(3,2)-Jection Operator

Navin Kumar Singh
Research Scholar (Reg. No. 1227/14/16), V.K.S. University, Ara (Bihar)

Abstract

Our main objective in the present paper is to provide some appropriate tools which are necessary for decomposing a (3,2)-jection operator that is not a projection.

Key words : Linear operator, Projection operator, (3,2)-jection operator, Orthogonal linear operators, Commuting operators.

Introduction :

In this paper, we find results concerning with a (3,2)-jection operator so that a (3,2)-jection operator which is not a projection can be decomposed into two orthogonal (3,2)-jections and how expressed as a sum of two commuting operators whose product is 0 where one of the two being a projection and the other whose square is 0 .

Definitions :

Linear operator : The operator E on a linear space L is said to be a linear operator if $E(a x+b y)=a E(x)+b E(y)$ for all $x, y \in L$ and for scalars a and b.

Projection operator : The operator E on a linear space L is a projection on some subspace M of L if $\mathrm{E}^{2}=\mathrm{E}$.
(3, 2)-jecion operator : The operator E on a linear space L is said to be a (3, 2)-jection operator if $E^{3}=$ E^{2}.

Commuting operators : Two operators E_{1} and E_{2} are said to be commuting operators if $\mathrm{E}_{1} \mathrm{E}_{2}=\mathrm{E}_{2} \mathrm{E}_{1}$.

Orthogonal operators : The two operators $\mathrm{E}_{1} \& \mathrm{E}_{2}$ are said to be orthogonal to each other if $\mathrm{E}_{1} \mathrm{E}_{2}=0=$ $\mathrm{E}_{2} \mathrm{E}_{1}$

Main Results :

Theorem-1 :

Any (3, 2)-jection, which is not a projection can be expressed as a sum of two commuting operators whose product is O , one of them being a projection and the other whose square is 0 and conversely.
Proof : \quad Let E be a $(3,2)$-jection then $E^{3}=E^{2}$
Now we can have,

$$
\begin{aligned}
& \mathrm{E}=\mathrm{E}-\mathrm{E}^{2}+\mathrm{E}^{2} \\
& \mathrm{E}=\mathrm{E}_{1}+\mathrm{F}_{1} \\
& \text { where } \mathrm{E}_{1}=\mathrm{E}-\mathrm{E}^{2}, \mathrm{~F}_{1}=\mathrm{E}^{2}
\end{aligned}
$$

Since

$$
\mathrm{E} \text { is not a projection }
$$

$$
\begin{aligned}
\therefore \mathrm{E} \neq \mathrm{E}^{2} & \Rightarrow \mathrm{E}-\mathrm{E}^{2} \neq 0 \\
& \Rightarrow \mathrm{E}_{1} \neq 0
\end{aligned}
$$

Here $\quad E_{1} F_{1}=\left(E-E^{2}\right) E^{2}=E^{3}-E^{4}=E^{2}-E^{2}=0$
\&

$$
\begin{aligned}
& \mathrm{E}_{1}^{2}=\left(\mathrm{E}-\mathrm{E}^{2}\right)^{2}=\mathrm{E}^{2}+\mathrm{E}^{4}-2 \mathrm{E}^{3}=\mathrm{E}^{2}+\mathrm{E}^{2}-2 \mathrm{E}^{2}=0 \\
& \& \mathrm{~F}_{1}^{2}=\left(\mathrm{E}^{2}\right)^{2}=\mathrm{E}^{4}=\mathrm{E}^{2}=\mathrm{F}_{1}
\end{aligned}
$$

Thus F_{1} is a projection and square of E_{1} is 0
Obviously, $\quad \mathrm{E}_{1}$ and F_{1} commute because

$$
\begin{aligned}
& E_{1} F_{1}=\left(E-E^{2}\right) E^{2}=E^{3}-E^{4}=E^{2}-E^{2}=0 \\
& \& F_{1} E_{1}=E^{2}\left(E-E^{2}\right)=E^{3}-E^{4}=E^{2}-E^{2}=0
\end{aligned}
$$

$$
\text { i.e., } E_{1} F_{1}=F_{1} E_{1}=0
$$

Conversely,

$$
\text { Let } E=E_{1}+F_{1} \text { such that } E_{1} F_{1}=0, E_{1}^{2}=E_{1}, F_{1}=0
$$

Then,

$$
\begin{aligned}
& E^{2}=\left(E_{1}+F_{1}\right)^{2} \\
& =\left(E_{1}+F_{1}\right)\left(E_{1}+F_{1}\right) \\
& =\left(E_{1}+F_{1}\right) E_{1}+\left(E_{1}+F_{1}\right) F_{1} \\
& =E_{1}^{2}+F_{1} E_{1}+E_{1} F_{1}+F_{1}^{2} \\
& =E_{1}+0+0+0 \\
& =E_{1} \\
& \text { and, } E^{3}=\left(E_{1}+F_{1}\right)^{3} \\
& =\left(E_{1}+F_{1}\right)^{2}\left(E_{1}+F_{1}\right) \\
& =E_{1}\left(E_{1}+F_{1}\right) \\
& =E_{1}^{2}+E_{1} F_{1} \\
& =E_{1}+0=E_{1}
\end{aligned}
$$

Thus E is a (3, 2)-jection

Theorem-2 :

Every (3, 2)-jection not a projection is a sum of two mutually orthogonal (3, 2)-jections both of them also not being projections and conversely.
Proof : Let E be a $(3,2)$-jection, then $\mathrm{E}^{3}=\mathrm{E}^{2} \& \mathrm{E}^{2} \neq \mathrm{E}$
We can have,

$$
\begin{aligned}
E & =\frac{1}{2}\left(E+E^{2}\right)+\frac{1}{2}\left(E-E^{2}\right) \\
& =P+Q(\text { say }) \text { where } P=\frac{1}{2}\left(E+E^{2}\right) \& Q=\frac{1}{2}\left(E-E^{2}\right)
\end{aligned}
$$

We observe that,

$$
\begin{aligned}
P^{2}=\left\{\frac{1}{2}\left(E+E^{2}\right)\right\}^{2}=\frac{1}{4}\left(E+E^{2}\right)^{2} & =\frac{1}{4}\left(E^{2}+E^{4}+2 E E^{2}\right) \\
& =\frac{1}{4}\left(E^{2}+E^{2}+2 E^{2}\right)=E^{2} \neq P \\
\& P^{3}=P^{2} P & =E^{2} \frac{1}{2}\left(E+E^{2}\right)=\frac{1}{2}\left(E^{3}+E^{4}\right) \\
& =\frac{1}{2}\left(E^{2}+E^{2}\right)=E^{2}
\end{aligned}
$$

Hence P is a (3,2)-jection but not a projection.
Next, $\quad Q^{2}=\left\{\frac{1}{2}\left(E-E^{2}\right)\right\}^{2}=\frac{1}{4}\left(E^{2}+E^{4}-2 E^{3}\right)=\frac{1}{4}\left(E^{2}+E^{2}-2 E^{2}\right)=0 \neq Q$
$\& \mathrm{Q}^{3}=\mathrm{Q}^{2} \mathrm{Q}=0 . \mathrm{Q}=0$
$\Rightarrow \mathrm{Q}$ is a (3,2)-jections which is not a projection.

Again,

$$
\begin{aligned}
& P Q=\frac{1}{2}\left(E+E^{2}\right) \cdot \frac{1}{2}\left(E-E^{2}\right)=\frac{1}{4}\left(E^{2}-E^{4}\right)=\frac{1}{4}\left(E^{2}-E^{2}\right)=0 \\
& \Rightarrow P \& Q \text { are orthogonal. }
\end{aligned}
$$

Hence E has been expressed as a sum of two mutually orthogonal $(3,2)$-jections where both of the two are not projections.
Conversely,
Let $E=E_{1}+F_{1}$ where $E_{1} \& F_{1}$ are (3, 2)-jections such that

$$
\begin{aligned}
& \mathrm{E}_{1} \mathrm{~F}_{1}=0=\mathrm{F}_{1} \mathrm{E}_{1} \\
& \& \mathrm{E}_{1}^{2} \neq \mathrm{E}_{1}, \mathrm{~F}_{1}^{2} \neq \mathrm{F}_{1}
\end{aligned}
$$

We have,

$$
\begin{aligned}
E^{2}=\left(E_{1}+F_{1}\right)^{2} & =E_{1}^{2}+F_{1}^{2}+2 E_{1} F_{1} \\
& =E_{1}^{2}+F_{1}^{2}+2(0) \\
& =E_{1}^{2}+F_{1}^{2} \\
\& E^{3}=E^{2} E= & \left(E_{1}^{2}+F_{1}^{2}\right)\left(E_{1}+F_{1}\right) \\
= & E_{1}^{3}+F_{1}^{3}+E_{1}^{2} F_{1}+F_{1}^{2} E_{1} \\
= & E_{1}^{3}+F_{1}^{3}+E_{1}\left(E_{1} F_{1}\right)+F_{1}\left(F_{1} E_{1}\right) \\
= & E_{1}^{3}+F_{1}^{3}+E_{1}(0)+F_{1}(0) \\
= & E_{1}^{3}+F_{1}^{3} \\
& =E_{1}^{2}+F_{1}^{2}
\end{aligned}
$$

i.e. $E^{2}=E^{3}$
$\Rightarrow \mathrm{E}$ is a (3, 2)-jection.

Conclusion :

A (3,2)-jection operator not a projection can be decomposed into two orthogonal (3,2)-jections and also be expressed as a sum of two commuting operators whose product is 0 where one of the two being a projection and the other whose square is 0 .

References :

1. CHEVALLEY, C : Fundamental concept of Algebra; Academic Press Inc., New York, 1956.
2. DUNFORD, N. AND SCHWARTZ, J.: Linear operators, Part I; Interscience Publications. Inc. New York, 1967.
3. EDWARDS, R.E. : Functional Analysis; Holt Rinehart and Winston, Inc., New York, 1965.
4. KELLEY, J.L. Namioka, I. and others : Linear Topological space; (Van Nostrand), East-West Student Edition, India, 1968.
5. LUSTERNIK, L.A. AND SOBOLEW, V.J. : Element of Functional Analysis; (Hindustan Publishing Corporation), India, 1961.
6. PALEY, H. AND WEICHSEL, P.M.: A first course in Abstract Algebra; Holt. Rinehart and Winston, Inc., New York, 1966.
7. RICKART, C.E. : General theory of Banach algebras; Van Nostrand, Princeton, N.J. 1960.
8. RIESZ, F. AND NAGY, B. : Functional Analysis; Frederick Ungar, New York, 1955.
9. ROYDEN, H.L.; Real analysis; The Macmillan Company, New York, 1964.
10. RUDIN, W. : Functional Analysis : McGraw-Hill Book Company, Inc., New. York, 1973.
11. Chandra Prabhat : Investigation into the theory of operators and linear spaces, P.U., 1977.
