Compatible Maps and Some Common Fixed Point Results in G-Metric Space

U.P. Dolhare ${ }^{1}$, V.V.Latpate ${ }^{2}$
${ }^{1}$ D. S. M. College, Jintur, Dist. Parbhani, Maharashtra, India 431509
${ }^{2}$ A.C.S.College, Gangakhed, Dist. Parbhani, Maharashtra, India 431514

Abstract

In this paper we study compatible maps in G-Metric space and proved common fixed point theorems for pair of Compatible maps which satisfies contractive condition involving maximum function.

Keywords: G-Metric Space,G-Cauchy sequence,G-convergent Sequence,Common fixed point. 2000 Mathematics Subject Classification: 47H10, 54 H 25

1 Introduction

In 1976, G.Jungck [1] proved a common fixed point theorem for commuting mappings,which generalizes the Banach Contraction principle.Sesa [2] introduced a concept of weakly commuting mappings and proved some fixed point theorems in complete metric space.Commuting maps are weakly commuting.Jungck's [1] common fixed point theorem has been generalized and modified by many authors [3, 4, 5, 6, 7.In 1986 G.Jungck [5] defined the concept of compatibility and proved some common fixed point results.

In 2006 Mustafa and Sims [9] introduced the concept of G-Metric space.In 2012 Manoj Kumar [8] defined the concept of compatible maps in G-Metric space and proved some
results of common fixed points of pair of compatible maps.Recently Latpate V.V. and Dolhare U.P. [10] proved one result of common fixed point theorem for pair of compatible mappings in G-Metric space.

2 Preliminaries

Definition 2.1. Let X be a non empty set and $G: X^{3} \rightarrow R^{+}$which satisfies the following conditions

1. $G(a, b, c)=0$ if $a=b=c$ i.e. every a, b, c in X coincides.
2. $G(a, a, b)>0$ for every $a, b, c \in X$ s.t. $a \neq b$
3. $G(a, a, b) \leq G(a, b, c), \forall a, b, c \in X$ s.t. $c \neq b$
4. $G(a, b, c)=G(b, a, c)=G(c, b, a)=$ \qquad (symmetrical in all three variables)
5. $G(a, b, c) \leq G(a, x, x)+G(x, b, c)$, for all a, b, c, x in X (rectangle inequality)

Then the function G is said to be generalized metric or simply G-metric on X and the pair (X, G) is said to be G-metric space.

Example 2.2. Let $G: X^{3} \rightarrow R^{+}$s.t. $G(a, b, c)=$ perimeter of the triangle with vertices at a,b,c in R^{2}, also by taking p in the interior of the triangle then rectangle inequality is satisfied and the function G is a G-metric on X.

Remark 2.3. G-metric space is the generalization of the ordinary metric space that is every G-metric space is (X, G) defines ordinary metric space $\left(X, d_{G}\right)$ by

$$
d_{G}(a, b)=G(a, b, b)+G(a, a, b)
$$

V. V. Latpate, U. P. Dolhare

Example 2.4. Let (X, d) be the usual metric space. Then the function $G: X^{3} \rightarrow R^{+}$ defined by

$$
G(a, b, c)=\max .\{d(a, b), d(b, c), d(c, a)\}
$$

for all a,b,c $\in X$ is a G-metric space.
Definition 2.5. A G-metric space (X, G) is said to be symmetric if $G(a, b, b)=G(a, a, b)$ for all $a, b \in X$ and if $G(a, b, b) \neq G(a, a, b)$ then G is said to be non symmetric G-metric space.

Example 2.6. Let $X=\{x, y\}$ and $G: X^{3} \rightarrow R^{+}$defined by $G(x, x, x)=G(y, y, y)=0$, $G(x, x, y)=1, G(x, y, y)=2$ and extend G to all of X^{3} by symmetry in the variables. Then X is a G-metric space but It is non symmetric. since $G(x, x, y) \neq G(x, y, y)$

Definition 2.7. Let (X, G) be a G-metric space, Let $\left\{a_{n}\right\}$ be a sequence of elements in X. The sequence $\left\{a_{n}\right\}$ is said to be G-convergent to a if

$$
\lim _{m, n \rightarrow \infty} G\left(a, a_{n}, a_{m}\right)=0
$$

i.e for every $\epsilon>0$ there is N s.t. $G\left(a, a_{n}, a_{m}\right)<\epsilon$ for all $m, n \geq N$ It is denoted as $a_{n} \rightarrow a$ or $\lim _{n \rightarrow \infty} a_{n}=a$

Proposition 2.8. If (X, G) be a G-metric space. Then the following are equivalent

1. $\left\{a_{n}\right\}$ is G-convergent to a.
2. $G\left(a_{n}, a_{n}, a\right) \rightarrow 0$ as $n \rightarrow \infty$
3. $G\left(a_{n}, a, a\right) \rightarrow 0$ as $n \rightarrow \infty$
4. $G\left(a_{m}, a_{n}, a\right) \rightarrow 0$ as $m, n \rightarrow \infty$

Definition 2.9. Let (X, G) be a G-metric space a sequence $\left\{a_{n}\right\}$ is called G-Cauchy if, for each $\epsilon>0$ there is an $N \epsilon I^{+}$(set of positive integers) s.t.

$$
G\left(a_{n}, a_{m}, a_{l}\right)<\epsilon \text { for all } n, m, l \geq N
$$

Proposition 2.10. Let (X, G) be a G-metric space then the function $G(a, b, c)$ is jointly continuous in all three of its variables.

Proposition 2.11. Let (X, G) be a G-metric space. Then, for any a, b, c, x in X it gives that

1. if $G(a, b, c)=0$ then $a=b=c$
2. $G(a, b, c) \leq G(a, a, b)+G(a, a, c)$
3. $G(a, b, b) \leq 2 G(b, a, a)$
4. $G(a, b, c) \leq G(a, x, c)+G(x, b, c)$
5. $G(a, b, c) \leq \frac{2}{3}(G(a, x, x)+G(b, x, x)+G(c, x, x))$

Definition 2.12. [5] Let S and T be two self maps on a metric space (X, d). The mappings S and T are said to be compatible if

$$
\lim _{n \rightarrow \infty} d\left(S T x_{n}, T S x_{n}\right)=0
$$

, whenever $\left\{x_{n}\right\}$ is a sequence in X such that
$\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=z$ for some $z \epsilon X$
Definition 2.13. [8] Let S and T be two self mappings on a G-metric space (X, G). Then mappings S and T are said to be compatible if $\lim _{n \rightarrow \infty} G\left(S T x_{n}, S T x_{n}, T S x_{n}\right)=0$, whenever $\left\{x_{n}\right\}$ is a sequence in X s.t. $\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=z$ for some $z \epsilon X$ for some z in X.

Example 2.14. Let $X=[-1,1]$ and $G: X^{3} \rightarrow R^{+}$be defined as follows

$$
G(a, b, c)=|a-b|+|b-c|+|c-a|
$$

for all a,b,c ϵX. Then (X, G) be a G-metric space.Let us define $f a=a$ and $g a=\frac{a}{4}$ Let $\left\{a_{n}\right\}$ be the sequence, s.t. $a_{n}=\frac{1}{n}$ and n is a natural number.It is easy to see that the mappings f and g are compatible as $\lim _{n \rightarrow \infty} G\left(f g a_{n}, g f a_{n}, g f a_{n}\right)=0$ here $a_{n}=\frac{1}{n}$ s.t. $\lim _{n \rightarrow \infty} f a_{n}=\lim _{n \rightarrow \infty} g a_{n}=0$ for $0 \epsilon X$

V. V. Latpate, U. P. Dolhare

Now we see some preliminary results of common fixed point theorem as follows. Manoj Kumar Generalized following theorem. Which is stated as

Theorem 2.15. [8] $\operatorname{Let}(X, G)$ be complete G-metric space.Let S and T be self mappings on X satisfying following conditions.

1. $S(X) \subseteq T(X)$,
2. S or T is continuous,
3. $G(S a, S b, S c) \leq \beta G(T a, T b, T c)$ for every a, b, c in X and $0 \leq \beta<1$. And if S and T are Compatible then S and T have Unique common fixed points in X.

Proof. Let us take a_{0} be an arbitrary element of X.We define a sequence s.t. for any point a_{1} in X, define $S a_{0}=T a_{1}, S a_{1}=T a_{2}, S a_{2}=T a_{3}, \ldots$. ,In general for $a_{n+1} \in X$ s.t. $b_{n}=S a_{n}=T a_{n+1}$ for $n=0,1,2,3 \ldots$ from (3) we get

$$
\begin{aligned}
G\left(S a_{n}, S a_{n+1}, S a_{n+1}\right) & \leq \beta G\left(T a_{n}, T a_{n+1}, T a_{n+1}\right) \\
& =\beta G\left(S a_{n-1}, S a_{n}, S a_{n}\right)
\end{aligned}
$$

By continuing same procedure, we get

$$
\begin{equation*}
G\left(S a_{n}, S a_{n+1}, S a_{n+1}\right) \leq \beta^{n} G\left(S a_{0}, S a_{1}, S a_{1}\right) \tag{2.1}
\end{equation*}
$$

\therefore for all $n, m \in N, m>n$, by using rectangle inequality, we get

$$
\begin{aligned}
G\left(b_{n}, b_{m}, b_{m}\right) & \leq G\left(b_{n}, b_{n+1}, b_{n+1}\right)+G\left(b_{n+1}, b_{n+2}, b_{n+2}\right) \\
& +G\left(b_{n+2}, b_{n+3}, b_{n+3}\right)+\ldots . .+G\left(b_{m-1}, b_{m}, b_{m}\right) \\
& \leq\left(\beta^{n}+\beta^{n+1}+\ldots .+\beta^{m-1}\right) G\left(b_{0}, b_{1}, b_{1}\right) \\
& \leq \frac{\beta^{n}}{1-\beta} G\left(b_{0}, b_{1}, b_{1}\right)
\end{aligned}
$$

taking limit as $n, m \rightarrow \infty$, we get $\lim _{n, m \rightarrow \infty} G\left(b_{n}, b_{m}, b_{m}\right)=0 . \therefore$ this shows that $\left\{b_{n}\right\}$ is a G-Cauchy sequence in X.Since given (X, G) is G-Complete metric space. \therefore,there exists
a point $x \in X$ s.t. $\lim _{n \rightarrow \infty} b_{n}=x$ and $\therefore \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} S a_{n}=\lim _{n \rightarrow \infty} T a_{n+1}=$ x. Since the mapping S or T is Continuous.Suppose T is continuous, $\therefore \lim _{n \rightarrow \infty} T S a_{n}=$ $T x$. also given that S and T are compatible. $\therefore \lim _{n \rightarrow \infty} G\left(T S a_{n}, S T a_{n}, S T a_{n}\right)=0$.This gives $\lim _{n \rightarrow \infty} S T a_{n}=T x$ From (3) we get

$$
G\left(S T a_{n}, S a_{n}, S a_{n}\right) \leq \beta G\left(T T a_{n}, T a_{n}, T a_{n}\right)
$$

taking limit as $n \rightarrow \infty$, we get $T x=x$ Again from (3)we get

$$
G\left(S a_{n}, S x, S x\right) \leq \beta G\left(T a_{n}, T x, T x\right)
$$

taking limit as $n \rightarrow \infty$, we get $T x=x \therefore$ we get $T x=S x=x$.Hence x is a common fixed point of S and T. For Uniqueness ,If possible suppose let x_{1} be another common fixed point of S and T . Then we have, $G\left(x, x_{1}, x_{1}\right)>0$ and

$$
\begin{aligned}
G\left(x, x_{1}, x_{1}\right) & =G\left(S x, S x_{1}, S x_{1}\right) \\
& \leq \beta G\left(T x, T x_{1}, T x_{1}\right) \\
& =\beta G\left(x, x_{1}, x_{1}\right) \\
& <G\left(x, x_{1}, x_{1}\right)
\end{aligned}
$$

which is impossible. $\therefore x=x_{1}$. Hence uniqueness follows.
Example 2.16. If $X=[-1,1]$ and G be a G-metric space s.t. $G: X^{3} \rightarrow R^{+}$defined by

$$
G\left(x_{1}, y_{1}, z_{1}\right)=\left(\left|x_{1}-y_{1}\right|+\left|y_{1}-z_{1}\right|+\left|z_{1}-x_{1}\right|\right)
$$

for all $x_{1}, y_{1}, z_{1} \in X$. Then X is a G-Metric space. We define $S\left(x_{1}\right)=\frac{x_{1}}{6}$ and $T\left(x_{1}\right)=\frac{x_{1}}{2}$. If S is Continuous and $S(X) \subseteq T(X)$.
Here $G\left(S x_{1}, S y_{1}, S z_{1}\right) \leq \beta G\left(T x_{1}, T y_{1}, T z_{1}\right)$ is true for all $x_{1}, y_{1}, z_{1} \in X, \frac{1}{3} \leq \beta<1$ and 0 is the common fixed point of S and T which is Unique.

In 2017,Latpate V.V. and Dolhare U.P [10] proved common fixed point theorem for pair of compatible maps in G-Metric space.

Theorem 2.17. Let X be a complete G-metric space. $S, T: X \rightarrow X$ be two compatible maps on X and which satisfies the following conditions,
(i) $S(X) \subseteq T(X)$,
(ii)S or T is G-continuous,
(iii) $G(S a, S b, S c) \leq \alpha G(S a, T b, T c)+\beta G(T a, S b, T c)+\gamma G(T a, T b, S c)+\delta G(S a, T b, T c)$
for every a, b, c in X and $\alpha, \beta, \gamma, \delta \geq 0$ with $0 \leq \alpha+3 \beta+3 \gamma+3 \delta<1$. Then S and T have unique common fixed point in X.

Now,we prove our Main result,for the compatible maps.

3 Main Result

Theorem 3.1. Let (X, G) be a complete G-Metric space, Let S and T be self mappings of X satisfying the following conditions,

1. $S(X) \subseteq T(X)$
2. S or T is continuous,
3. $G(S a, S b, S c) \leq k \max \left\{\begin{array}{c}G(T a, T b, T c), G(T a, S a, S a), G(T a, S b, S b) \\ G(T a, S c, S c), G(T b, S b, S b), G(T b, S a, S a) \\ G(T b, S c, S c), G(T c, S c, S c), G(T c, S a, S a) \\ G(T c, S b, S b)\end{array}\right\}$
for all $a, b, c \in X$, where $0 \leq k<\frac{1}{4}$. Then S and T have unique common fixed point in X.Provided S and T are compatible maps.

Proof. Let a_{0} be an arbitrary point in X.By,using equation (1),one can choose a point a_{1} in X s.t. $S a_{0}=T a_{1}$. In general we can choose a point a_{n+1} s.t. $b_{n}=S a_{n}=T a_{n+1}, n=$
$0,1,2,3, \ldots$ from (3), we have
$G\left(S a_{n}, S a_{n+1}, S a_{n+1}\right) \leq k \max \left\{\begin{array}{c}G\left(T a_{n}, T a_{n+1}, T a_{n+1}\right), G\left(T a_{n}, S a_{n}, S a_{n}\right), G\left(T a_{n}, S a_{n+1}, S a_{n+1}\right), \\ G\left(T a_{n}, S a_{n+1}, S a_{n+1}\right), G\left(T a_{n+1}, S a_{n+1}, S a_{n+1}\right), G\left(T a_{n+1}, S a_{n}, S a_{n}\right), \\ G\left(T a_{n+1}, S a_{n+1}, S a_{n+1}\right), G\left(T a_{n+1}, S a_{n+1}, S a_{n+1}\right), G\left(T a_{n+1}, S a_{n}, S a_{n}\right), \\ G\left(T a_{n+1}, S a_{n+1}, S a_{n+1}\right)\end{array}\right\}$
or

$$
G\left(b_{n}, b_{n+1}, b_{n+1}\right) \leq k \max \left\{G\left(b_{n-1}, b_{n}, b_{n}\right), G\left(b_{n-1}, b_{n+1}, b_{n+1}\right), G\left(b_{n}, b_{n+1}, b_{n+1}\right)\right\}
$$

Possibility 1 If

$$
\max \left\{G\left(b_{n-1}, b_{n}, b_{n}\right), G\left(b_{n-1}, b_{n+1}, b_{n+1}\right), G\left(b_{n}, b_{n+1}, b_{n+1}\right)\right\}=G\left(b_{n-1}, b_{n}, b_{n}\right)
$$

then using (3), we get

$$
G\left(b_{n}, b_{n+1}, b_{n+1}\right) \leq k G\left(b_{n-1}, b_{n}, b_{n}\right)
$$

, continuing in the same way, we have

$$
G\left(b_{n}, b_{n+1}, b_{n+1}\right) \leq k^{n} G\left(b_{0}, b_{1}, b_{1}\right)
$$

.Therefore for all $n, m \in N \quad n<m$ and by using rectangle inequality, we get

$$
\begin{aligned}
G\left(b_{n}, b_{m}, b_{m}\right) & \leq G\left(b_{n}, b_{n+1}, b_{n+1}\right)+G\left(b_{n+1}, b_{n+2}, b_{n+2}\right) \\
& +\ldots \ldots+G\left(b_{m-1}, b_{m}, b_{m}\right) \\
& \leq\left(k^{n}+k^{n+1}+\ldots+k^{m-1}\right) G\left(b_{0}, b_{1}, b_{1}\right) \\
& \leq \frac{k^{n}}{1-k} G\left(b_{0}, b_{1}, b_{1}\right)
\end{aligned}
$$

taking limit as $n, m \rightarrow \infty$, we have $\lim _{n \rightarrow \infty} G\left(b_{n}, b_{m}, b_{m}\right)=0$.Thus $\left\{b_{n}\right\}$ is a G-Cauchy sequence in X.
Possibility2 If

$$
\max \left\{G\left(b_{n-1}, b_{n}, b_{n}\right), G\left(b_{n-1}, b_{n+1}, b_{n+1}\right), G\left(b_{n}, b_{n+1}, b_{n+1}\right)\right\}=G\left(b_{n-1}, b_{n+1}, b_{n+1}\right)
$$

V. V. Latpate, U. P. Dolhare
from (3) and using rectangle inequality, we get

$$
\begin{aligned}
G\left(b_{n}, b_{n+1}, b_{n+1}\right) & \leq k G\left(b_{n-1}, b_{n+1}, b_{n+1}\right) \\
& \leq k\left(G\left(b_{n-1}, b_{n}, b_{n}\right)+G\left(b_{n}, b_{n+1}, b_{n+1}\right)\right)
\end{aligned}
$$

this gives

$$
G\left(b_{n}, b_{n+1}, b_{n+1}\right) \leq \frac{k}{1-k} G\left(b_{n-1}, b_{n}, b_{n}\right)
$$

i.e.

$$
G\left(b_{n}, b_{n+1}, b_{n+1}\right) \leq \beta G\left(b_{n-1}, b_{n}, b_{n}\right)
$$

, where $\beta=\frac{k}{1-k}$ and $\beta<1$ as $0 \leq k<\frac{1}{4}$ using possibility (1), we have $\left\{b_{n}\right\}$ is a G-Cauchy sequence in X .

Possibility3 If

$$
\max \left\{G\left(b_{n-1}, b_{n}, b_{n}\right), G\left(b_{n-1}, b_{n+1}, b_{n+1}\right), G\left(b_{n}, b_{n+1}, b_{n+1}\right)\right\}=G\left(b_{n}, b_{n+1}, b_{n+1}\right)
$$

then from (3), we have

$$
G\left(b_{n}, b_{n+1}, b_{n+1}\right) \leq k G\left(b_{n}, b_{n+1}, b_{n+1}\right)
$$

which is a contradiction, since $k<\frac{1}{4}$. Therefore in all cases the sequence $\left\{b_{n}\right\}$ is a G-Cauchy sequence in X.Since (X, G) is G-complete Metric space. \therefore, thee exists a point $x \in X$ s.t. $\lim _{n \rightarrow \infty} b_{n}=x$, we have

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} S a_{n}=\lim _{n \rightarrow \infty} T a_{n+1}=x
$$

. since one of the maps S or T is continuous.Suppose we can assume that T is continuous, therefore $\lim _{n \rightarrow \infty} T S a_{n}=\lim _{n \rightarrow \infty} T T a_{n}=T x$ Also given that S and T are compatible.Therefore, $\lim _{n \rightarrow \infty} G\left(T S a_{n}, S T a_{n}, S T a_{n}\right)=0$ gives $\lim _{n \rightarrow \infty} S T a_{n}=T x$, Now we claim that $T x=x$, from (3) we have
$G\left(S T a_{n}, S a_{n}, S a_{n}\right) \leq k \max \left\{\begin{array}{c}G\left(T T a_{n}, T a_{n}, T a_{n}\right), G\left(T T a_{n}, S T a_{n}, S T a_{n}\right), G\left(T T a_{n}, S a_{n}, S a_{n}\right) \\ G\left(T T a_{n}, S a_{n}, S a_{n}\right), G\left(T a_{n}, S a_{n}, S a_{n}\right), G\left(T a_{n}, S T a_{n}, S T a_{n}\right) \\ G\left(T a_{n}, S a_{n}, S a_{n}\right), G\left(T a_{n}, S a_{n}, S a_{n}\right), G\left(T a_{n}, S T a_{n}, S T a_{n}\right) \\ G\left(T a_{n}, S a_{n}, S a_{n}\right)\end{array}\right\}$
taking, limit as $n \rightarrow \infty$ and by using proposition (2.11), we have

$$
\begin{aligned}
G(T x, x, x) & \leq k \max \{G(T x, x, x), G(x, T x, T x)\} \\
& \leq k \max \{G(T x, x, x), 2 G(T x, x, x)\} \\
& =2 k G(T x, x, x)
\end{aligned}
$$

which is a contradiction since $k<\frac{1}{4}$. Hence $T x=x$, similarly we will show that $T x=S x=x$, for that we put $a=a_{n}, b=c=x$ in (3), we get

$$
G\left(S a_{n}, S x, S x\right) \leq k \max \left\{\begin{array}{c}
G\left(T a_{n}, T x, T x\right), G\left(T a_{n}, S a_{n}, S a_{n}\right), G\left(T a_{n}, S x, S x\right) \tag{3.3}\\
G\left(T a_{n}, S x, S x\right), G(T x, S x, S x), G\left(T x, S a_{n}, S a_{n}\right) \\
G(T x, S x, S x), G(T x, S x, S x), G\left(T x, S a_{n}, S a_{n}\right) \\
G(T x, S x, S x)
\end{array}\right\}
$$

taking limit as $n \rightarrow \infty$, we get

$$
G(x, S x, S x) \leq k G(x, S x, S x)
$$

, which is a contradiction since $k<\frac{1}{4}$. Hence $S x=T x=x$.Thus x is a common fixed point of S and T.

To prove Uniqueness, we assume that $x_{1} \neq x$ be another common fixed point of S and T.Then $G\left(x_{1}, x, x\right)>0$
$G\left(x_{1}, x, x\right)=G\left(S x_{1}, S x, S x\right) \leq k \max \left\{\begin{array}{c}G\left(T x_{1}, T x, T x\right), G\left(T x_{1}, S x_{1}, S x_{1}\right), G\left(T x_{1}, S x, S x\right) \\ G\left(T x_{1}, S x, S x\right), G(T x, S x, S x), G\left(T x, S x_{1}, S x_{1}\right) \\ G(T x, S x, S x), G(T x, S x, S x), G\left(T x, S x_{1}, S x_{1}\right) \\ G(T x, S x, S x)\end{array}\right\}$
By proposition (2.11), we get

$$
\begin{aligned}
G\left(x_{1}, x, x\right) & \leq k \max \left\{G\left(x_{1}, x, x\right), G\left(x, x_{1}, x_{1}\right)\right\} \\
& \leq k \max \left\{G\left(x_{1}, x, x\right), 2 G\left(x_{1}, x, x\right)\right\} \\
& =2 k G\left(x_{1}, x, x\right)
\end{aligned}
$$

which is a contradiction since $k<\frac{1}{4}$

Example 3.2. Let $X=[-1,1]$ and let (X, G) be a G-metric on X.G-metric function is defined as $G\left(a_{1}, b_{1}, c_{1}\right)=\left(\left|a_{1}-b_{1}\right|+\left|b_{1}-c_{1}\right|+\left|c_{1}-a_{1}\right|\right)$, for all $a_{1}, b_{1}, c_{1} \in X$. Then (X, G) be a G-metric space and define $S x=\frac{x}{9}$ and $T x=x$,then $S(X) \subseteq T(X)$.Also inequality (3) satisfies for all $a_{1}, b_{1}, c_{1} \in X$. and 0 is the unique common fixed point of S and T.

References

[1] G.Jungck Commuting maps and fixed points Amer.Math.Monthly,83(1976)261-263.
[2] Sesa,S. On Weakly Commutativity condition in fixed point consideration Publ.Int.Math.32(46)(1986)
[3] K.M.Das,K.V.Naik, Common fixed point theorems for commuting maps on a metric space Proc.Amer.Math.Soc.,77(1979),369-373.
[4] B.Fisher Common fixed points of four mappings ,Bull.Inst.Acad.Sin.,11(1983),103113.
[5] G.Jungck Compatible mappings and common fixed points, Internat.J.Math.Sci.9,(1986),771-779
[6] Jungck.G. , Compatible mappings and common fixed points (2),Int.J.Math.Math.Sci,11(1988),285-288
[7] G.Jungck Common Fixed points for Commuting and Compatible maps on Compacta Proc.Amer.Math.Soc.,103(1988),977-983
[8] Manoj Kumar Compatible Maps in G-Metric spaces Int.Journal of math. Analysis,Vol. 6,2012,no. 29,1415-1421.
[9] Mustafa Z.,Sims A new approach to Generalized metric Spaces J. nonlinear convex Anal. 7(2),289-297.(2006)
[10] Latpate V.V. and Dolhare U.P. On Results of Common Fixed Points of Compatible Maps in Generalized Metric Space. Int.J.Math. and its appl.2-C(2017),345-349

