_{δ_1} and χ_{δ_2} are Fq-separated. $\Rightarrow \chi_{\delta_2} \wedge \chi_{\delta_1} = \tilde{0}_x$. χ_{δ_1} And χ_{δ_2} are disjoint sets.

Result 4.3:Converse is not true.

*Example***4.4**:Let $X = \{a, b, c\}$ be a non-empty fuzzy set, consider four topologies

 $\tau_{_1} = \{\tilde{1}_x, \tilde{0}_x, \chi_{_{\{a\}}}\}, \tau_2 = \{\tilde{1}_x, \tilde{0}_x, \chi_{_{\{a\}}}, \chi_{_{\{a,b\}}}\}, \tau_3 = \{\tilde{1}_x, \tilde{0}_x, \chi_{_{\{a\}}}, \chi_{_{\{a,c\}}}\}, \tau_4 = \{\tilde{1}_x, \tilde{0}_x, \chi_{_{\{a,b\}}}\}$

Fq-open sets are $\{\tilde{1}_{x}, \tilde{0}_{x}, \chi_{\{a\}}, \chi_{\{a,b\}}, \chi_{\{a,c\}}\}$ Fq-closed sets are $\{\tilde{1}_{x}, \tilde{0}_{x}, \chi_{\{b,c\}}, \chi_{\{c\}}, \chi_{\{c\}}, \chi_{\{b\}}\}$ Let $\chi_{\delta_{1}} = \chi_{\{a,b\}}$ and $\chi_{\delta_{2}} = \chi_{\{c\}}, \chi_{\delta_{1}}$ and $\chi_{\delta_{2}}$ are disjoint sets. $Fq - cl\chi_{\delta_{1}} = Fq - cl\chi_{\{a,b\}} = \tilde{1}_{x}$ $\chi_{\delta_{2}} \wedge Fq - cl\chi_{\delta_{1}} = \chi_{\{c\}} \wedge Fq - cl\chi_{\{a,b\}} = \chi_{\{c\}} \wedge \tilde{1}_{x} = \chi_{\{c\}} [\neq \tilde{0}_{x}]$ Since $\chi_{\delta_{2}} \wedge Fq - cl\chi_{\delta_{1}} \neq \tilde{0}_{x}, \chi_{\delta_{1}}$ and $\chi_{\delta_{2}}$ are not Fq- separated.

Definition 4.5: Let $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ be an Fq-topological space. Let $\chi_{\delta} \leq \tilde{1}_X \cdot \chi_{\delta}$ is called Fq-dense if $Fq - cl\chi_{\delta} = \tilde{1}_X$. **Example 4.6:** Let $X = \{a, b, c\}$ be a non-empty fuzzy set, consider four topologies $\tau_1 = \{\tilde{1}_X, \tilde{0}_X, \chi_{\{a\}}\}, \tau_2 = \{\tilde{1}_X, \tilde{0}_X, \chi_{\{a\}}, \chi_{\{a,b\}}\}, \tau_3 = \{\tilde{1}_X, \tilde{0}_X, \chi_{\{a\}}, \chi_{\{a,c\}}\}, \tau_4 = \{\tilde{1}_X, \tilde{0}_X, \chi_{\{a,b\}}\}$

Fq-open sets are $\{\tilde{1}_x, \tilde{0}_x, \chi_{\{a\}}, \chi_{\{a,b\}}, \chi_{\{a,c\}}\}$

Fq-closed sets are $\{\tilde{1}_x, \tilde{0}_x, \chi_{(b,c)}, \chi_{(c)}, \chi_{(b)}\}$

Let $\chi_{\delta} = \chi_{(q,b)}$, $Fq - cl \chi_{\delta} = Fq - cl \chi_{(q,b)} = \tilde{l}_{\chi}$. Hence χ_{δ} is Fq-dense.

V. Fq-HYPER CONNECTED Fq-TOPOLOGICAL SPACE

Definition 5.1: AnFq-topological space $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ is said to be Fq-hyper connected if every non-empty Fqopen set is Fq-dense in X.

*Example 5.2:*Let $X = \{a, b, c\}$ be a non-empty fuzzy set, consider four topologies

$$\tau_{_{1}} = \{\tilde{1}_{_{X}}, \tilde{0}_{_{X}}, \chi_{_{\{a\}}}\}, \tau_{_{2}} = \{\tilde{1}_{_{X}}, \tilde{0}_{_{X}}, \chi_{_{\{a\}}}, \chi_{_{\{a,b\}}}\}, \tau_{_{3}} = \{\tilde{1}_{_{X}}, \tilde{0}_{_{X}}, \chi_{_{\{a\}}}, \chi_{_{\{a,c\}}}\}, \tau_{_{4}} = \{\tilde{1}_{_{X}}, \tilde{0}_{_{X}}, \chi_{_{\{a,b\}}}\}$$

Fq-open sets are $\{\tilde{1}_{x}, \tilde{0}_{x}, \chi_{\{a\}}, \chi_{\{a,b\}}, \chi_{\{a,c\}}\}$

Fq-closed sets are $\{\tilde{1}_x, \tilde{0}_x, \chi_{\{b,c\}}, \chi_{\{c\}}, \chi_{\{b\}}\}$

$$Fq - cl\chi_{\{a\}} = \tilde{1}_{\chi}$$

$$Fq - cl\chi_{_{\{a,b\}}} = \tilde{1}_x$$

 $Fq - cl\chi_{\{a,c\}} = \tilde{1}_{\chi}$

Every non-empty Fq-open set is Fq-dense in X.

Hence X is Fq-hyper connected Fq-topological space.

Theorem 5.3: A Fq-topological space X is Fq-hyper connected if and only ifany two non-empty Fq-opensets intersect.

Proof:Let X be Fq-hyper connected.

Let $\chi_{\delta_{+}}$ and $\chi_{\delta_{-}}$ are two non-empty Fq-open sets.

Claim: $\chi_{\delta_1} \wedge \chi_{\delta_2} \neq \tilde{0}_x$

Suppose not then, Hence $\chi_{\delta_{1}} \leq \tilde{1}_{\chi} - \chi_{\delta_{2}}$

$$Fq - cl\chi_{\delta_{1}} \prec Fq - cl(\tilde{1}_{\chi} - \chi_{\delta_{2}})$$

Since X is Fq-hyper connected, $Fq - cl\chi_{\delta} = \tilde{1}_{\chi}$.

Hence $\tilde{1}_x \prec Fq - cl(\tilde{1}_x - \chi_{\delta_x})$

Now $\tilde{1}_x - \chi_{\delta_2}$ is Fq-closed \Rightarrow Fq-cl($\tilde{1}_x - \chi_{\delta_2}$) = $\tilde{1}_x - \chi_{\delta_2}$ $\tilde{1}_x \prec (\tilde{1}_x - \chi_{\delta_1}) \Rightarrow \tilde{1}_x = (\tilde{1}_x - \chi_{\delta_1})$ Which implies $\chi_{\delta_1} = \tilde{0}_x$ Since $\chi_{\delta_2} \neq \tilde{0}_{\chi_1} \chi_{\delta_1} \wedge \chi_{\delta_2} \neq \tilde{0}_{\chi}$. Hence any two non-emptyFq-open sets intersect. Conversely if any two non-empty Fq-open sets intersect. *Claim:* X is Fq-hyper connected.

Let χ_{δ} be a non-empty Fq-open set.

Claim: $Fq - cl\chi_{\delta_{1}} = \tilde{1}_{\chi}$ If not, $Fq - cl\chi_{\delta_{1}} \neq \tilde{1}_{\chi}$ Then, $1 - (Fq - cl\chi_{\delta_{1}}) \neq \tilde{0}_{\chi}$ Let $\chi_{\delta_{2}} = 1 - (Fq - cl\chi_{\delta_{1}})$ $\chi_{\delta_{1}} = Fq - cl\chi_{\delta_{1}}$ Hence $\chi_{\delta_{1}} \wedge \chi_{\delta_{2}} = \tilde{0}_{\chi}$

But χ_{δ} and χ_{δ} are non-emptyFq-open sets.

Hence $Fq - cl\chi_{\delta_1} = \tilde{1}_{\chi}$

Hence χ_{δ_1} is Fq-dense in X.

Theorem 5.4:X is Fq-hyper connected if and only if any Fq-closed set not equal to X has empty Fq-interior. *Proof*:X is Fq-hyper connected.

Let $\chi_{\delta_{\gamma}}$ be a q-closed set where $\chi_{\delta_{\gamma}} \neq \tilde{1}_{\chi}$

Claim: $Fq - int \chi_{\delta_{\alpha}} = \tilde{0}_{\chi}$

If not, Let $\chi_{\delta_1} = Fq - \operatorname{int} \chi_{\delta_2} = \tilde{0}_X, \chi_{\delta_1} \neq \tilde{0}_X$

Now χ_{δ_1} is a non-empty Fq-open set because $Fq - int \chi_{\delta_2}$ is Fq-open and X is Fq-hyper connected. Hence

 $Fq - cl\chi_{\delta_{1}} = \tilde{1}_{\chi}$ now $\chi_{\delta_{2}}$ is an Fq-closed set containing $\chi_{\delta_{1}}$

 $\Rightarrow Fq - cl\chi_{\delta_1} \prec \chi_{\delta_2}$

 $\Rightarrow \tilde{1}_{X} \prec \chi_{\delta_{2}}$

Hence $\tilde{1}_x = \chi_{\delta_2}$. Since $\tilde{1}_x \neq \chi_{\delta_2}$ Hence $Fq - \operatorname{int} \chi_{\delta_2} = \tilde{0}_x$

Hence any Fq-closed set not equal to X has empty Fq-interior. Conversely,

Now every Fq-closed set not equal to X has empty Fq-interior. *Claim:* X is Fq-hyper connected.

Let $\chi_{\delta_{\perp}}$ be a non-emptyq-open set.

Claim: $Fq - cl\chi_{\delta_1} = \tilde{1}_x$ If not, $Fq - cl\chi_{\delta_1}$ is an Fq-closed set not equal to X. Hence $Fq - int(Fq - cl\chi_{\delta_1}) = \tilde{0}_x$ Now $\chi_{\delta_1} \prec (Fq - cl\chi_{\delta_1})$ Fq- int $\chi_{\delta_1} \prec Fq - int(Fq - cl\chi_{\delta_1})$ Since χ_{δ_1} is Fq-open, $Fq - int\chi_{\delta_2} = \chi_{\delta_1}$ Hence $\operatorname{Fq-int} \chi_{\delta_1} \prec \operatorname{Fq-int}(\operatorname{Fq-cl} \chi_{\delta_1}) = \tilde{0}_{X}$

Hence $\chi_{\delta_1} \prec \tilde{0}_x$

Since χ_{δ} is non-empty.

Hence $Fq - cl\chi_{\delta_x} = \tilde{1}_x$

Hence X is Fq-hyper connected.

*Theorem 5.5:*If *X* is Fq-hyper connected, then *X* is Fq-connected.

Proof: Since X is Fq-hyper connected, any two nonemptyFq-open sets intersect .If X is not Fq-connected. Then

 $\chi_{\delta_1} \vee \chi_{\delta_2} = \tilde{1}_{\chi}$ where χ_{δ_1} and χ_{δ_2} are two non-empty disjoint Fq-open sets.

 χ_{δ_1} And χ_{δ_2} are nonempty disjoint Fq-open sets contradicts the fact that X is Fq-hyperconnected. Hence X is Fq-connected.

VI. CONCLUSION

In this paper the idea of fuzzy connectedness and fuzzy separated sets in fuzzy quad topological space were introduced and studied.

REFERENCE

[1] Birsan T., Surlesspaces bitopological connexes, an sti. Univ. Al. cuza Iasi sect. I. t. XIV fase 2, 293-96(1968).

[2] Change C.L., Fuzzy topological spaces, J. Math. Anal. Appl. 24,182-190(1968).

[3] Dvalishi B., Connectedness of a fine topology and localization in bitopological spaces, gergian. Math. J., 11(4), pp 713 - 732(2004).

[4] Hameed N.F. & Mohammed Yahya Abid., Certain types of separation axioms in tri topological spaces. Iraqi journal of science. Vol 52, (2), 212-217 (2011).

[5] Kandil A., Tantwauy O., El. Sheikh S.A. & Hosny M., Connectedness in Ideal bitopological ordered space, Gen. Math. Notes, Vol 24, No.2, pp 37-52. ICSRS Publication(2014).

[6] Kandil A., Nouh A.A. and El-sheikh S.A., On fuzzy bitopological spaces, Fuzzy sets and system , vol.74, issue 3,pp:353-363

[7] Kelly J.C., Bitopological spaces, Proc.LondonMath.Soc. 3 (1963).

[8] Kovar M., On 3-Topological version of Thet- Reularity, Internat. J. Matj, Sci., 23(6), 393-398(2000).

[9] Mukundan D.V., Introduction to quad topological spaces, Int. Journal of Scientific and Eng. Research, 4(7) 2483-2485(2013).

[10] Palaniammal S., Study of Quad topological spaces, Ph. D. Thesis(2011).

[11] Pervin. W.J., Connectedness in bitopological spaces, Indag Math., 29, 369-372(1967).

[12] Reilly I.L., On pairwise connected bitopological spaces, Kyungpook Math. J., 11(1) 25-28(1971).

[13] Sharma R., Deole Bhagyashri A., Verma S., Fuzzy Connectedness in Fuzzy Tri topological Space under communication in International journal of Mathematical Sciences (2018).

[14] Sethupathy Raja K.S. and Lakshmivarahan, Connectedness in fuzzy topological space, Kybernetika, 13(3), (1977).

[15] Swart J., Total disconnectedness in bitopological spaces and product bitopological spaces, Indag.Math.33, 135-145(1971).
[16] Tapi U.D., Sharma R. and Deole Bhagyashri A., Tri Connectedness in Tritopological Space is under communication in Indian Journal of Applied Research(2014).

[17] Tapi U.D., Sharma R. and Deole Bhagyashri A., Quad Connectedness in Quad topological Space,International Journalof Mathematical sciences and Eng. Applications, Vol 8, No. 5, 197-203 (2018).

[18] Zadeh L.A., Fuzzy sets, information and control (1965), 8,338-353.