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Abstract 

This paper develops pseudo-differential algebraic functions which unequivocally incorporate most typical 

conventional systems and problems of the parabolic limit value discerned forms. Therefore, to achieve this, this 

paper develops a pseudo-differential parabolic operator’s theory in anisotropic spaces. A significant calculus is 

developed for various classical symbols which are defined universally by ℝ𝑛+1 ∗ ℝ𝑛+1. A periodical procedure 

regarding the symbolic calculus in a cylinder such that 𝑇𝑛 ∗ ℝ is developed. The Garding’s inequality is exhibited 

for its appropriate operators as well as definite estimates for the vital criterion of the Sobolev anisotropic spaces. 

 

Introduction 

This paper is motivated by the behavior of various boundary or limit value element sequence from the heat 

equation. Pseudo-differential operator analysis hasbeenhighly appreciatedfor the elliptical limit value problems. 

However, researchers have not fully exploited the pseudo-differential operators formed by the reduction of the limit 

value of the parabolic functions. Therefore, the Garding’s inequality and the estimates of the vital criterion in 

Sobolev anisotropic spaces for limitation techniques are yet to be researched. Only several parts of the rationale of 

accustomed pseudo-differential parabolic operands exist. For instance, Piriou (1970) came up with a rationale for 

parabolic limit value problems as well as pseudo-differential parabolic operands as represented symbolically through 

the use of expanded functions in quasi-homogeneous functions. Earlier work by Hunt and Piriou (1969) prepared the 

results of the expanded quasi-homogeneous functions which extended to the pseudo-differential operator’s calculus. 

 

This study develops a given pseudo-differential operator’s calculus containing symbolic anisotropies 

having the Piriou’s limit integral operand to express the parabolic limit value problems. This study uses a class of 

operands which is well explained in Beals’ (1975) study on the pseudo-differential operators general calculus. In his 

work, Beals clearly shows the relationship between 𝐿2 and continuity of the Sobolev spaces applying various 

theorems. However, this study will opt to apply the fundamental method as elaborated by Hormander (2013). This 

fundamental method refrains from the theory of perfectly sustained operators and uses the calculus of symbols 

which are universally defined. It is made fundamental by the fact of obtaining the continuity of 𝐿2 through basic 

properties of infirm unique integral operands. The concept used in this study presents essential tools for 

administering periodization to satisfy the need for coverage of cylindrical realm.  

 

The Garding’s inequality also is proved as well as the distinct criterion measures. The results of Noon 

(1988) and Costabel (1990) are achieved for the elementary parabolic limit integral operand. 

Definitions 

If 𝑚 ∈ ℝ such that 𝑚 ≥ 1, then 𝜌, which is the anisotropic span within ℝ𝑛+1 given (Costabel&Saranen, 2001); 

𝜌 휁 = 𝜌𝑚  휁 = |휂|
1

𝑚 +  𝜉 This is for 휁 =  𝜉, 휂 ,        𝜉𝜖ℝ, 휂𝜖ℝ    (𝑖) 

To define the classical symbol 𝑆𝑚
𝛽

, then we follow; 
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𝑧 =  𝑥, 𝑡 𝜖ℝ𝑛+1while 𝑣 =  𝑣1, 𝑣2 𝜖ℕ0
𝑛 ∗ ℕ0, 𝜕𝑧

𝑣 = 𝜕𝑥
𝑣1

𝜕𝑡
𝑣2

, Also 𝜕휁
𝜇

= 𝜕𝜉
𝜇1

𝜕휂
𝜇2

considering 𝜇

=  𝜇1, 𝜇2 𝜖ℕ0
𝑛 ∗ ℕ0. Furthermore, from  𝑣 =  𝑣1 + 𝑣2such that  𝑣1 

= 𝑣1
1 + ⋯ + 𝑣𝑛

1considering 𝑣1 =  𝑣1
1 … , 𝑣𝑛

1 , so that we obtain  𝜇 𝑚 =  𝜇1 + 𝑚𝜇2 

Definition 1 

If 𝑚 ∈ ℝ and 𝛽𝜖ℝ, such that 𝑚 ≥ 1. Then 𝑎𝜖𝐶∞(ℝ𝑧
𝑛+1 ∗ ℝ휁

𝑛+1) becomes𝑆𝑚
𝛽

 if 𝑣 = (𝑣1, 𝑣2)𝜖ℕ0
𝑛+1 and 𝜇 =

(𝜇1, 𝜇2)𝜖ℕ0
𝑛+1 then a constant 𝐶𝑣,𝜇  exists so that(Costabel&Saranen, 2001), 

 𝜕𝑧
𝑣𝜕휁

𝜇
𝑎 𝑧, 휁  ≤ 𝐶𝑣,𝜇 1 + 𝜌 휁  

𝛽− 𝜇  𝑚
𝑓𝑜𝑟 ∀𝑧, 휁𝜖ℝ𝑛+1         (𝑖𝑖) 

Having 𝑎(𝑧, 휁)𝜖𝑆𝑚
𝛽

 the pseudo-differential operand 𝑎(𝑧, 𝐷) is expressed as; 

𝑎 𝑧, 𝐷 𝑢 𝑧 =  2𝜋 − 𝑛+1  𝑒𝑖 𝑧 ,휁 𝑎 𝑧, 휁 𝑢  휁 𝑑 휁                (𝑖𝑖𝑖) 

The Schwartz space that indicates fast reducing functions is expressed by𝑆 ℝ𝑛+1  while the double space is 

expressed by 𝑆′ ℝ𝑛+1 . The Fourier transform is denoted by 𝑢 𝜖𝑆 ℝ𝑛+1 , its expressed specifically by; 

𝑢  휁 =  𝑒−𝑖 𝑧 ,휁 𝑎 𝑧, 휁 𝑢(𝑧)𝑑 𝑧  

The scalar yield of ℝ𝑛+1 is denoted as (z,휁) which forms a bilinear expression. Supposing that, 𝑎 𝑧, 휁 =

휁𝑗  𝑗 = 1, … . . , 𝑛 + 1 , then we can say that 𝑎 𝑧, 𝐷 = 𝐷𝑗 = −𝑖
𝜕

𝜕𝑧𝑗
. For  equation (iii) above, the defined operators 

𝑎 𝑧, 𝐷 ∈ 𝑂𝑝𝑆𝑚
𝛽

.can be symbolically written as 𝑎 ∈ 𝑆𝑚
𝛽

. 

Beals (1975) showed that the relationship between pseudo-differential analysis of symbolic anisotropies with the 

theory of weight vectors. For instance, if we express the vector of weight (𝜑1, … 𝜑2, … 𝜑𝑛+1, ϕ
1

, … ϕ
2

, … ϕ
𝑛+1

) 

through 𝜑𝑗  𝑧, 휁 = 1(𝑗 = 1, … , 𝑛 + 1) with ϕ
𝑗
 𝑧, 휁 = 1 + 𝜌 휁  𝑗 = 1, … , 𝑛 + 1  and ϕ

𝑛+1
 𝑧, 휁 = (1 + 𝜌(휁))𝑚 . 

The selective property in the anisotropic span 𝜌, which also indicates the conditions required to satisfy the principle 

of the vectors of weight (Beals, 1975), can be expressed for the triangular disparity as, 

𝜌 휁′ + 휁 ≤ 𝜌 휁′ + 𝜌 휁        𝑓𝑜𝑟   휁′, 휁𝜖ℝ𝑛+1   𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑚 ≥ 1              (𝑖𝑣). 

It is, however, crucial to understand that the balls under anisotropic defined with 𝜌 휁 < 𝑅 for every m> 1 do not 

appear convex. The inequality indicated in equation (iv) is crucial for understanding this definition. The symbolic 

class as defined by 𝑆𝑚
𝛽

 is a topology scope such that when variables 𝛽 and m are fixed, then it can be defined using 

𝑞𝑣,𝜇
𝛽

, 𝜇, 𝑣𝜖ℕ0
𝑛+1, 

𝑞𝑣,𝜇
𝛽  𝑎 =

𝑠𝑢𝑝
𝑧, 휁  𝜕𝑧

𝑣𝜕휁
𝜇
𝑎 𝑧, 휁  1 + 𝜌 휁  

 𝜇  𝑚 −𝛽
                    (𝑣) 

It can be proved that 𝑎𝑗 𝜖𝑆𝑚
𝛽

 does converge to 𝑎𝜖𝑆𝑚
𝛽

 only when; 

𝑞𝑣,𝜇
𝛽

 𝑎𝑗 − 𝑎 ⇀ 0,        𝑗 ⟶ ∞                                                  (𝑣𝑖) 

Again, ∀𝑣, 𝜇𝜖ℕ0
𝑛+1as well as [𝑎𝑗 ] becomes bounded when; 

𝑠𝑢𝑝
𝑗 𝑞𝑣,𝜇

𝛽
 𝑎𝑗  ≤ 𝐶𝑣,𝜇                                                                       (𝑣𝑖𝑖) 

For a symbolic 𝑎(𝑧, 휁) a relation of symbols are considered such that 𝑎휀(𝑧, 휁) for 휀 ≥ 0. This relation can be 

expressed by; 

𝑎휀 𝑧, 휁 = 𝑎 𝑧, 휁휀         𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡        휁휀 =  휀𝜉,  휀𝑚휂                (𝑣𝑖𝑖𝑖) 
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Definition 2 

Considering the function expressed as 𝑢(𝑥, 𝑡), 𝑧 = (𝑥, 𝑡)𝜖ℝ𝑛+1 found in the first period of 𝑥1, … . , 𝑥𝑛 : 𝑢 𝑥 + 𝑘, 𝑡 =
𝑢 𝑥, 𝑡        ∀𝑘 ∈ ℤ𝑛 ; (𝑥, 𝑡) ∈ ℝ𝑛+1 

Assuming that u is continuous, it can be said to be a continuous function within 𝕋𝑛 ∗ ℝ a (Costabel&Saranen, 2001) 

cylinder in which 𝕋𝑛 =  
ℝ

ℤ
 
𝑛

forms the torus ranges. It’s therefore possible to take 𝑄𝑛 = [0,1]𝑛  so as to represent 𝕋𝑛 . 

In the light of these, we can also take u to be a steady function in 𝑄𝑛 ∗  ℝ with a recurrent limit value condition in 

𝜕𝑄𝑛 ∗  ℝ 

Taking u to be limited polynomially, then we obtain the following Fourier functions (Costabel&Saranen, 2001). 

a) 𝑢  휁 , 휁𝜖ℝ𝑛+1 is the normal Fourier function according to 𝑢𝜖𝑆′ ℝ𝑛+1 . Suppose 𝑢𝜖𝑆 ℝ𝑛+1 , then the 

expression for 휁 = (𝜉, 휂)𝜖ℝ𝑛+1 will be; 

𝑢  𝜉, 휂 =   𝑒−𝑖  𝜉 ,𝑥 +𝑡휂  𝑢 𝑥, 𝑡 𝑑𝑡𝑑𝑥
ℝ𝑡ℝ𝑥

𝑛
 

b) 𝑢  휁  in 휁 =  𝑘, 휂 𝜖ℤ𝑛 ∗  ℝ, expressed as a coefficient of Fourier functions in scope variables; 

𝑢  𝑘, 휂 =   𝑒−𝑖 2𝜋 𝑘 ,𝑥 +𝑡휂  𝑢 𝑥, 𝑡 𝑑𝑡𝑑𝑥
ℝ𝑡𝑄𝑥

𝑛
 

This can also be expressed as; 

𝑢  𝜉 =  𝑒−𝑖 휁+𝑧 𝑢 𝑧 𝑑𝑧
𝕋𝑛 ∗ℝ

 

The inverse transform 

𝑢 𝑧 =
1

2𝜋
  𝑒𝑖 2𝜋 𝑘 ,𝑥 +𝑡휂  𝑢  𝑘, 휂 𝑑휂 =

1

2𝜋
 𝑒𝑖 휁 ,𝑧 𝑢  휁 𝑑휁
ℤ𝑘

𝑛 ∗ℝ휂ℝ휂𝑘𝜖ℤ𝑛

 

Therefore, the scalar yield used are; 
 휁, 𝑧 =  𝜉, 𝑥 + 𝑡휂 and (휁, 𝑧) = 2𝜋 𝑘, 𝑥 + 𝑡휂 used in 

휁 = (𝜉, 휂)𝜖ℝ𝑛+1 

휁 =  𝜉, 휂 𝜖𝕋𝑛 ∗ ℝ, and 

𝑧 =  𝑥, 𝑡 𝜖ℝ𝑛+1. 

For ease of use, 𝑘𝜖ℤ𝑛  is used to parameterize (2𝜋ℤ)𝑛  which is a set of 𝕋𝑛 . Following this, 𝕋𝑛 ∗ ℝ can now be 

defined. The symbols in 𝑎(𝑧, 휁) are chosen in ℝ𝑛+1 on the first period as 𝑧1, … 𝑧2,hence we can express; 

𝑆𝑚 ,𝑝𝑒𝑟
𝛽

= [𝑎(𝑧, 휁)𝜖𝑆𝑚
𝛽

|𝑎 𝑥 + 𝑘, 𝑡; 𝜉, 휂 = 𝑎(𝑥, 𝑡; 𝜉, 휂)∀𝑘 ∈ ℤ𝑛 ] 

 Hence, the above equation forms the 𝐶∞factors in  𝕋𝑛 ∗ ℝ ∗ ℝ𝑛+1. Another important aspect is that 

𝑆𝑚 ,𝑝𝑒𝑟
𝛽

⊂ 𝑆𝑚
𝛽

. Therefore, 𝑎 ∈ 𝑆𝑚 ,𝑝𝑒𝑟
𝛽

 in double pseudo-differential operands. The scaled symbol to show this is; 

𝑎2𝜋 𝑥, 𝑡; 𝜉, 휂 = 𝑎 𝑥, 𝑡; 2𝜋𝜉, 휂                                  (𝑖𝑥) 

We, therefore, define; 

i) The function 𝑎(𝑧, 𝐷) which acts on ℝ𝑛+1 hence for 𝑧𝜖ℝ𝑛+1; 

𝑎 𝑧, 𝐷 𝑢 𝑧 = (2𝜋)−(𝑛+1)  𝑒𝑖 휁 ,𝑧 𝑎
ℝ𝑛 +1

(𝑧, 휁)𝑢  휁 𝑑휁 

ii) The Pseudo-differential operand present in 𝕋𝑛 ∗ ℝ, 𝑎 𝑧, 𝐷 , is expressed as; 

𝑎 𝑧, 𝐷 𝑢 𝑧 =
1

2𝜋
 𝑒𝑖 휁 ,𝑧 𝑎2𝜋
ℤ𝑛 ∗ℝ

(𝑧, 휁)𝑢  휁 𝑑휁 

 From definition one,  휁, 𝑧 = 2𝜋 𝑘, 𝑥 + 휂𝑡 in 휁 = (𝑘, 휂)𝜖ℤ𝑛 ∗ ℝ, 𝑧 =  𝑡, 𝑥 𝜖𝕋𝑛 ∗ ℝ. 
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It is crucial to mention that the expression of 𝑎(𝑧, 𝐷) applies the parameters of 𝑎2𝜋(𝑧, 휁) in 휁 = (𝑘, 휂)𝜖ℤ𝑛 ∗ ℝ. 

Hence 𝑎(𝑧, 𝐷) expresses the symbol of 𝑎(𝑧, 휁) in only (𝕋𝑛 ∗ ℝ)𝑧 ∗   2𝜋ℤ 𝑛 ∗ ℝ 휁 .This is different to 𝑎(𝑧, 𝐷) which 

expounds 𝑎(𝑧, 휁) in the whole of ℝ2(𝑛+1).  

Theorems 

Theorem 1 

Assuming 𝑎(𝑧, 휁)𝜖𝑆𝑚
𝛽

(ℝ𝑧
𝑛+1 ∗ ℝ휁

𝑛+1) and also assuming that mapping of 휂 to 𝑎(𝑧, 𝜉, 휂) entails a substantial 

continuation through the scope of 휂 − 𝑖𝜍, 𝜍 > 0 in a way that the continuation goes for 𝜍 ≥ 0 satisfying 

(Costabel&Saranen, 2001); 

 𝑎 𝑧, 𝜉, 휂 − 𝑖𝜍  ≤ 𝐶  1 +  𝜉 +  휂 − 𝑖𝜍 
1

𝑚  
𝛽

,   𝑓𝑜𝑟 𝜍 ≥ 0                     (𝑥) 

In this way, the 𝑎(𝑧, 𝐷) operand is said to be of Volterraform. 

It can also be expressed in a short form as; 

𝑉𝑚
𝛽

(ℝ𝑧
𝑛+1 ∗ ℝ휁

𝑛+1) 

This mostly applies to those symbols that satisfy the above assumption. To establish the parabolic limit value 

problems, an initial value is required as well as the limit values. This initial value is also to be used in those limit 

integral values to solve this problem. In solving this problem, the vanishing initial value is usually considered which 

is also used in classical pseudo-differential operands of the Volterra form.  

Therefore, stating the Sobolev anisotropic scope; 

𝐻 𝑚
𝑠  ℝ𝑛+1 = 𝐻 𝑚

𝑠 (ℝ𝑥
𝑛 ∗ ℝ𝑡) 

This scope assumes the vanishing initial terms at t=0, therefore; 

𝐻 𝑚
𝑠  ℝ𝑛+1 = [𝑢𝜖𝐻𝑚

𝑠  ℝ𝑛+1 : 𝑠𝑢𝑝𝑝 𝑢 ⊂ ℝ𝑥
𝑛 ∗ [0, ∞]] 

Hence, if considering finite range of time we express it using ℝ𝑇
𝑛+1 = ℝ𝑥

𝑛 ∗  0, 𝑇  for 𝑇 > 0 

𝐻 𝑚
𝑠  ℝ𝑇

𝑛+1 = [𝑢 = 𝑈|ℝ𝑥
𝑛 ∗ −∞,𝑇 : 𝑈 ∈ 𝐻 𝑚

𝑠  ℝ𝑇
𝑛+1 ] 

The concept of 𝐻 𝑚
𝑠  ℝ𝑇

𝑛+1  is expressed by; 

∥ 𝑢 ∥𝑠,𝑇= inf[∥ 𝑈 ∥𝑠: 𝑢 = 𝑈|ℝ𝑥
𝑛 ∗ −∞,𝑇 ] 

Theorem 2 

Assuming that 𝑎(𝑧, 휁) ∈  𝑉𝑚
𝛽

(ℝ𝑧
𝑛+1 ∗ ℝ휁

𝑛+1), and 𝑎 𝑧, 𝐷  𝑠𝑡𝑎𝑡𝑒𝑠 ∀𝑠 ∈ ℝ limited operands(Costabel&Saranen, 

2001); 

a) 𝑎 𝑧, 𝐷 : 𝐻 𝑚
𝑠  ℝ𝑛+1 → 𝐻 𝑚

𝑠−𝛽 ℝ𝑛+1  

b) 𝑎 𝑧, 𝐷 : 𝐻 𝑚
𝑠  ℝ𝑇

𝑛+1 → 𝐻 𝑚
𝑠−𝛽 ℝ𝑇

𝑛+1  

c) ∥ 𝑎(𝑧, 𝐷) ∥
𝐿 𝐻 𝑚

𝑠  ℝ𝑇
𝑛 +1 ,𝐻 𝑚

𝑠−𝛽
 ℝ𝑇

𝑛 +1  
≤∥ 𝑎(𝑧, 𝐷) ∥

𝐿 𝐻 𝑚
𝑠  ℝ𝑛+1 ,𝐻 𝑚

𝑠−𝛽
 ℝ𝑛 +1  

 

The proof for this is the indication of the mapping boundedness exhibited by part (a). 
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𝑎 𝑧, 𝐷 : 𝐻𝑚
𝑠  ℝ𝑛+1 → 𝐻𝑚

𝑠−𝛽 ℝ𝑛+1  

Together with the Volterra property. In part (b) we let the term 𝑢 ∈ 𝐻 𝑚
𝑠  ℝ𝑇

𝑛+1  and then designate 𝑈 ∈ 𝐻 𝑚
𝑠  ℝ𝑛+1  

so that 𝑢 = 𝑈|ℝ𝑥
𝑛 ∗ −∞,𝑇 . Hence, we can state that; 

𝑎(𝑧, 𝐷)𝑢 = 𝑎(𝑧, 𝐷)𝑈|ℝ𝑥
𝑛 ∗ −∞,𝑇  

Therefore from the VolterracharacteristicS the right-hand side becomes independent of U. We can also state that 

𝑎(𝑧, 𝐷)𝑢 ∈ 𝐻 𝑚
𝑠−𝛽 ℝ𝑇

𝑛+1  so that the final inequality is; 

∥ 𝑎(𝑧, 𝐷) ∥𝑠−𝛽 ;𝑇= inf[∥ 𝐹 ∥𝑠−𝛽 : 𝐹|ℝ𝑥
𝑛 ∗ −∞,𝑇 = 𝑎 𝑧, 𝐷 𝑢] 

≤ inf[∥ 𝑎(𝑧, 𝐷)𝑈 ∥𝑠−𝛽 : 𝑈|ℝ𝑥
𝑛 ∗ −∞,𝑇 = 𝑢] 

≤ inf[∥ 𝑎(𝑧, 𝐷)𝑈 ∥
𝐿 𝐻 𝑚

𝑠  ℝ𝑇
𝑛+1 ,𝐻 𝑚

𝑠−𝛽
 ℝ𝑇

𝑛 +1  
∥ 𝑈 ∥𝑠: 𝑈|ℝ𝑥

𝑛 ∗ −∞,𝑇 = 𝑢] 

=∥ 𝑎(𝑧, 𝐷) ∥
𝐿 𝐻 𝑚

𝑠  ℝ𝑇
𝑛+1 ,𝐻 𝑚

𝑠−𝛽
 ℝ𝑇

𝑛 +1  
∥ 𝑢 ∥𝑠;𝑇 

Hence for the above series of theequation, equation (b) and (c) are implied. 

From the results obtained in this theorem, the equivalent results are easily obtained for the Sobolev anisotropic 

scope in 𝑄𝑇 = 𝕋𝑛 ∗  0, 𝑇  which is a finite cylinder. Therefore the scope defined by 𝐻 𝑚
𝑠 (𝕋𝑛 ∗ ℝ) is said to be the 

scope of functions that disappear for −𝑡 and 𝐻 𝑚
𝑠 (𝑄𝑇) due to scope restrictions in 𝑄𝑇. 

Proposition 

Proposition 1 

Taking K to be a poisson operand in the order 𝑚 ∈ 𝑅 such that it was stated as an operand ranging from 𝐶∞(Γ) and 

extending to 𝐶∞(Ω). So as it can map 𝐶∞(𝑆 ) to 𝐶∞(𝑄 ) at constant t (Grubb &Solonnikov, 1990). Therefore, for all 

𝑟 ≥ max[𝑚,
1

2
] as well as 𝑠 ≥ 0, 𝐾 stretches to an operand bearing the continuity characteristics; 

𝐾: 𝐻𝑟− 
1

2
,𝑠 𝑆 → 𝐻𝑟− 𝑚 ,𝑠 𝑄           𝑓𝑜𝑟  𝑚 ≤

1

2
 

𝐾: 𝐻𝑟− 
1

2
 𝑟−

1

2
 ,

𝑠

𝑟 𝑆 → 𝐻𝑟− 𝑚 ,
 𝑟−𝑚  𝑠

𝑟  𝑄           𝑓𝑜𝑟 𝑚 ≥
1

2
 

This is proved through the knowledge that K is steady such that, 

𝐾: 𝐻𝑟− 
1

2 Γ → 𝐻𝑟− 𝑚 Ω  

Suppose 𝑟 ≥ 𝑚, including the variable of t, the continuity characteristics are indicated as(Grubb &Solonnikov, 

1990); 

𝐾: 𝐿2  𝐼; 𝐻𝑟− 
1

2 Γ  → 𝐿2 𝐼; 𝐻𝑟− 𝑚 Ω  , 

𝐾: 𝐻𝑠  𝐼; 𝐻𝑚− 
1

2 Γ  → 𝐻𝑠 𝐼; 𝐿2 Ω  , 
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Proposition 2 

Supposing P is a pseudo-differential operand on Rnwithin the order 𝑚𝜖ℤ, the transmission characteristic is at Γ; 𝑃Ω 

is defined along 𝐶∞(Ω ) for 𝑃Ω = 𝑟Ω𝑃𝑒Ω where 𝑒Ω represents a zero extension on 
ℝ𝑛

Ω
 while 𝑟Ω is the constraints 

ranging from ℝ𝑛  to Ω. Its extended to 𝐶∞(𝑄 ) in constant t. It is such that ∀𝑟 ≥ max 𝑚, 0  while all 𝑠 ≥ 0,  for 𝑃Ω, it 

extends to an operand having the continuity characteristics (Grubb &Solonnikov, 1990).  

𝑃Ω: 𝐻𝑟 ,𝑠 𝑄 → 𝐻𝑟− 𝑚 ,𝑠 ′
 𝑄           𝑓𝑜𝑟  𝑠′ = min  

 𝑟 − 𝑚 𝑠

𝑟
, 𝑠  

So the term 
 𝑟−𝑚 𝑠

𝑟
 is interpreted as s when r is zero. Also, when S becomes a pseudo-differential operand in the 

order of 𝑚𝜖ℝ on the Γ operator. This is then extended to 𝐶∞(𝑆 ) which is a t-constant. S is extended to continuity by 

a steady operator (Grubb &Solonnikov, 1990); 

𝑆: 𝐻𝑟 ,𝑠 𝑆 → 𝐻𝑟− 𝑚 ,𝑠 ′
 𝑆  

This occurs when r, s and s’are represented as in the above equations 

Lemmas 

Lemma 1 

Assuming 𝑎𝜖𝑆𝑚
0  as well as 0 ≤ 𝜖 ≤ 1.The classification of 𝑎휀 , 0 ≤ 휀 ≤ 1 is limited in 𝑆𝑚

0  while 𝑎휀 → 𝑎0 within 

𝑆𝑚
𝛽
∀𝛽 > 0. It can be more accurately expressed as; 

𝑠𝑢𝑝
0 ≤ 휀 ≤ 1

𝑞𝑣,𝜇
𝛽  𝑎휀 ≤ 𝐶𝑣,𝜇  

And; 

𝑞𝑣,𝜇
𝛽  𝑎휀 − 𝑎0 ≤ 𝐶𝑣,𝜇휀min  1,𝛽            𝑓𝑜𝑟 𝛽 > 0 

Lemma 2 

Assuming 𝑎𝑗 𝜖𝑆𝑚
𝛽𝑗

, 𝛽𝑗 → −∞. Hence, various symbols exist such as 𝑎𝜖𝑆𝑚
𝛽0

, so that,  

𝑎 −  𝑎𝑗 ∈ 𝑆𝑚
𝛽𝑘

,                 𝑓𝑜𝑟 𝑘 ∈ ℕ

𝑘−1

𝑗 =0

 

Suppose we have 𝑥 ∈ 𝐶0
∞(ℝ휁

𝑛+1) as well as 휀 > 0, ∃𝛿휀 > 0 such that  

 휁 ≥ 𝛿휀 ⇒ 𝑥 휁휀 = 0 

The term𝑎(𝑧, 휁), is a singular defined modulus which forms as an extra term to 𝑆𝑚
−∞. Also, 𝑎(𝑧, 휁) can be applied so 

that 𝑎 ⊂∪𝑗=0
∞ 𝑠𝑢𝑝𝑝 𝑎𝑗 . This Lemma can also be expressed in short as; 

𝑎~  𝑎𝑗

∞

𝑗 =0
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Though it is never a requirement for orders to decrease monotonically, orders can be made to adhere so by taking 

their partial sums and hence assume that for 𝛽𝑗  then it follows that 𝛽0 > 𝛽1 > 𝛽2 > 𝛽3 … … ….. For such a series the 

constant 𝑎0 can be said to be the fundamental term of 𝑎. 

Conclusion 

This paper has well developed the algebraic functions of the pseudo-differential forms which entirely contain the 

fundamental forms of the generalized parabolic limit value problems. The paper has showcased in depth two 

definitions, two theorems, two prepositions and two lemmas to describe the pseudo-differential algebraic functions 

fully. 

In detail, the pseudo-differential operators have been built in anisotropic spaces and scope. The cylindrical symbolic 

calculus has been developed using periodical procedures in Theorem 2. The Garding’s inequality has also been 

developed from the definitions and theorems as well as estimates for anisotropic Sobolev spaces and mapping. This 

paper has focused on most of the unresearched boundary value problems of the generalized forms. To completely 

understand the nature of pseudo-algebraic functions and the limit value problem, much study effort has to b applied 

especially regarding the Garding’s inequality and the estimates of the anisotropic Sobolev spaces. 
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