Fixed Point Theorem Using Generalized Meir-Keeler Contractions on G-Metric Spaces

Anil Rajput¹, Rucha Athaley²

¹Chandra Shekhar Azad P. G. College, Sehore, Madhya Pradesh, India. ²Sardar Ajeet Singh Memorial Girls College, Bhopal, Madhya Pradesh, India

Abstract-In this paper we consider the concept of G-metric space and prove some fixed point theorems for Meir-Keeler co traction. We also present some applications. Keywords-Fixed Point, G-metric space, Meir-Keeler contraction

1 Introduction and Preliminaries

Fixed point theory has many applications in wide areas of mathematics, also in many branches of quantitative sciencessuch as economics and computer sciences. The Banach contraction principle [13] is the famous result in this field. This result has many generalizations out of which Meir-Keeler contraction is one.

The Meir-Keeler contraction [22] which wasproved in**1969** plays an important role in the field of fixed point theory and it has been extended by many authors.

In 2009, T.H. Chang and C.M. Chen [14] defined the weaker Meir–Keeler type function $\psi: \Re + \rightarrow \Re +$ and proved following common fixed point theorem of two set-valued mappings in a complete metric space:

Let (X, d) be a complete metric space, and let $T, S: X \to B(X)$. If (T, S) have the non-contraction property, and if for each t > 0 with $\psi(t) < t$ and $\{\psi n(t)\}n \in N$ is non-increasing, then S and T has a unique common fixed point *a* in. Moreover,

 $Sa = Ta = \{a\}.$

In **2010** C. Chen and T. Chang[15]defined a weaker Meir–Keeler type function ψ : *intP* \cup {0} \rightarrow *intP* \cup {0} in a cone metric space, and proved the following common fixed point theorems of four single-valued functions in cone metric spaces:

Let(X, d) be a complete cone metric space with regular cone P such that $d(x, y) \in intP$ forall $x, y \in X$ with $x \neq y$, and let F, G, S, T: $X \to X$ be four single-valued functions with $SX \subset GX$ and $TX \subset FX$ such that for all $y \in X$,

$$d(Sx,Ty) \le \psi(max\{d(Fx,Gy),d(Fx,Sx),d(Gy,Ty),\frac{1}{2}[d(Fx,Ty) + d(Gy,Sx)]\}).$$

If S and F are compatible, T and G are compatible, and if either F or G is continuous, then S, T, F and G have a unique common fixed point in X.

Samet B. in **2010** [39] defined generalized Meir-Keeler type function and proved the following fixed point theorem in partial metric space:

Let (X, \leq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space.Let $F : X \times X \to X$ beamappingsatisfyingthefollowinghypotheses:

(i) F iscontinuous,

(ii) F hasthemixedstrictmonotoneproperty,

(iii) FisageneralizedMeir-Keelertypefunction,

(iv) $\exists x_0, y_0 \in X$ such that $x_0 < F(x_0, y_0)$ and $y_0 \ge F(y_0, x_0)$. Then, there exists $(x, y) \in X$ such that x = F(x, y) and y = F(y, x).

Then, there exists $(x, y) \in X$ such that x = F(x, y) and y = F(y, x).

Mustafa and Sims [32]in **2005**introduced *G*-metric space which was the generalization of metric space. Mustafa proved some fixed point results [24-34, 35, 5, 6] in G-metric spaces. Shatanawi W. [42] also proved some fixed point results in G-metric spaces for ϕ –maps and for two weakly mappings in partially ordered G-metric spaces.

In **2011** Aydi H., Damjanovic [11] proved coupled coincidence and coupled common fixed point theorems for a mixed g -monotone mapping satisfying nonlinear contractions in partially ordered G -metric spaces. Following result was proved by them:

Let (X, \leq) be a partially ordered set and *G* be a *G* -metric on *X* such that (X, G) is a complete *G* -metric space. Suppose that there exist $\phi \in \phi$, $F: X \times X \to X$ and $g: X \to X$ such that $(1) G(F(x, y), F(u, v), F(w, z)) \leq \phi(G(gx, gu, gw) + G(gy, gv, gz))$

(2) for all $x, y, u, v, w, z \in X$ with $gw \leq gu \leq gx$ and $gy \leq gv \leq gz$.

Suppose also that *F* is continuous and has the mixed g-monotone property, $F(X \times X) \subseteq g(X)$ and *g* is continuous and commutes with *F*. If there exist $x_0, y_0 \in X$ such that

 $gx_0 \leq F(x_0, y_0)$ and $F(x_0, y_0) \leq gy_0$,

then *F* and *g* have a coupled coincidence point, that is, there exists $(x, y) \in X \times X$ such that

gx = F(x, y) and gy = F(y, x).

In 2012, Aydi H., Karapinar Erdal[9], proved a general common fixed point theorem for two pairs of weakly compatible self-mappings of a partial metric space satisfying a generalized Meir-Keeler type contractive condition.

Let A, B, S and T be any self-maps of a partial metric space (X, p) satisfying the following conditions;

$$(C_1)AX \subseteq TX, BX \subseteq SX,$$

 (C_2) Given $\epsilon > 0$, there exists a $\delta > 0$ such that for all x, y in X

$$\varepsilon < M(x, y) < \varepsilon + \delta \Rightarrow p(Ax, By) < \varepsilon$$
 (2)

Where $M(x, y) = max \left\{ p(Sx, Ty), p(Ax, Sx), p(By, Ty), \frac{1}{2} \left(p(Sx, By) + p(Ax, Ty) \right) \right\}$

$$(C_3)$$
 for all $x, y \in X$ with $M > 0 \Longrightarrow p(Ax, By) < M(x, y)$

(iii) p(Ax, By) < max [a[p(Sx, Ty) + p(Ax, Sx) + p(By, Ty)], b[p(Sx, By) + p(Ax, Ty)]]

for
$$0 \le a < \frac{1}{2}, 0 \le b < \frac{1}{2}$$

(3)

If one of AX, BX, SX and TX is a closed subset of X, then

(i) AandS have a coincidence

(ii)BandThave coincidence

Moreover, if A and S, as well as, B and T are weakly compatible, then A, B, S and T have a unique common fixed point.

In 2013Abdeljawad T.[4] developed the fixed point theorems for α -contractive type maps to Meir-Keeler versions and generalize the results as:

Let (X, d) be an (f, g) orbitally complete metric space, where f, g are self-mappings of X. Also, let α : $X \times X \to [0, \infty)$ be a mapping. Assume the following:

(1) (f, g) is α -admissible and there exists an $x_0 \in X$ such that

$$\alpha(x_0, fx_0) \ge 1\alpha(x_0, fx_0) \ge 1.$$

(2) the pair (f, g) is generalized Meir-Keeler α -contractive.

Then the sequence $d_n = d(x_n, x_{n+1})$ is monotone decreasing. If, moreover, we assume that

(3) On the (f, g)-orbit of x_0 we have $\alpha(x_n, x_j) \ge 1$ for all n even and j > n odd and that f and g are continuous on the (f, g)-orbit of x_0 .

(1)

Then either (1) f or g has a fixed point in the(f, g)-orbit{ x_0 }or (2) f and g have a common fixed point pand $\lim_{n\to\infty} x_n = p$. If, moreover, we assume that the following condition (H) holds: If { x_n } is a sequence in X such that $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x$ implies $\alpha(x_n, x) \ge 1$ for all n, then uniqueness of the fixed point is obtained.

Definition 1.1.[32] Let X be a non- empty set, and let $G: X \times X \times X \to \mathbb{R}^+$ be a function satisfying the following axioms:

$$\begin{array}{l} (G_1) \ G(x,y,z) \ = \ 0 \ if \ x \ = \ y \ = \ z, \\ (G_2) \ 0 \ < \ G(x,x,y), \text{ for all } x,y \ \in \ X, with \ x \ \neq \ y, \\ (G_3) \ G(x,x,y) \ \leq \ G(x,y,z), for \ all \ x,y,z \ \in \ X, with \ z \ \neq \ y, \\ (G_4) \ G(x,y,z) \ = \ G(x,z,y) \ = \ G(y,z,x) \ = \ \cdots \ (\text{symmetry in all three variables}), \\ (G_5) \ G(x,y,z) \ \leq \ G(x,a,a) \ + \ G(a,y,z), for \ all \ x,y,z,a \ \in \ X, (\text{Rectangle inequality}). \end{array}$$

Then the function G is called a generalized metric or more specifically a G-metric on X, and the pair (X, G) is called a G-metric space.

Example 1.2. Let R be the set of all real numbers. Define $G: R \times R \times R \to R^+$ by

$$G(x, y, z) = |x - y| + |y - z| + |z - x|, for all x, y, z \in X.$$

Then it is clear that (R, G) is a G-metric space.

Proposition 1.3. [32]Let (X, G) be a *G*-metric space. Then for any x, y, z, and $a \in X$, it follows that

- (1) If G(x, y, z) = 0, then x = y = z,
- (2) $G(x, y, z) \leq G(x, x, y) + G(x, x, z),$
- (3) $G(x, y, y) \le 2G(y, x, x),$
- (4) $G(x, y, z) \leq G(x, a, z) + G(a, y, z),$
- (5) $G(x, y, z) \leq (\frac{2}{3})(G(x, y, a) + G(x, a, z) + G(a, y, z)),$
- (6) $G(x, y, z) \leq (\frac{2}{3})(G(x, a, a) + G(y, a, a) + G(z, a, a)).$

Definition 1.4.[32]Let (X, G) be a *G*-metric space, let $\{x_n\}$ be a sequence of points of X, we say that $\{x_n\}$ is G-convergent

 $\lim_{n,m\to\infty} G(x,x_n,x_m) = 0; \text{i.e.}$

for any $\epsilon > 0$, there exists $n_0 \in N$ such that

 $G(x, x_n, x_m) < \epsilon$, for all $n, m \ge n_0$.

We refer to *x* as the limit of the sequence $\{x_n\}$ and write x_n (G) $\rightarrow x$.

Proposition 1.5. [32] Let (*X*, *G*) be a *G* –metric space. Then the following are equivalent:

(1) { x_n } is *G*-convergent to *x*. (2) $G(x_n, x_n, x) \rightarrow 0$ as $n \rightarrow +\infty$ (3) $G(x_n, x, x) \rightarrow 0$ as $n \rightarrow +\infty$ (4) $G(x_n, x_m, x) \rightarrow 0$ as $m, n \rightarrow +\infty$

Definition 1.6. [32]Let (X, G) be a G-metric space. A sequence $\{x_n\}$ is called G-Cauchy if given $\epsilon > 0$, there is $n_0 \in \mathbb{N}$ such that $G(x, x_n, x_m) < \epsilon$, for all n, m, $l \ge n_0$ that is

if $G(x_n, x_m, x_l) \rightarrow 0$ as n, m, $l \rightarrow \infty$.

Proposition 1.7. [32] In a G -metric space(X, G), the followings are equivalent-

- (1) The sequence $\{x_n\}$ is G Cauchy.
- (2) For every $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $G(x_n, x_m, x_m) < \epsilon$ for all $n, m \ge N$.

 $(3\{x_n\}$ is a Cauchy sequence in the metric space (X, G).

Definition 1.8. [32] A G -metric space (X, G) is said to be G-complete (or a complete G-metric space) if every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

Example 1.9. Let $X = \{0, 1, 2, 3, ...\}$ and $G : X \times X \times X \rightarrow R^+$ be defined as follows:

$$G(x, y, z) = \begin{cases} x + y + z, if x, y, z \text{ are all distinct and different from zero} \\ x + z, if x = y \neq z \text{ and all are different from zero} \\ y + z + 1, if x = 0, y \neq z, y \text{ and } z \text{ are different from zero} \\ y + 2, if x = 0, y = z \neq 0 \\ z + 1, if x = 0, y = 0, z \neq 0 \\ 0, if x = y = z \end{cases}$$

Then (*X*, *G*) is a complete *G*-metric space, then *G* is also nonsymmetric since $G(0,0,1) \neq G(1,1,0)$.

Proposition 1.10.[32] In a G -metric space, (X, G), the following are equivalent.

(1) thesequence $\{x_n\}$ is *G*-Cauchy.

- (2) For every $\epsilon > 0$, there exists $N \in N$ such that $G(x_n, x_m, x_m) < \epsilon$, for all $n, m \ge N$.
- (3) $\{x_n\}$ is a Cauchy sequence in the metric space (X, d_G) .

Definition 1.11. A G -metric space (X, G) is said to be G-complete (or a complete G-metric space) if every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

Corollary 1.12. Every *G*-convergent sequence in a *G* –metric space is *G*-Cauchy.

Corollary 1.13. If a *G*-Cauchy sequence in a *G*-metric space (X, G) contains a *G*-convergent subsequence, then the sequence itself is *G*-convergent.

Proposition 1.14. A *G*-metric space (X, G) is *G*-complete if and only if (X, d_G) is a complete metric space.

Corollary 1.15. If Y is a non-empty subset of a G –complete metric space (X, G), then (Y, G|Y) is complete if and only if Y is G –closed in (X, G).

Definition 1.16. Let (X, G) and (X', G') be *G*-metric spaces and let $f : (X, G) \to (X', G')$ be a function, then f is said to be G-continuous at a point $a \in X$ if given $\varepsilon > 0$, there exists $\delta > 0$ such that $x, y \in X$; $G(a, x, y) < \delta$ implies $G'(f(a), f(x), f(y)) < \varepsilon$.

A function f is G –continuous on X if and only if it is G-continuous at all $a \in X$.

Proposition 1.17. Let (X, G) and (X', G') be *G*-metric spaces and let $f : (X, G) \to (X', G')$ is *G*-continuous at a point $x \in X$ if and only if *G*-sequentially continuous at $x \in X$; that is whenever $\{x_n\}$ is *G*-convergent to x we have $(f(x_n))$ is *G*-convergent to (f(x)).

Definition1.18.Let (X, d) be a metric space and T be a self map on X. Then T is called a Meir-Keeler type contraction whenever for each $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\varepsilon < d(x, y) < \varepsilon + \delta \Rightarrow d(Tx, Ty) < \varepsilon$$

This contraction has been modified and extended by many authors in metric spaces and some other related structures[1-38, 40-41,43].Now we prove a unique fixed point result by using generalized Meir-Keeler contraction on G-metric spaces.

2.Main Results

Definition2.1.Let (X, G) be a G –Metric space and T be a self map on X. Then T is called a generalized Meir-Keeler type contraction whenever for each $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\varepsilon < M(x, y, z) < \varepsilon + \delta \Rightarrow G(Tx, Ty, Tz) < \varepsilon$$
(2.1)

Where $M(x, y, z) = max\{G(x, y, z), G(Tx, x, x), G(x, Ty, z), G(x, y, Tz)\}\$

Remark 2.2. Note that if T is a generalized Meir-Keeler type contraction then we have

$$G(Tx, Ty, Tz) < M(x, y, z)$$
(2.2)

Now we come to our main results.

Proposition2.3. Let (X, G) be a G –Metric space and let $T: X \to X$ be a generalized Meir-Keeler type contraction. Then

 $\lim_{n\to\infty} G(T^{n+1}x,T^nx,T^nx) = 0 \text{ for all } x \in X.$

Proof: Let $x_0 \in X$.we define an iterative sequence $\{x_n\}$ as

$$\begin{aligned} x_n &= Tx_n = T^{n+1}x_0 \\ (2.3) \end{aligned}$$

for all $n \ge 0$. If $x_{n_0+1} = x_{n_0}$ for some $n_0 \ge 0$, then x_{n_0} is required fixed point of *T*. Indeed,

 $Tx_{n_0} = x_{n_0+1} = x_{n_0}$. In this case, the proposition follows. Throughout the proof, we assume that $x_{k+1} \neq x_k$ for all $k \ge n_0$.consequently, we have $M(x_{n+1}, x_n, x_n) > 0$ for every $n \ge 0$. By remark 2.2, we get

$$G(x_{n+2}, x_{n+1}, x_{n+1}) = G(Tx_{n+1}, Tx_n, Tx_n) < M(x_{n+1}, x_n, x_n)$$

= max{G(x_{n+1}, x_n, x_n), G(Tx_{n+1}, x_{n+1}, x_{n+1}), G(x_{n+1}, Tx_n, x_n), G(x_{n+1}, x_n, Tx_n)}
= max{G(x_{n+1}, x_n, x_n), G(x_{n+2}, x_{n+1}, x_{n+1})}

Since $M(x_{n+1}, x_n, x_n) > 0$ for each *n*, we find that

$$G(x_{n+2}, x_{n+1}, x_{n+1}) < M(x_{n+1}, x_n, x_n) \le max\{G(x_{n+1}, x_n, x_n), G(x_{n+2}, x_{n+1}, x_{n+1})\}$$

By the use of remark 2.2 again, we notice that the case where

$$max\{G(x_{n+1}, x_n, x_n), G(x_{n+2}, x_{n+1}, x_{n+1})\} = G(x_{n+2}, x_{n+1}, x_{n+1})$$

is impossible . Hence we derive that

$$G(x_{n+2}, x_{n+1}, x_{n+1}) < M(x_{n+1}, x_n, x_n) = G(x_{n+1}, x_n, x_n)$$
(2.4)

for every *n*.

Thus $\{G(x_{n+1}, x_n, x_n)\}_{n=0}^{\infty}$ is decreasing sequence which is bounded by 0. Hence, it converges to some $\varepsilon \in [0, \infty)$, i.e.

$$\lim_{n \to \infty} G(x_{n+1}, x_n, x_n) = \varepsilon$$
(2.5)

In particular, we have

$$\lim_{n \to \infty} M(x_{n+1}, x_n, x_n) = \varepsilon$$
Here $\varepsilon = \inf\{G(x_{n+1}, x_n, x_n) : n \in N\}$

$$(2.6)$$

We claim that $\varepsilon = 0$. Suppose to the contrary that $\varepsilon > 0$. Regarding (2.6) together with the assumption that *T* is a generalized Meir- Keeler type contraction, for this , there exists a $\delta > 0$ and a natural no *m* such that

$$\varepsilon \le M(x_{m+1}, x_m, x_m) < \varepsilon + \text{ bimplies}$$

$$G(Tx_{m+1}, Tx_m, Tx_m) = G(x_{m+2}, x_m, x_m) < \varepsilon$$
(2.7)

which is a contradiction Because $\varepsilon = \inf\{G(x_{n+1}, x_n, x_n): n \in N\}$.

Theorem2.4.: Let (X, G) be a complete G -metric space and $T: X \to X$ be an orbitally continuous generalized Meir-Keeler type contraction. Then T has a unique fixed point, say $w \in X$. ver, $\lim_{n\to\infty} G(T^n x, w, w) = 0$ for all $x \in X$.

Proof: Let $x_0 \in X$.we define an iterative sequence $\{x_n\}$ as

$$x_n = Tx_n = T^{n+1}x_0 (2.8)$$

for all $n \ge 0$. We claim that $\lim_{m,n\to\infty} G(x_n, x_m, x_m) = 0$. If this is not the case, then there exist a $\varepsilon > 0$ and a subsequence $\{x_{n(i)}\}$ of $\{x_n\}$ such that

$$G(x_{n(i)}, x_{n(i+1)}, x_{n(i+1)}) > 2\varepsilon$$
(2.9)

For the same $\varepsilon > 0$ above, $\exists \delta > 0$ such that

$$\varepsilon \leq M(x, y, z) < \varepsilon + \delta$$

which implies that $G(Tx, Ty, Tz) < \varepsilon$.

Set $r = \min\{x, \delta\}$ and $g_n = G(x_n, x_n, x_{n+1})$ for all $n \ge 1$. By proposition 2.3, one can choose a natural no n_0 such that

$$g_n = G(x_n, x_n, x_{n+1}) < \frac{r}{4}$$
(2.10)

for all $n \ge n_0$. Let $n(i) > n_0$. We have $n(i) \le n(i+1) - 1$.

If
$$G(x_{n(i)}, x_{n(i+1)-1}, x_{n(i+1)-1}) \le \varepsilon + \frac{r}{2}$$
.

Then by using (G5)we derive

$$G(x_{n(i)}, x_{n(i+1)}, x_{n(i+1)}) \le G(x_{n(i)}, x_{n(i+1)-1}, x_{n(i+1)-1}) + G(x_{n(i+1)-1}, x_{n(i+1)}, x_{n(i+1)})$$

$$\le \varepsilon + \frac{r}{2} + g_{n(i+1)-1} < \varepsilon + \frac{3r}{4} < 2\varepsilon$$
(2.11)

which contradicts the assumption (2.9). Therefore, there are values of k such that

$$n(i) \le k \le n(i+1) \text{ and } G(x_{n(i)}, x_k, x_k) > \varepsilon + \frac{r}{2}.$$

Now if $(x_{n(i)}, x_{n(i)+1}, x_{n(i)+1}) \ge \varepsilon + \frac{r}{2} > r + \frac{r}{2} > \frac{r}{4}.$

This is a contradiction because of (2.10). Hence there are values of k with $n(i) \le k \le n(i+1)$ such that $G(x_{n(i)}, x_k, x_k) < \varepsilon + \frac{r}{2}$.

We choose the smallest integer k with $k \ge n(i)$ such that $G(x_{n(i)}, x_k, x_k) \ge \varepsilon + \frac{r}{2}$. Then, we find

$$G(x_{n(i)}, x_{k-1}, x_{k-1}) < \varepsilon + \frac{r}{2}.$$

So we see that

$$G(x_{n(i)}, x_k, x_k) \le G(x_{n(i)}, x_{k-1}, x_{k-1}) + G(x_{k-1}, x_{k-1}, x_k) < \varepsilon + \frac{r}{2} + \frac{r}{4} = \varepsilon + \frac{3r}{4}$$
(2.12)

Now we can choose a natural number k satisfying $n(i) \le k \le n(i + 1)$ such that

$$\varepsilon + \frac{r}{2} \le G\left(x_{n(i)}, x_k, x_k\right) < \varepsilon + \frac{3r}{4}$$
(2.13)

Therefore we obtain the inequalities

$$G(x_{n(i)}, x_k, x_k) < \varepsilon + \frac{3r}{4} < \varepsilon + r,$$
(2.14)

$$G(x_{n(i)}, x_{n(i)+1}, x_{n(i)+1}) = g_{n(i)} < \frac{r}{4} < \varepsilon + r,$$
(2.15)

and
$$G(x_k, x_{k+1}, x_{k+1}) = d_k < \frac{r}{4} < \varepsilon + r$$
 (2.16)

By (2.14) -(2.16), we get that $M(x_{n(i)}, x_k, x_k) < \varepsilon + r \le \varepsilon + \delta$. Since *T* is a generalized Meir-Keeler type contraction,

$$G(x_{n(i)+1}, x_{k+1}, x_{k+1}) < \varepsilon$$

By using (G5), we obtain

$$G(T^{n(i)}x_0, T^kx_0, T^kx_0) \le G(T^{n(i)}x_0, T^{n(i)+1}x_0, T^{n(i)+1}x_0) + G(T^{n(i)+1}x_0, T^kx_0, T^kx_0, T^kx_0)$$

$$\leq G(T^{n(i)}x_0, T^{n(i)+1}x_0, T^{n(i)+1}x_0) + G(T^{n(i)+1}x_0, T^{k+1}x_0, T^{k+1}x_0) + G(T^{k+1}x_0, T^kx_0, T^kx_0)$$

We combine the inequality above with (2.13), (2.15) and (2.16) to conclude

$$G(x_{n(i)+1}, x_{k+1}, x_{k+1}) \geq G(x_{n(i)}, x_k, x_k) - G(x_k, x_{k+1}, x_{k+1}) > \varepsilon + \frac{r}{2} - \frac{r}{4} = \varepsilon.$$

which is a contradiction. Therefore our claim is proved. So $\{x_n\} = \{T^n x_0\}$ is a G – Cauchy sequence. Since (X, G) is G – complete, the sequence $\{x_n\}$ converges to some $w \in X$.

By proposition 2.3, we have

$$\lim_{n\to\infty} G(T^n x_0, w, w) = \lim_{n\to\infty} G(T^n x_0, T^n x_0, w) = 0.$$

Next we will prove w is a fixed point of T.

Since *T* is orbitally continuous and $\lim_{n\to\infty} G(T^n x_0, w, w) = 0$, we get

$$\lim_{n \to \infty} G(TT^n x_0, Tw, Tw) = \lim_{n \to \infty} G(x_{n+1}, Tw, Tw) = 0$$

where $x_{n+1} = TT^n x_0 = T^{n+1} x_0$. Thus $\{x_{n+1}\}$ converges to Tw in (X, G). By the uniqueness of limit, we get Tw = w.

Finally we show that *T* has a unique fixed point. If there exist $u \in X$ such that Tu = u and $G(u, w, w) \neq 0$, then we get $M(u, w, w) \geq G(u, w, w) > 0$. Since *T* is a generalized Meir-Keeler type contraction, we derive

$$0 < G(u, w, w) = G(Tu, Tw, Tw) < M(u, w, w)$$

= max{G(u, w, w), G(Tu, u, u), G(u, Tw, w), G(u, w, Tw)} = max{G(u, w, w), 0}
= G(u, w, w)

which is a contradiction. Thus we find that G(u, w, w) = 0. So by (G1) we conclude that u = w. In lar, T has a unique fixed point.

References

- [1] Abbas M. ,Rhoades, B., Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Comput. 215 (2009), 262-269.
- [2] Abbas M., Khan A.R., Nazir, T., Coupled common fixed point results in two generalized metric spaces, Appl.Math. Comput. 217 (2011) 6328-6336.
- [3] Abbas M., Nazir, T., Doric, C., Common fixed point of mappings satisfying (E.A.) in generalized metric spaces, Appl.Math. Comput. 218 (2012) 7665-7670.
- [4] Abdeljawad T., Meir-Keeler α –contractive fixed and common fixed point theorems, Fixed Point Theory Appl. 2013 (2013) 19.
- [5] Abdeljawad, T, Aydi, H, Karapınar, E: Coupled fixed points for Meir-Keeler contractions in ordered partial metric spaces. Math. Probl. Eng. 2012, Article ID 327273 (2012).
- [6] Agarwal R., Karapinar E., Remarks on some coupled fixed point theorems in G –metric spaces, Fixed Point Theory Appl. 2013 (2013) 2.
- [7] Agarwal R.P., O'Regan D., Shahzad N., Fixed point theory for generalized contractive maps of Meir-Keeler type, Math. Nachr. 276 (2004) 3–22.
- [8] Aydi H.Postolache M., Shatanawi W., Coupled fixed point results for (ψ, ϕ) weakly contractive mappings in ordered G –metric spaces, Comput. Math. Appl. 63 (2012) 298-309.
- [9] Aydi H., Karapinar E., A Meir-Keeler common type fixed point theorem on partial metric spaces, FixedPoint Theory Appl.2012 (2012) 26.
- [10] Aydi H., Karapinar E., New Meir–Keeler type tripled fixed point theorems on ordered partial metric spaces, Math. Prob.Eng. 2012(2012)(Article ID 409872).
- [11] Aydi H., Damjanovic B., Samet B., Shatanawi W., Coupled fixed point theorems for non-linear contractions in partially ordered G – metric spaces, Math. Comput. Model. 54 (2011) 2443-2450.
- [12] Aydi H., Shatanawi W., Vetro C., On generalized weakly G –contractionmapping in G –metric spaces, Comput. Math. Appl. 62 (2011) 4222-4229.
- [13] Banach S., Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math 3(1922) 133-181.
- [14] Chang T.H., Chen C.M., A common fixed point theorem for weaker Meir-Keeler type function, Appl. Math. Lett.. 23(2010) 252-255
- [15] Chen C.M., Chang T.H., Common fixed point theorems for a weaker Meir-Keeler type function in cone metric space, Appl. Math. Lett. 23(2010) 1336-1341.

- [16] Choudhury B.S., Maity P., Coupled coincidence point result in generalized metric spaces, Math. Comput.Model. 54 (2011) 73-79.
- [17] Chugh, R., Kadian, T., Rani, A., Rhoades, B.E., Property P in G-metric spaces, Fixed Point Theory Appl. 2010 (2010), 12p (Article ID 401684).
- [18] Ciric L., on contractive type mappings, Math. Balkanica 1 (1971) 52-57.
- [19] Jachymski J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal.Appl. 194 (1995) 293-303.
- [20] Kadelburg Z., Radenovic S., Meir-Keeler type conditions in abstract metric spaces, Appl. Math. Lett. 24 (2011) 1411-1414.
- [21] Karpagam S., Agrawal S., Best proximity point theorems for cyclic orbital Meir–Keeler contraction maps, Nonlinear Anal. 74 (4) (2011) 1040–1046.
- [22] Meir A. Keeler E., A theorem on contraction mappings, J. Math. Anal. Appl. 28(1969) 326329.
- [23] Mohamed A., A Meir-Keeler type common fixed point theorem for four mappings, Opuscula Math. 31 (1)(2011) 5-14.
- [24] Mustafa, Z, Aydi, H, Karapınar, E: On common fixed points in image-metric spaces using (E.A) property. Comput.Math. Appl. 64(6), 1944-1956 (2012)
- [25] Mustafa, Z, Aydi, H, Karapınar, E., Mixed g-monotone property and quadruple fixed point theorems in partially ordered metric spaces, Fixed Point Theory Appl.2012 (2012) 71.
- [26] Mustafa, Z., Awawdeh, F., Shatanawi, W, Fixed point theorem for expansive mappings in G metric spaces, Int.J.Contemp.Math. Sci. 5 (2010) 49-52.
- [27] Mustafa, Z: A new structure for generalized metric spaces with applications to fixed point theory. Ph.D. thesis, The University of Newcastle, Australia (2005)
- [28] Mustafa, Z, Obiedat, H, Awawdeh, F: Some fixed point theorem for mapping on complete G-metric spaces. Fixed Point Theory Appl. 2008, Article ID 189870 (2008)
- [29] Mustafa, Z, Obiedat, H, A fixed point theorem of Reich in G metric spaces, Cubo.M.J. 12(01) (2010) 83-93.
- [30] Mustafa, Z, Khandagiy, M, Shatanawi, W: Fixed point results on complete G-metric spaces. Studia Sci. Math. Hung. 48(3) (2011)304-319.
- [31] Mustafa, Z, Sims B., Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory Appl. 2009, Article ID 917175 (2009)
- [32] Mustafa, Z, Sims B., A new approach to generalized metric spaces, J. Nonlinear Convex Anal.7(2)(2006) 289-297.
- [33] Mustafa, Z, Sims, B., Some remarks concerning-metric spaces, in: Proc.Int.Conf. Fixed Point theory and Appl.alenciva (Spain), July 2003, pp. 189-198.
- [34] Mustafa, Z., Shatanawi, W, Bataineh, M: Existence of fixed point results in G-metric spaces. Int. J. Math. Math. Sci. 2009, Article ID 283028 (2009).
- [35] Obiedat, H., Mustafa, Z., Fixed point results on a nonsymmetric G -metric spaces, JordenJ.Math.Stat. 3(2) (2010) (65-79).
- [36] Park S., Rhoades B.E., Meir-Keeler type contractive conditions, Math. Jpn.26 (1981) 13-20.
- [37] Piatek, B., On cyclic Meir-Keeler contractions in Metric spaces, Nonlinear Anal. 74 (1) (2011) 35-40.
- [38] Saadati, R., Vaezpour, S., M., Vetro, P., Rhoades B.E., Fixed pointtheorems in generalized partially ordered G metric spaces, Math. Comput. Model, 52(2010) 797-801.
- [39] Samet, B., Coupled fixed point theorems for a generalized Meir-Keelercontraction in partially ordered metric spaces, Nonlinear Anal. 74(2010) 4508-4517.
- [40] Shatanawi W., Some fixed point theorem in ordered G-metric spaces and applications, Abstr. Appl. Anal. 2011 (2011). 11p (Article ID 126205).
- [41] Shatanawi W., Mustafa, Z., Tahat, N., Some coincidence point theorems for nonlinear contraction in ordered metric spaces, Fixed Point theory Appl.2011 (2011) 68.
- [42] Shatanawi W., Fixed Point theory for contractive mappings satisfying Φ –maps in G –metric spaces, Fixed Point theory Appl. 2010 (2010), 9p Article ID 181650.
- [43] Suzuki T., Fixed point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces, Nonlinear Anal. 64 (2006), 971–978.