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Abstract: Our main objective in the present paper is to provide some appropriate tools which are necessary for   

decomposing a (3,2)-jection operator that is not a projection. 
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Introduction : 

 In this paper, we find results concerning with a (3,2)-jection operator so that a (3,2)-jection operator 

which is not a projection can be decomposed into two orthogonal (3,2)-jections and how expressed as a sum of 

two commuting operators whose product is 0 where one of the two being a projection and the other whose 

square is 0. 

Definitions : 

Linear operator : The operator E on a linear space L is said to be a linear operator if 

     E a x b y a E x b E y    for all x , y L  and for scalars a and b. 

Projection operator  : The operator E on a linear space L is a projection on some subspace M of L if 

E2=E. 

(3, 2)-jecion operator : The operator E on a linear space L is said to be a (3, 2)-jection operator if E3 = 

E2. 

Commuting operators : Two operators E1 and E2 are said to be commuting operators if E1E2=E2E1. 

Orthogonal operators : The two operators E1&E2 are said to be orthogonal to each other if E1E2 = 0 = 

E2E1 

Main Results : 

Theorem-1 : 

 Any (3, 2)-jection, which is not a projection can be expressed as a sum of two commuting operators 

whose product is O, one of them being a projection and the other whose square is 0 and conversely. 

Proof : Let E be a (3, 2)-jection then E3=E2 

Now we can have, 

 E=E–E2+E2 

 E=E1+F1 

 where E1=E–E2, F1=E2 

Since E is not a projection 
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E E E E 0      

  
1

E 0   
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1 1
E F E E E E E E E 0        

&  
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1
E E E E E 2 E E E 2 E 0          

  
2

2 2 4 2

1 1
& F E E E F     

Thus F1 is a projection and square of E1 is 0 

Obviously, E1 and F1 commute because 

  
2 2 3 4 2 2

1 1
E F E E E E E E E 0        

  
2 2 3 4 2 2

1 1
& F E E E E E E E E 0        
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1 1 1 1

i.e ., E F F E 0   

Conversely, 

 Let 
1 1

E E F   such that 
2

1 1 1 1 1
E F 0 , E E , F 0    

Then,  
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 = 
1 1

E 0 E   

Thus E is a (3, 2)-jection 

 

 

 

 

Theorem-2 : 

 Every (3, 2)-jection not a projection is a sum of two mutually orthogonal (3, 2)-jections both of them 

also not being projections and conversely. 

Proof : Let E be a (3, 2)-jection, then 
3 2 2

E E & E E   

We can have, 

     
2 21 1

E E E E E
2 2

     

     =      
2 21 1

P Q say w h ere P E E & Q E E
2 2

      

We observe that, 

    
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2 2 21 1
P E E E E

2 4

 
    
 
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2 4 21

E E 2 E E
4

   

  =  
2 2 2 2

1
E E 2 E E P

4
     
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2 2 3 41 1

E E E E E
2 2
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2 2 21

E E E
2
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Hence P is a (3, 2)-jection but not a projection. 

Next,      
2

2 2 2 4 3 2 2 21 1 1
Q E E E E 2 E E E 2 E 0 Q

2 4 4

 
          
 

 

 
3 2

& Q Q Q 0 .Q 0    

   Q is a (3, 2)-jections which is not a projection. 
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Again,        
2 2 2 4 2 21 1 1 1

P Q E E . E E E E E E 0
2 2 4 4

         

   P & Q are orthogonal. 

Hence E has been expressed as a sum of two mutually orthogonal (3, 2)-jections where both of the two are not 

projections. 

Conversely, 

 Let 
1 1

E E F   where E1& F1 are (3, 2)-jections such that 

 
1 1 1 1

E F 0 F E   
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We have,  
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 i.e.
2 3

E E  

   E is a (3, 2)-jection. 

Conclusion : 

 A (3,2)-jection operator not a projection can be decomposed into two orthogonal (3,2)-jections and also 

be expressed as a sum of two commuting operators whose product is 0 where one of the two being a projection 

and the other whose square is 0. 
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