Integration of Certain Products Associated with the Multivariable Gimel-Function
 Frédéric Ayant
 Teacher in High School , France

ABSTRACT

In this paper, we evaluate two infinite integrals in terms of the multivariable Gimel-function defined here. The scope of a further generalization of these results, with the aid of the Mellin inversion theorem, is also discussed.

KEYWORDS : Multivariable Gimel-function, multiple integral contours, Whittaker function, Mellin inversion theorem.
2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

Throughout this paper, let \mathbb{C}, \mathbb{R} and \mathbb{N} be set of complex numbers, real numbers and positive integers respectively. Also $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

We define a generalized transcendental function of several complex variables noted \beth.

$$
\begin{aligned}
& {\left[\left(a_{2 j} ; \alpha_{2 j}^{(1)}, \alpha_{2 j}^{(2)} ; A_{2 j}\right)\right]_{1, n_{2}},\left[\tau_{i_{2}}\left(a_{2 j i_{2}} ; \alpha_{2 j i_{2}}^{(1)}, \alpha_{2 j i_{2}}^{(2)} ; A_{2 j i_{2}}\right)\right]_{n_{2}+1, p_{i_{2}}} ;\left[\left(a_{3 j} ; \alpha_{3 j}^{(1)}, \alpha_{3 j}^{(2)}, \alpha_{3 j}^{(3)} ; A_{3 j}\right)\right]_{1, n_{3}},} \\
& {\left[\tau_{i_{2}}\left(b_{2 j i_{2}} ; \beta_{2 j i_{2}}^{(1)}, \beta_{2 j i_{2}}^{(2)} ; B_{2 j i_{2}}\right)\right]_{1, q_{2}} ;}
\end{aligned}
$$

$$
\begin{align*}
& {\left[\tau_{i_{r}}\left(a_{r j i_{r}} ; \alpha_{r j i_{r}}^{(1)}, \cdots, \alpha_{r j i_{r}}^{(r)} ; A_{r j i_{r}}\right)_{\left.n_{r}+1, p_{r}\right]}\right]:\left[\left(c_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{1, n^{(1)}}\right],\left[\tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)}, \gamma_{j i^{(1)}}^{(1)} ; C_{j i^{(1)}}^{(1)}\right)_{n^{(1)}+1, p_{i}^{(1)}}\right]} \\
& \left.\left[\tau_{i_{r}}\left(b_{r j i_{i}} ; \beta_{r j i_{r}}^{(1)}, \cdots, \beta_{r j i_{r}}^{(r)} ; B_{r j i_{r}}\right)_{1, q_{r}}\right]: \quad\left[\left(\mathrm{d}_{j}^{(1)}\right), \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{\left.1, m^{(1)}\right]}\right],\left[\tau_{i i^{(1)}}\left(d_{j i^{(1)}}^{(1)}, \delta_{j i^{(1)}}^{(1)} ; D_{j i^{(1)}}^{(1)}\right)_{m(1)+1, q_{i}^{(1)}}^{(1)}\right] \\
& ; \cdots ;\left[\left(c_{j}^{(r)}, \gamma_{j}^{(r)} ; C_{j}^{(r)}\right)_{\left.1, m^{(r)}\right)}\right],\left[\tau_{i^{(r)}}\left(c_{j i^{(r)}}^{(r)}, \gamma_{j i^{(r)}}^{(r)} ; C_{j i(r)}^{(r)}\right)_{\left.m^{(r)}+1, p_{i}^{(r)}\right]}\right] \\
& ; \cdots ;\left[\left(d_{j}^{(r)}, \delta_{j}^{(r)} ; D_{j}^{(r)}\right)_{1, n^{(r)}}\right],\left[\tau_{i^{(r)}}\left(d_{j i^{(r)}}^{(r)}, \delta_{j i(r)}^{(r)} ; D_{j i^{(r)}}^{(r)}\right)_{\left.n^{(r)}+1, q_{i}^{(r)}\right]}\right] \\
& =\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.5}
\end{align*}
$$

with $\omega=\sqrt{-1}$
$\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{n_{2}} \Gamma^{A_{2 j}}\left(1-a_{2 j}+\sum_{k=1}^{2} \alpha_{2 j}^{(k)} s_{k}\right)}{\sum_{i_{2}=1}^{R_{2}}\left[\tau_{i_{2}} \prod_{j=n_{2}+1}^{p_{i}} \Gamma^{A_{2 j i_{2}}}\left(a_{2 j i_{2}}-\sum_{k=1}^{2} \alpha_{2 j i_{2}}^{(k} s_{k}\right) \prod_{j=1}^{q_{2}} \Gamma^{B_{2 j i_{2}}}\left(1-b_{2 j i 2}+\sum_{k=1}^{2} \beta_{2 j i_{2}}^{(k)} s_{k}\right)\right]}$

$$
\frac{\prod_{j=1}^{n_{3}} \Gamma^{A_{3 j}}\left(1-a_{3 j}+\sum_{k=1}^{3} \alpha_{3 j}^{(k)} s_{k}\right)}{\sum_{i_{3}=1}^{R_{3}}\left[\tau_{i_{3}} \prod_{j=n_{3}+1}^{p_{i}} \Gamma^{A_{3 j} i_{3}}\left(a_{3 j i_{3}}-\sum_{k=1}^{3} \alpha_{3 j i_{3}}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i} i_{3}} \Gamma^{B_{3 i_{i 3}}}\left(1-b_{3 j i 3}+\sum_{k=1}^{3} \beta_{3 j i_{3}}^{(k)} s_{k}\right)\right]}
$$

$$
\begin{equation*}
\frac{\prod_{j=1}^{n_{r}} \Gamma^{A_{r j}}\left(1-a_{r j}+\sum_{k=1}^{r} \alpha_{r j}^{(k)} s_{k}\right)}{\sum_{i_{r}=1}^{R_{r}}\left[\tau_{i_{r}} \prod_{j=n_{r}+1}^{p_{i_{r}}} \Gamma^{A_{r j i i_{r}}}\left(a_{r j i_{i}}-\sum_{k=1}^{r} \alpha_{r j i_{r}}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i r}} \Gamma^{B_{r j i_{r}}}\left(1-b_{r j i r}+\sum_{k=1}^{r} \beta_{r j i r}^{(k)} s_{k}\right)\right]} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{m^{(k)}} \Gamma^{D_{j}^{(k)}}\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{n^{(k)}} \Gamma^{C_{j}^{(k)}}\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)=1}}^{R^{(k)}}\left[\tau_{i^{(k)}} \prod_{j=m^{(k)+1}}^{q_{i}(k)} \Gamma^{D_{j i}^{(k)}}\left(1-d_{j i(k)}^{(k)}+\delta_{j i}^{(k)} s_{k}\right) \prod_{j=n^{(k)}+1}^{p_{i(k)}} \Gamma_{j i(k)}^{C_{j i}^{(k)}}\left(c_{j i(k)}^{(k)}-\gamma_{j i(k)}^{(k)} s_{k}\right)\right]} \tag{1.7}
\end{equation*}
$$

1) $\left[\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right]_{1, n_{1}}\right.$ stands for $\left(c_{1}^{(1)} ; \gamma_{1}^{(1)}\right), \cdots,\left(c_{n_{1}}^{(1)} ; \gamma_{n_{1}}^{(1)}\right)$.
2) $n_{2}, \cdots, n_{r}, m^{(1)}, n^{(1)}, \cdots, m^{(r)}, n^{(r)}, p_{i_{2}}, q_{i_{2}}, R_{2}, \tau_{i_{2}}, \cdots, p_{i_{r}}, q_{i_{r}}, R_{r}, \tau_{i_{r}}, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i^{(r)}}, R^{(r)} \in \mathbb{N}$ and verify : $0 \leqslant m_{2}, \cdots, 0 \leqslant m_{r}, 0 \leqslant n_{2} \leqslant p_{i_{2}}, \cdots, 0 \leqslant n_{r} \leqslant p_{i_{r}}, 0 \leqslant m^{(1)} \leqslant q_{i^{(1)}}, \cdots, 0 \leqslant m^{(r)} \leqslant q_{i^{(r)}}$ $0 \leqslant n^{(1)} \leqslant p_{i^{(1)}}, \cdots, 0 \leqslant n^{(r)} \leqslant p_{i^{(r)}}$.
3) $\tau_{i_{2}}\left(i_{2}=1, \cdots, R_{2}\right) \in \mathbb{R}^{+} ; \tau_{i_{r}} \in \mathbb{R}^{+}\left(i_{r}=1, \cdots, R_{r}\right) ; \tau_{i(k)} \in \mathbb{R}^{+}\left(i=1, \cdots, R^{(k)}\right),(k=1, \cdots, r)$.
4) $\gamma_{j}^{(k)}, C_{j}^{(k)} \in \mathbb{R}^{+} ;\left(j=1, \cdots, n^{(k)}\right) ;(k=1, \cdots, r) ; \delta_{j}^{(k)}, D_{j}^{(k)} \in \mathbb{R}^{+} ;\left(j=1, \cdots, m^{(k)}\right) ;(k=1, \cdots, r)$.
$\mathrm{C}_{j i^{(k)}}^{(k)} \in \mathbb{R}^{+},\left(j=m^{(k)}+1, \cdots, p^{(k)}\right) ;(k=1, \cdots, r) ;$
$\mathrm{D}_{j i(k)}^{(k)} \in \mathbb{R}^{+},\left(j=n^{(k)}+1, \cdots, q^{(k)}\right) ;(k=1, \cdots, r)$.
$\alpha_{k j}^{(l)}, A_{k j} \in \mathbb{R}^{+} ;\left(j=1, \cdots, n_{k}\right) ;(k=2, \cdots, r) ;(l=1, \cdots, k)$.
$\alpha_{k j i_{k}}^{(l)}, A_{k j i_{k}} \in \mathbb{R}^{+} ;\left(j=n_{k}+1, \cdots, p_{i_{k}}\right) ;(k=2, \cdots, r) ;(l=1, \cdots, k)$.
$\beta_{k j i_{k}}^{(l)}, B_{k j i_{k}} \in \mathbb{R}^{+} ;\left(j=m_{k}+1, \cdots, q_{i_{k}}\right) ;(k=2, \cdots, r) ;(l=1, \cdots, k)$.
$\delta_{j i(k)}^{(k)} \in \mathbb{R}^{+} ;\left(i=1, \cdots, R^{(k)}\right) ;\left(j=m^{(k)}+1, \cdots, q_{i(k)}\right) ;(k=1, \cdots, r)$.
$\gamma_{j i(k)}^{(k)} \in \mathbb{R}^{+} ;\left(i=1, \cdots, R^{(k)}\right) ;\left(j=n^{(k)}+1, \cdots, p_{i^{(k)}}\right) ;(k=1, \cdots, r)$.
5) $c_{j}^{(k)} \in \mathbb{C} ;\left(j=1, \cdots, n^{(k)}\right) ;(k=1, \cdots, r) ; d_{j}^{(k)} \in \mathbb{C} ;\left(j=1, \cdots, m^{(k)}\right) ;(k=1, \cdots, r)$.
$a_{k j i_{k}} \in \mathbb{C} ;\left(j=n_{k}+1, \cdots, p_{i_{k}}\right) ;(k=2, \cdots, r)$.
$b_{k j i_{k}} \in \mathbb{C} ;\left(j=1, \cdots, q_{i_{k}}\right) ;(k=2, \cdots, r)$.
$d_{j i^{(k)}}^{(k)} \in \mathbb{C} ;\left(i=1, \cdots, R^{(k)}\right) ;\left(j=m^{(k)}+1, \cdots, q_{i(k)}\right) ;(k=1, \cdots, r)$.
$\gamma_{j i(k)}^{(k)} \in \mathbb{C} ;\left(i=1, \cdots, R^{(k)}\right) ;\left(j=n^{(k)}+1, \cdots, p_{i(k)}\right) ;(k=1, \cdots, r)$.
The contour L_{k} is in the $s_{k}(k=1, \cdots, r)$ - plane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ if is a real number with loop, if necessary to ensure that the poles of $\Gamma^{A_{2} j}\left(1-a_{2 j}+\sum_{k=1}^{2} \alpha_{2 j}^{(k)} s_{k}\right)\left(j=1, \cdots, n_{2}\right), \Gamma^{A_{3} j}\left(1-a_{3 j}+\sum_{k=1}^{3} \alpha_{3 j}^{(k)} s_{k}\right)$ $\left(j=1, \cdots, n_{3}\right), \cdots, \Gamma^{A_{r j}}\left(1-a_{r j}+\sum_{i=1}^{r} \alpha_{r j}^{(i)}\right)\left(j=1, \cdots, n_{r}\right), \Gamma^{C_{j}^{(k)}}\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)\left(j=1, \cdots, n^{(k)}\right)(k=1, \cdots, r)$ to the right of the contour L_{k} and the poles of $\Gamma^{D_{j}^{(k)}}\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right)\left(j=1, \cdots, m^{(k)}\right)(k=1, \cdots, r)$ lie to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.1) can be obtained of the corresponding conditions for multivariable H -function given by as :
$\left|\arg \left(z_{k}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi$ where
$A_{i}^{(k)}=\sum_{j=1}^{m^{(k)}} D_{j}^{(k)} \delta_{j}^{(k)}+\sum_{j=1}^{n^{(k)}} C_{j}^{(k)} \gamma_{j}^{(k)}-\tau_{i(k)}\left(\sum_{j=m^{(k)}+1}^{q_{i}^{(k)}} D_{j i(k)}^{(k)} \delta_{j i(k)}^{(k)}+\sum_{j=n^{(k)}+1}^{p_{i}^{(k)}} C_{j i i^{(k)}}^{(k)} \gamma_{j i(k)}^{(k)}\right)+$
$-\tau_{i_{2}}\left(\sum_{j=n_{2}+1}^{p_{i_{2}}} A_{2 j i_{2}} \alpha_{2 j i_{2}}^{(k)}+\sum_{j=1}^{q_{i_{2}}} B_{2 j i_{2}} \beta_{2 j i_{2}}^{(k)}\right)-\cdots-\tau_{i_{r}}\left(\sum_{j=n_{r}+1}^{p_{i_{r}}} A_{r j i_{r}} \alpha_{r j i_{r}}^{(k)}+\sum_{j=1}^{q_{i_{r}}} B_{r j i_{r}} \beta_{r j i_{r}}^{(k)}\right)$

Following the lines of Braaksma ([2] p. 278), we may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}}, \cdots,\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}}, \cdots,\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$ where $i=1, \cdots, r:$
$\alpha_{i}=\min _{1 \leqslant j \leqslant m^{(i)}} \operatorname{Re}\left[D_{j}^{(i)}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)\right]$ and $\beta_{i}=\max _{1 \leqslant j \leqslant n^{(i)}} \operatorname{Re}\left[C_{j}^{(i)}\left(\frac{c_{j}^{(i)}-1}{\gamma_{j}^{(i)}}\right)\right]$

Remark 1.

If $n_{2}=\cdots=n_{r-1}=p_{i_{2}}=q_{i_{2}}=\cdots=p_{i_{r-1}}=q_{i_{r-1}}=0$ and $A_{2 j}=A_{2 j i_{2}}=B_{2 j i_{2}}=\cdots=A_{r j}=A_{r j i_{r}}=B_{r j i_{r}}=1$ $A_{r j}=A_{r j i_{r}}=B_{r j i_{r}}=1$, then the multivariable Gimel-function reduces in the multivariable Aleph- function defined by Ayant [1].

Remark 2.

If $n_{2}=\cdots=n_{r}=p_{i_{2}}=q_{i_{2}}=\cdots=p_{i_{r}}=q_{i_{r}}=0$ and $\tau_{i_{2}}=\cdots=\tau_{i_{r}}=\tau_{i^{(1)}}=\cdots=\tau_{i^{(r)}}=R_{2}=\cdots=R_{r}=R^{(1)}=$ $\cdots=R^{(r)}=1$, then the multivariable Gimel-function reduces in a multivariable I-function defined by Prathima et al. [8].

Remark 3.

If $A_{2 j}=A_{2 j i_{2}}=B_{2 j i_{2}}=\cdots=A_{r j}=A_{r j i_{r}}=B_{r j i_{r}}=1$ and $\tau_{i_{2}}=\cdots=\tau_{i_{r}}=\tau_{i^{(1)}}=\cdots=\tau_{i(r)}=R_{2}=\cdots=R_{r}=R^{(1)}$ $=\cdots=R^{(r)}=1$, then the generalized multivariable Gimel-function reduces in multivariable I-function defined by Prasad [7].

Remark 4.

If the three above conditions are satisfied at the same time, then the generalized multivariable Gimel-function reduces in the multivariable H -function defined by Srivastava and panda [9,10].

In your investigation, we shall use the following notations.
$\mathbb{A}=\left[\left(\mathrm{a}_{2 j} ; \alpha_{2 j}^{(1)}, \alpha_{2 j}^{(2)} ; A_{2 j}\right)\right]_{1, n_{2}},\left[\tau_{i_{2}}\left(a_{2 j i_{2}} ; \alpha_{2 j i_{2}}^{(1)}, \alpha_{2 j i_{2}}^{(2)} ; A_{2 j i_{2}}\right)\right]_{n_{2}+1, p_{i_{2}}},\left[\left(a_{3 j} ; \alpha_{3 j}^{(1)}, \alpha_{3 j}^{(2)}, \alpha_{3 j}^{(3)} ; A_{3 j}\right)\right]_{1, n_{3}}$, $\left[\tau_{i_{3}}\left(a_{3 j i_{3}} ; \alpha_{3 j i_{3}}^{(1)}, \alpha_{3 j i_{3}}^{(2)}, \alpha_{3 j i_{3}}^{(3)} ; A_{3 j i_{3}}\right)\right]_{n_{3}+1, p_{i_{3}}} ; \cdots ;\left[\left(\mathrm{a}_{(r-1) j} ; \alpha_{(r-1) j}^{(1)}, \cdots, \alpha_{(r-1) j}^{(r-1)} ; A_{(r-1) j}\right)_{1, n_{r-1}}\right]$,
$\left[\tau_{i_{r-1}}\left(a_{(r-1) j i_{r-1}} ; \alpha_{(r-1) j i_{r-1}}^{(1)}, \cdots, \alpha_{(r-1) j i_{r-1}}^{(r-1)} ; A_{(r-1) j i_{r-1}}\right)_{n_{r-1}+1, p_{i_{r-1}}}\right]$
$\mathbf{A}=\left[\left(\mathrm{a}_{r j} ; \alpha_{r j}^{(1)}, \cdots, \alpha_{r j}^{(r)} ; A_{r j}\right)_{1, n_{r}}\right],\left[\tau_{i_{r}}\left(a_{r j i_{r}} ; \alpha_{r j i_{r}}^{(1)}, \cdots, \alpha_{r j i_{r}}^{(r)} ; A_{r j i_{r}}\right)_{\mathfrak{n}+1, p_{i_{r}}}\right]$

$$
\begin{align*}
& A=\left[\left(c_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{1, n^{(1)}}\right],\left[\tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)}, \gamma_{j i(1)}^{(1)} ; C_{j i^{(1)}}^{(1)}\right)_{n^{(1)}+1, p_{i}^{(1)}}\right] ; \cdots ; \\
& {\left[\left(c_{j}^{(r)}, \gamma_{j}^{(r)} ; C_{j}^{(r)}\right)_{1, m^{(r)}}\right],\left[\tau_{i^{(r)}}\left(c_{j i^{(r)}}^{(r)}, \gamma_{j i^{(r)}}^{(r)} ; C_{j i^{(r)}}^{(r)}\right)_{m^{(r)}+1, p_{i}^{(r)}}\right]} \tag{1.11}\\
& \mathbb{B}=\left[\tau_{i_{2}}\left(b_{2 j i_{2}} ; \beta_{2 j i_{2}}^{(1)}, \beta_{2 j i_{2}}^{(2)} ; B_{2 j i_{2}}\right)\right]_{1, q_{i_{2}}},\left[\tau_{i_{3}}\left(b_{3 j i_{3}} ; \beta_{3 j i_{3}}^{(1)}, \beta_{3 j i_{3}}^{(2)}, \beta_{3 j i_{3}}^{(3)} ; B_{3 j i_{3}}\right)\right]_{1, q_{i_{3}}} ; \cdots ;
\end{align*}
$$

$\left[\tau_{i_{r-1}}\left(b_{(r-1) j i_{r-1}} ; \beta_{(r-1) j i_{r-1}}^{(1)}, \cdots, \beta_{(r-1) j i_{r-1}}^{(r-1)} ; B_{(r-1) j i_{r-1}}\right)_{1, q_{i_{r-1}}}\right]$
$\mathbf{B}=\left[\tau_{i_{r}}\left(b_{r j i_{r}} ; \beta_{r j i_{r}}^{(1)}, \cdots, \beta_{r j i_{r}}^{(r)} ; B_{r j i_{r}}\right)_{1, q_{i r}}\right]$
$\mathrm{B}=\left[\left(\mathrm{d}_{j}^{(1)}, \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{1, m^{(1)}}\right],\left[\tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)}, \delta_{j i^{(1)}}^{(1)} ; D_{j i^{(1)}}^{(1)}\right)_{m^{(1)}+1, q_{i}^{(1)}}\right] ; \cdots ;$
$\left[\left(\mathrm{d}_{j}^{(r)}, \delta_{j}^{(r)} ; D_{j}^{(r)}\right)_{1, m^{(r)}}\right],\left[\tau_{i(r)}\left(d_{j i(r)}^{(r)}, \delta_{j i(r)}^{(r)} ; D_{j i(r)}^{(r)}\right)_{m^{(r)}+1, q_{i}^{(r)}}\right]$
$U=0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{r-1} ; V=m^{(1)}, n^{(1)} ; m^{(2)}, n^{(2)} ; \cdots ; m^{(r)}, n^{(r)}$
$X=p_{i_{2}}, q_{i_{2}}, \tau_{i_{2}} ; R_{2} ; \cdots ; p_{i_{r-1}}, q_{i_{r-1}}, \tau_{i_{r-1}}: R_{r-1} ; Y=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)} ; \cdots ; p_{i^{(r)}}, q_{i^{(r)}} ; \tau_{i^{(r)}} ; R^{(r)}$

2. Required integral.

We evaluate the following integral with a modified from of the formula ([4], p. 410, (42)).

Lemma 1.

$\int_{0}^{\infty} x^{\rho-1} W_{k, \mu}(x) W_{\lambda, v}(x) \mathrm{d} x=\frac{\Gamma(-2 v)}{\Gamma\left(\frac{1}{2}-\lambda-v\right)} \sum_{t=0}^{\infty} \frac{\left(\frac{1}{2}-\lambda+v\right)_{t} \Gamma(1+\mu+v+\rho+t) \Gamma(1-\mu+v+\rho+t)}{t!(1+2 v)_{t} \Gamma\left(\frac{3}{2}-k+v+\rho+t\right)}$
$+\frac{\Gamma(2 v)}{\Gamma\left(\frac{1}{2}-\lambda+v\right)} \sum_{t=0}^{\infty} \frac{\left(\frac{1}{2}-\lambda-v\right)_{t} \Gamma(1+\mu+v+\rho+t) \Gamma(1-\mu-v+\rho+t)}{t!(1-2 v)_{t} \Gamma\left(\frac{3}{2}-k-v+\rho+t\right)}$
provided $|\operatorname{Re}(\mu)|+|\operatorname{Re}(v)|<\rho+1$.

3. Main results.

We shall use the symbol $\sum_{\sigma,-\sigma}$ in this document, this last indicates that to the following expression it as a similar expression, with σ replaced by $-\sigma$, is to be added.

Theorem 1.

$\int_{0}^{\infty} t^{\rho-1} W_{k, \mu}(t) W_{v, \sigma}(t) \beth\left(z_{1} t^{a_{1}}, \cdots, z_{r} t^{a_{r}}\right) \mathrm{d} t=\sum_{\sigma,-\sigma} \frac{\Gamma(-2 \sigma)}{\Gamma\left(\frac{1}{2}-v-\sigma\right)} \sum_{u=0}^{\infty} \frac{\left(\frac{1}{2}-v+\sigma\right)_{u}}{(1+2 \sigma)_{u}}$

$\mathcal{I}_{X ; p_{i_{r}}+2, q_{i_{r}}+1, \tau_{i_{r}}: R_{r}: Y}^{U ; 0, n_{r}+2: V}\left(\right.$| z_{1} | $\mathbb{A} ;\left(\pm \mu-\sigma-\rho-u ; a_{1}, \cdots, a_{r} ; 1\right), \mathbf{A}: A$ |
| :---: | :---: |
| \cdot | \cdot |
| \cdot | |
| z_{r} | |$)$

provided
$a_{i}>0(i=1, \cdots, r), \operatorname{Re}(\rho)+\sum_{i=1}^{r} a_{i} \min _{1 \leqslant j \leqslant m^{(i)}} \operatorname{Re}\left[D_{j}^{(i)}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)\right]>|\operatorname{Re}(\mu)|+|\operatorname{Re}(\sigma)|-1$
$\left|\arg \left(z_{i} t^{a_{i}}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi$ where $A_{i}^{(k)}$ is defined by (1.4).

Proof

Expressing the multivariable Gimel-function in the integrand in Mellin-Barnes multiple integrals contour with the help of (1.1), and interchanging the order of integrations (which is permissible under the conditions mentioned in (2.1)), we get
$\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}}\left[\int_{0}^{\infty} x^{\sigma+\sum_{i=1}^{r} a_{i} s_{i}-1} W_{k, \mu}(x) W_{v, \sigma}(x) \mathrm{d} x\right] \mathrm{d} s_{1} \cdots \mathrm{~d} s_{r}$
Evaluating the inner-integral with the help of lemma 1 and interchanging the order of integration and summations which is justified under the conditions mentioned above, we get
$\sum_{\sigma,-\sigma} \frac{\Gamma(-2 \sigma)}{\Gamma\left(\frac{1}{2}-v-\sigma\right)} \sum_{u=0}^{\infty} \frac{\left(\frac{1}{2}-v+\sigma\right)_{u}}{(1+2 \sigma)_{u}} \frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}}$
$\frac{\Gamma\left(\mp \mu+v+\rho+\sum_{i=1}^{r} a_{i} s_{i}+u\right)}{\Gamma\left(\frac{3}{2}-k+v+\rho+\sum_{i=1}^{r} a_{i} s_{i}+u\right)} \mathrm{d} s_{1} \cdots \mathrm{~d} s_{r}$
Interpreting the resulting expression with the help of (1.1), we obtain the desired result (3.1).

Theorem 2.

$\int_{0}^{\infty} t^{2 \rho-1} K_{2 \mu}(\alpha t) K_{2 v}(\beta t) \Xi\left(z_{1} t^{2 a_{1}}, \cdots, z_{r} t^{2 a_{r}}\right) \mathrm{d} t=\frac{\sqrt{\pi} \beta^{2 v}}{4 \alpha^{2(v+\rho)}} \sum_{u=0}^{\infty} \frac{\left(1-\left(\frac{\beta}{\alpha}\right)^{2}\right)^{u}}{2^{u} u!} \beth_{X ; p_{i_{r}}+4, q_{i_{r}}+2, \tau_{i_{r}}: R_{r}: Y}^{U ; 0, n_{r}+4: V}$
$\left(\begin{array}{c|c}\mathrm{z}_{1} \alpha^{-2 a_{1}} & \mathbb{A} ;\left(1-\rho \pm \mu+v ; a_{1}, \cdots, a_{r} ; 1\right),\left(1-\rho \pm \mu-v-u ; a_{1}, \cdots, a_{r} ; 1\right),, \mathbf{A}: A \\ \cdot & \cdot \\ \cdot & \mathbb{B} ; \mathbf{B},\left(1-\rho-\frac{u}{2} ; a_{1}, \cdots, a_{r} ; 1\right),\left(\frac{1-u}{2}-\rho ; a_{1}, \cdots, a_{r} ; 1\right): B\end{array}\right)$
provided
$\operatorname{Re}(\alpha+\beta), a_{i}>0(i=1, \cdots, r), \operatorname{Re}(\rho)+\sum_{i=1}^{r} a_{i} \min _{1 \leqslant j \leqslant m^{(i)}} \operatorname{Re}\left[D_{j}^{(i)}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)\right]>|\operatorname{Re}(\mu)|+|\operatorname{Re}(\sigma)|$.
$\left|\arg \left(z_{i} t^{2 a_{i}}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi$ where $A_{i}^{(k)}$ is defined by (1.4).

To prove the theorem 2, we use the similar manner with the help of formula ([3], Vol. I, p. 334, Eq. (47)).

4. Special cases.

In this section, we shall see several particular cases. Taking $k=v=0$ in (3.1) and using the formula ([4], Vol. II, p. 432),
$W_{0, \mu}(2 z)=\left(\frac{2 z}{\pi}\right)^{\frac{1}{2}} K_{\mu}(z)$
we obtain the following integral

Corollary 1.

$\int_{0}^{\infty} t^{2 \rho-1} K_{2 \mu}(\alpha t) K_{2 v}(\alpha t) \beth\left(z_{1} t^{a_{1}}, \cdots, z_{r} t^{a_{r}}\right) \mathrm{d} t=\frac{\pi}{(2 \alpha)^{2 \rho}} \sum_{v,-v} \frac{\Gamma(-4 v)}{\Gamma\left(\frac{1}{2}-2 v\right)} \sum_{u=0}^{\infty} \frac{\left(\frac{1}{2}+2 v\right)_{u}}{(1+4 v)_{u}}$
$\mathcal{I}_{X ; p_{i}+2, q_{i r}+1, \tau_{i_{r}}: R_{r}: Y}^{U ; 0, n_{r}+2: V}\left(\begin{array}{c|c}\frac{z_{1}}{(2 \alpha)^{a_{1}}} & \mathbb{A} ;\left(1 \pm 2 \mu-2 v-2 \rho-u ; a_{1}, \cdots, a_{r} ; 1\right), \mathbf{A}: A \\ \cdot & \cdot \\ \frac{z_{r}}{(2 \alpha)^{a_{r}}} & \mathbb{B} ; \mathbf{B},\left(\frac{1}{2}-2 v-2 \rho-u ; a_{1}, \cdots, a_{r} ; 1\right): B\end{array}\right)$
provided
$\operatorname{Re}(\alpha), a_{i}>0(i=1, \cdots, r), \operatorname{Re}(\rho)+\frac{1}{2} \sum_{i=1}^{r} a_{i} \min _{1 \leqslant j \leqslant m^{(i)}} \operatorname{Re}\left[D_{j}^{(i)}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)\right]>|\operatorname{Re}(\mu)|+|\operatorname{Re}(\sigma)|$
$\left|\arg \left(z_{i} t^{a_{i}}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi$ where $A_{i}^{(k)}$ is defined by (1.4).
Taking $\alpha=\beta$, the infinite series on the right-hand side of equation (3.4) reduce to its first term given by $t=0$, and we have

Corollary 2.

$\int_{0}^{\infty} t^{2 \rho-1} K_{2 \mu}(\alpha t) K_{2 v}(\alpha t) \beth\left(z_{1} t^{2 a_{1}}, \cdots, z_{r} t^{2 a_{r}}\right) \mathrm{d} t=\frac{\sqrt{\pi}}{4 \alpha^{2 \rho}}$
$\mathcal{I}_{X ; p_{i_{r}}+4, q_{i_{r}}+2, \tau_{i_{r}}: R_{r}: Y}^{U ; 0, n_{r}+4: V}\left(\begin{array}{c|c}\frac{z_{1}}{\alpha^{2 a_{1}}} & \mathbb{A} ;\left(1-\rho \pm \mu+v ; a_{1}, \cdots, a_{r} ; 1\right),\left(1-\rho \pm \mu-v ; a_{1}, \cdots, a_{r} ; 1\right), \mathbf{A}: A \\ \cdot & \cdot \\ \frac{z_{r}}{\alpha^{2 a_{r}}} & \mathbb{B} ; \mathbf{B},\left(1-\rho ; a_{1}, \cdots, a_{r} ; 1\right),\left(\frac{1}{2}-\rho ; a_{1}, \cdots, a_{r} ; 1\right): B\end{array}\right)$
provided
$\operatorname{Re}(\alpha), a_{i}>0(i=1, \cdots, r), \operatorname{Re}(\rho)+\sum_{i=1}^{r} a_{i} \min _{1 \leqslant j \leqslant m^{(i)}} \operatorname{Re}\left[D_{j}^{(i)}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)\right]>|\operatorname{Re}(\mu)|+|\operatorname{Re}(\sigma)|$.
$\left|\arg \left(z_{i} t^{2 a_{i}}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi$ where $A_{i}^{(k)}$ is defined by (1.4).
The first member of equation (4.2) with taking $a_{i} \rightarrow 2 a_{i}$ is the same as that of the above equation ; thus, by equating their right-hand sides, we obtain the following relation :

Corollary 3.

$\mathcal{I}_{X ; p_{i_{r}}+4, q_{i_{r}}+2, \tau_{i_{r}}: R_{r}: Y}^{U ; 0, n_{r}+4:}\left(\begin{array}{c|c}\frac{z_{1}}{\alpha^{2 a_{1}}} & \mathbb{A} ;\left(1-\rho \pm \mu+v ; a_{1}, \cdots, a_{r} ; 1\right),\left(1-\rho \pm \mu-v ; a_{1}, \cdots, a_{r} ; 1\right), \mathbf{A}: A \\ \cdot & \cdot \\ \frac{z_{r}}{\alpha^{2 a_{r}}} & \mathbb{B} ; \mathbf{B},\left(1-\rho ; a_{1}, \cdots, a_{r} ; 1\right),\left(\frac{1}{2}-\rho ; a_{1}, \cdots, a_{r} ; 1\right): B\end{array}\right)$
$=\sqrt{2} \sum_{v,-v} \frac{\Gamma(-4 v)}{\Gamma\left(\frac{1}{2}-2 v\right)} \sum_{u=0}^{\infty} \frac{2^{2 v+u}\left(\frac{1}{2}+2 v\right)_{u}}{(1+4 v)_{u}}$
$\mathcal{I}_{X ; p i_{i_{r}}+4, q_{i_{r}}+2, \tau_{i_{r}}: R_{r}: Y}^{U ; 0, n_{r}+4: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathbb{A} ;\left(1-\rho \pm \mu-v-\frac{u}{2} ; a_{1}, \cdots, a_{r} ; 1\right),\left(\frac{1-u}{2}-\rho \pm \mu-v ; a_{1}, \cdots, a_{r} ; 1\right), \mathbf{A}: A \\ \cdot & \cdot \\ \cdot & \mathbb{B} ; \mathbf{B},\left(\frac{1-2 u}{4}-\mu-\rho ; a_{1}, \cdots, a_{r} ; 1\right),\left(\frac{3-2 u}{4}-v-\rho ; a_{1}, \cdots, a_{r} ; 1\right): B\end{array}\right)$
under the same existence conditions that theorem .
If we take $v=\sigma+\frac{1}{2}$ in theorem 1 and use the relation ([4], Vol. II, p. 432),

$$
\begin{equation*}
W_{\sigma+\frac{1}{2}, \sigma}(z)=z^{\sigma+\frac{1}{2}} e^{-\frac{z}{2}} \tag{4.5}
\end{equation*}
$$

we have the following integral

Corollary 4.

$\int_{0}^{\infty} t^{\rho-1} e^{-\frac{t}{2}} W_{k, \mu}(t) \beth\left(z_{1} t^{a_{1}}, \cdots, z_{r} t^{a_{r}}\right) \mathrm{d} t=$
$\mathcal{I}_{X ; p_{i_{r}}+2, q_{i_{r}}+1, \tau_{i_{r}}: R_{r}: Y}^{U ; 0, n_{r}+2: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathbb{A} ;\left(\frac{1}{2} \pm \mu-\rho ; a_{1}, \cdots, a_{r} ; 1\right), \mathbf{A}: A \\ \cdot & \cdot \\ \cdot & \cdot \\ \mathrm{z}_{r} & \mathbb{B} ; \mathbf{B},\left(k-\rho-t ; a_{1}, \cdots, a_{r} ; 1\right): B\end{array}\right)$
provided
$a_{i}>0(i=1, \cdots, r), \operatorname{Re}(\rho)+\sum_{i=1}^{r} a_{i} \min _{1 \leqslant j \leqslant m^{(i)}} \operatorname{Re}\left[D_{j}^{(i)}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)\right]>|\operatorname{Re}(\mu)|-\frac{1}{2}$
$\left|\arg \left(z_{i} t^{a_{i}}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi$ where $A_{i}^{(k)}$ is defined by (1.4).
In the above integral take $k=m+\frac{\alpha+1}{2}, \mu=\frac{\alpha}{2}$, and use the formula ([4], Vol. II, p. 432)
$W_{\mu+m+\frac{1}{2}, m}(z)=(-)^{m} m!z^{\mu+\frac{1}{2}} L_{m}^{(2 \mu)}(z), 0 \leqslant m$
where $L_{m}^{(\alpha)}(x)$ is the Laguerre polynomial of order α and degree m, we get

Corollary 5.

$\int_{0}^{\infty} t^{\rho+\frac{\alpha}{2}-1} e^{-t} L_{m}^{(\alpha)}(t) \beth\left(z_{1} t^{a_{1}}, \cdots, z_{r} t^{a_{r}}\right) \mathrm{d} t=\frac{(-)^{m}}{m!}$
$\mathcal{I}_{X ; p_{i}+2, q_{i_{r}}+1, \tau_{i_{r}}: R_{r}: Y}^{U ; 0, n_{r}+2: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathbb{A} ;\left(1-\rho \pm \frac{\alpha}{2} ; a_{1}, \cdots, a_{r} ; 1\right), \mathbf{A}: A \\ \cdot & \cdot \\ \cdot & \mathbb{B} ; \mathbf{B},\left(1-\rho+m+\frac{\alpha}{2} ; a_{1}, \cdots, a_{r} ; 1\right): B \\ \mathrm{z}_{r} & \mathbb{B} ; \mathbf{B},(1)\end{array}\right)$
provided
$a_{i}>0(i=1, \cdots, r), \operatorname{Re}\left(\rho+\frac{\alpha}{2}\right)+\sum_{i=1}^{r} a_{i} \min _{1 \leqslant j \leqslant m^{(i)}} R e\left[D_{j}^{(i)}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)\right]>0$
$\left|\arg \left(z_{i} t^{a_{i}}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi$ where $A_{i}^{(k)}$ is defined by (1.4).

5. Generalization.

If we let

$$
\begin{equation*}
A(t)=\frac{1}{2 \pi \omega} \int_{\sigma-i \infty}^{\sigma+i \infty} \frac{\prod_{j=1}^{q} \Gamma\left(v_{j}+m_{j} s\right)}{\prod_{j=1}^{n} \Gamma\left(w_{j}-n_{j} s\right) \prod_{j=1}^{p} \Gamma\left(u_{j}-l_{j} s\right)} t^{-s} \mathrm{~d} s \tag{5.1}
\end{equation*}
$$

where $\sigma>0$, the $l^{\prime} s, m^{\prime} s, n^{\prime} s$ are are positive numbers and verify the relation
$\sum_{j=1}^{p} l_{j}-\sum_{j=1}^{q} m_{j}-\sum_{j=1}^{m} n_{j} \leqslant 0$
The function defined above can be expressed in terms of the H-function of Fox ([5], p. 408), we have ([11], p. 265, Eq. (1.1)),
$A(t)=H_{p, q+m}^{q, 0}\left[\mathrm{t} \left\lvert\, \begin{array}{c}\left(\mathrm{u}_{j}, l_{j}\right)_{1, p} \\ \left(\mathrm{v}_{j}, m_{j}\right)_{1, q},\left(\dot{1}-w_{j}, n_{j}\right)_{1, m}\end{array}\right.\right]$
provided $|\arg (t)|<\frac{1}{2}\left(\sum_{j=1}^{q} m_{j}-\sum_{j=1}^{m} n_{j}-\sum_{j=1}^{p} l_{j}\right)>0$
Use the Mellin inversion theorem, (5.1) evidently yields

Lemma 2.

$\int_{0}^{\infty} t^{s-1} A(t) \mathrm{d} t=\frac{\prod_{j=1}^{q} \Gamma\left(v_{j}+m_{i} s\right)}{\prod_{j=1}^{m} \Gamma\left(w_{j}-n_{i} s\right) \prod_{j=1}^{p} \Gamma\left(u_{j}+l_{i} s\right)}$
provided that $\operatorname{Re}(s)>-\min _{1 \leqslant j \leqslant q} \operatorname{Re}\left(\frac{v_{j}}{m_{j}}\right)$, and the integral $\int_{0}^{\infty} t^{s-1}|A(t)| \mathrm{d} t$ is bounded for some $s>0$ where $\sigma>s$ We obtain the general integral

Theorem 3.

$\int_{0}^{\infty} t^{\rho-1} A(t) \beth\left(z_{1} t^{a_{1}}, \cdots, z_{r} t^{a_{r}}\right) \mathrm{d} t=\beth_{X ; p_{r_{r}}+q+m, q_{i}+p, \tau_{i_{r}}: R_{r}: Y}^{U: 0, n_{r}+q: V}$
$\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathbb{A} ;\left(1-v_{j}-\rho m_{j} ; m_{j} a_{1}, \cdots, m_{j} a_{r} ; 1\right)_{1, n}, \mathbf{A},\left(w_{j}-\rho n_{j} ; n_{j} a_{1}, \cdots, n_{j} a_{r} ; 1\right)_{1, m}: A \\ \cdot & \cdot \\ \cdot & \mathbb{B} ;\left(1-u_{j}-\rho l_{j} ; l_{j} a_{1}, \cdots, l_{j} a_{r} ; 1\right)_{1, p}, \mathbf{B}: B\end{array}\right)$
provided
$a_{i}>0(i=1, \cdots, r), \operatorname{Re}(\rho)+\sum_{i=1}^{r} a_{i} \min _{1 \leqslant j \leqslant m^{(i)}} \operatorname{Re}\left[D_{j}^{(i)}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)\right]>-\min _{1 \leqslant j \leqslant q} \operatorname{Re}\left(\frac{v_{j}}{m_{j}}\right)$
$\left|\arg \left(z_{i} t^{a_{i}}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi$ where $A_{i}^{(k)}$ is defined by (1.4) and $\sum_{j=1}^{q} m_{j}-\sum_{j=1}^{m} n_{j}-\sum_{j=1}^{p} l_{j}>0$.
Proof
Expressing the multivariable Gimel-function in the integrand in Mellin-Barnes multiple integrals contour with the help of (1.1), and interchanging the order of integrations (which is permissible under the conditions mentioned in (5.5)), we get

$$
\begin{equation*}
\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}}\left[\int_{0}^{\infty} t^{\rho+\sum_{i=1}^{r} a_{i} s_{i}-1} A(t) \mathrm{d} t\right] \mathrm{d} s_{1} \cdots \mathrm{~d} s_{r} \tag{5.6}
\end{equation*}
$$

Evaluating the inner-integral with the help of lemma 2, we get

$$
\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \frac{\prod_{j=1}^{q} \Gamma\left(v_{j}+m_{i}\left(\rho+\sum_{i=1}^{r} a_{i} s_{i}\right)\right)}{\prod_{j=1}^{m} \Gamma\left(w_{j}-n_{i}\left(\rho+\sum_{i=1}^{r} a_{i} s_{i}\right)\right) \prod_{j=1}^{p} \Gamma\left(u_{j}+l_{i}\left(\rho+\sum_{i=1}^{r} a_{i} s_{i}\right)\right)}
$$

$\mathrm{d} s_{1} \cdots \mathrm{~d} s_{r}$
Interpreting the resulting expression with the help of (1.1), we obtain the desired result (5.5).

Remark :

Panda [6] have obtainded the same integrals about the multivariable H-function defined by Srivastava and Panda [9,10].

4. Conclusion.

A large number of other integrals involving Whittaker functions, Bessel associated functions, Laguerre polynomials can also be obtained from on account of the most general nature of the multivariable Gimel-function. The last function can be suitably specialized to a remarkably wide variety of special functions (or product of several such special functions) which are expressible in terms of E, F, G, H, I, Aleph-functions of one or more variables.

REFERENCES.

[1] F. Ayant, An integral associated with the Aleph-functions of several variables. International Journal ofd Mathematics Trends and Technology (IJMTT), 31(3) (2016), 142-154.
[2] B.L.J. Braaksma, Asymptotics expansions and analytic continuations for a class of Barnes-integrals, Compositio Math. 15 (1962-1964), 239-341.
[3] A. Erdelyi, W. Magnus, F. Oberhettinger transforms and F.G. Tricomi, Tables of integrals, Vol I, McGraw-Hill, New York (1954).
[4] A. Erdelyi, W. Magnus, F. Oberhettinger transforms and F.G. Tricomi, Tables of integrals, Vol II, McGraw-Hill, New York (1954).
[5] C. Fox, The G and H functions as symmetrical Fourier Kernels, Trans. Amer. Math. Soc 98(1961), 395-429.
[6] R.Panda, Integration of certain products associated with the H -function of several variables, Comment. Math. Univ. St. Pauli, 26(2) (1977), 115-123.
[7] Y.N. Prasad, Multivariable I-function , Vijnana Parishad Anusandhan Patrika 29 (1986), 231-237.
[8] J. Prathima, V. Nambisan and S.K. Kurumujji, A Study of I-function of Several Complex Variables, International Journal of Engineering Mathematics Vol (2014), 1-12.
[9] H.M. Srivastava and R. Panda, Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24 (1975),119-137.
[10] H.M. Srivastava and R.Panda, Some expansion theorems and generating relations for the H-function of several complex variables II. Comment. Math. Univ. St. Paul. 25 (1976), 167-197.
[11] H.M. Srivastava and R.Panda, Some bilateral generating functions for a class of generalized hypergeometric polynomials, J. Reine Angew. Math 283/284 (1976), 265-274.

