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1 Introduction and Preliminaries

Fixed point theory has many applications in wide areas of mathematics, also in many branches of quantitative
sciencessuch as economics and computer sciences. The Banach contraction principle [13] is the famous result
in this field. This result has many generalizations out of which Meir-Keeler contraction is one.

The Meir-Keeler contraction [22] which wasproved in1969plays an important role in the field of fixed point
theory and it has been extended by many authors.

In 2009, T.H. Chang and C.M. Chen [14] defined the weaker Meir—Keeler type function y: R+—- R + and
proved following common fixed point theorem of two set-valued mappings in a complete metric space:

Let (X, d) be a complete metric space, and let T,S:X — B(X) . If (T, S) have the non -contraction property,
and if for each t > 0 with y(t) < t and {yn(t)}n € N is non-increasing, then S and T has a unique common
fixed point a in. Moreover,

Sa=Ta={a}.

In 2010 C. Chen and T. Chang[15]defined a weaker Meir—Keeler type function y: intP U {0} — intP U {0}
in a cone metric space, and proved the following common fixed point theorems of four single-valued func-
tions in cone metric spaces:

Let(X,d) be a complete cone metric space with regular cone P such thatd(x,y) € intP forall x,y €
Xwithx # y ,and let F, G, S, T: X — X be four single-valued functions with SX € GX andTX < FX such that
forall,y e X,

d(Sx,Ty) < Y(max{d(Fx, Gy),d(Fx,Sx),d(Gy, Ty),% [d(Fx,Ty) + d(Gy, Sx)]}).

IfS andF are compatible,T andG are compatible, and if eitherF orG iscontinuous, thenS, T, FandG have a
unique common fixed point inX.

Samet B. in 2010 [39] defined generalized Meir-Keeler type function and proved the following fixed point
theorem in partial metric space:

Let (X, <) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete me-
tric space.Let F : X X X — X beamappingsatisfyingthefollowinghypotheses:

(i) F iscontinuous,

(i) F hasthemixedstrictmonotoneproperty,

(iii) FisageneralizedMeir—Keelertypefunction,

(iv)3xy, yo € X suchthat xy < F(xg,yo)andy, = F(yy, xo).
Then,thereexists (x,y) € X suchthat x = F(x, y)andy = F(y, x).

Mustafa and Sims [32]in 2005introduced G-metric space which was the generalization of metric
space.Mustafa proved some fixed point results [24-34, 35, 5, 6] in G-metric spaces. Shatanawi W. [42] also
proved some fixed point results in G-metric spaces for ¢ —maps and for two weakly mappings in partially
ordered G-metric spaces.

ISSN: 2231-5373 http://www.ijmttjournal.org Page 269



International Journal of Mathematics Trends and Technology (IJMTT) — Volume 57 Issue 4- May 2018

In 2011 Aydi H., Damjanovic [11] proved coupled coincidence and coupled common fixed point theorems
for a mixed g -monotone mapping satisfying nonlinear contractions in partially ordered G -metric spaces.
Following result was proved by them:

Let(X, <) be a partially ordered set and G be a G -metric on X such that(X, G) is a complete G -metric space.
Suppose that there exist¢p € @ ,F: X X X - X and g: X — X such that

(1) G(F(x, ), F(u,v), F(w, 2)) < $(G(gx, gu, gw) + G(gy, gv, g2)
(2) forallx,y,u,v,w,z € X withgw < gu <gxandgy < gv< gz.

Suppose also thatF is continuous and has the mixedg -monotone property,F (X x X) € g(X) andg is conti-
nuous and commutes withF. If there existx,, y, € X such that

gxo = F(x0y0)andF (xoy) < g¥o

thenF andg have a coupled coincidence point, that is, there exists(x, y) € X X X such that
gx = F(x,y)andgy = F(y, x).

In 2012, Aydi H., Karapinar Erdal[9],proved a general common fixed point theorem for two pairs of weakly
compatible self-mappings of a partial metric space satisfying a generalized Meir-Keeler type contractive
condition.

Let 4, B, S and T be any self-maps of a partial metric space(X, p) satisfying the following conditions;

(C,)AX € TX,BX C SX, (1)
(C,) Givene > 0, there exists a § > 0 such that for all x, y in X
e<M(x,y)< €+ =>p(Ax,By) < ¢ (2
WhereM (x,y) = max {p(Sx, Ty),p(Ax, Sx),p(By, Ty),%(p(Sx, By) + p(4x, Ty))}
(C3) forall x,y € X withM > 0 = p(Ax, By) < M(x,y)
(iii) p(Ax, By) < maxi{u[p(Sx,Ty) + p(Ax,Sx) + p(By, Ty)], b[p(Sx, By) + p(Ax, Ty)]}
for0<a<3,0<bh<;
©)
If one of AX, BX, SXandTXis a closed subset of X, then
(i) AandS have a coincidence
(if)BandThave coincidence

Moreover, if A and S, as well as, B and T are weakly compatible, then A, B, S and T have a unique common
fixed point.

In 2013Abdeljawad T.[4] developed the fixed point theorems for a-contractive type maps to Meir-Keeler
versions and generalize the resultsas:

Let (X,d)be an (f, g)orbitally complete metric space, where f, g are self-mappings of X. Also, leta: X X
X — [0, ) be a mapping. Assume the following:

(1) (f, g) is a-admissible and there exists an x, € Xsuch that

a(xy, fxo) = la(xg, fxo) = 1.

(2) the pair (f, g) is generalized Meir-Keeler a-contractive.

Then the sequence d,, = d(x,, x,+1) is monotone decreasing. If, moreover, we assume that

(3) On the (f, g)-orbit ofx, we have a(x,,x;) = 1 for all n even and j > n odd and that fand g are conti-
nuous on the (f, g)-orbit ofx,.
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Then either (1) f or g has a fixed point in the(f, g)—orbit{x,}ofx, or (2) f and g have a common fixed point
pand lim,,_,,, x,, = p. If, moreover, we assume that the following condition (H) holds: If {x,} is a sequence
in X such that a(x,,x,,+1) =1 for all n and x,, — x implies a(x,,x) = 1for all n, then uniqueness of the
fixed point is obtained.

Definition 1.1.[32] Let X be a non- empty set, and let G: X X X X X — R" be a function satisfying the fol-
lowing axioms:

G)Gxy,2z) =0ifx =y = z

(G20 < G(x,x,y),forall x,y € X,withx # y,

(G3)G(x,x,y) < G(x,y,z),forallx,y,z € X,withz # y,

(Gy) G(x,y,2) = G(x,2,y) = G(y,z,x) = (Symmetry in all three variables),

(Gs) G(x,y,2z) < G(x,a,a) + G (a,y,z),forall x,y,z,a € X,(Rectangle inequality).

Then the function G is called a generalized metric or more specifically a G-metric on X, and the pair (X, G) is
called a G-metric space.

Example 1.2. Let R be the set of all real numbers. Define G: R X R X R —» R by
Gx,y,z) =|lx—y|+|y—z|+|z—x|forallx,yz € X.

Then it is clear that (R, G) is a G-metric space.

Proposition 1.3.[32]Let (X, G) be a G-metric space. Then for anyx, y, z, anda € X, it follows that

(1) If G(x,y,z) = O,thenx =y =z,
(2) G(x,y,2) < G(x,x,¥) + G(x,x,2),
(3) G(x,y,¥) < 2G(y,x,x),

(4) G(x,y,2) < G(x,a,2) +G(a,y,2),

(5) Gxy.2) < (DY) + 6(xa2)+ G(a,y2),
(6) G(x,y,z) < (%)(G(x, a,a)+ Gy, a,a) +G(za,a)).
Definition 1.4.[32]Let (X, G) be a G-metric space, let {x, }) be a sequence of points of X, we say that {x, }is
G-convergent
limy, 00 G (X, X5, X)) = Ojie.
for any e> 0, there exists nge N such that
G(x, %y, xy) <¢ foralln,m = n,.

We refer to x as the limit of the sequence{x, } and write x,, (G) —x.

Proposition 1.5. [32] Let (X, G) be a G —metric space. Then the following are equivalent:
(1) {x, }is G-convergent to x.
(2) G(xp, ,x,,x) > 0asn — 4+
3)G(x, ,x,x) > 0asn — 4+
4) G(x,, , %, x) > 0asm,n - +oo

Definition 1.6. [32]Let (X, G) be a G-metric space. A sequence{x, } is called G-Cauchy if given ¢ > 0, there
is o€ N such that G (x, x,,, x,,,) <¥¢, for all n, m, 1 > ng that is

ifG(x,, x,, x)) > 0asn,m, | — oo,

Proposition 1.7. [32] In a G —metric space(X, &), the followings are equivalent-
(1) The sequence {x,} is G — Cauchy.
(2) Foreverye > 0,3N € Nsuchthat G(x, ,x,,x,) <e&foralln,m > N.
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(3{x, }is a Cauchy sequence in the metric space (X, G).

Definition 1.8. [32] A G —metric space (X, G) is said to be G-complete (or a complete G-metric space) if
every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

Example 1.9. LetX = {0,1,2,3....}and G : X x X X X — R™ be defined as follows:

x+y+2zif x,y,zare all distinct and dif ferent from zero
x+zif x =y # zand all are dif ferent from zero
y+z+1,if x =0,y #z,yand z are dif ferent from zero

G(x,y,z) =1 y+2,ifx=0y=z+#0
z+1ifx=0y=0,z#0
0,ifx=y=z

Then (X, G) is a complete G-metric space,thenG is also nonsymmetric since G(0,0,1) # G(1,1,0).

Proposition 1.10.[32] In a G —metric space, (X, G), the following are equivalent.
(1) thesequence{x, }) is G-Cauchy.
(2) For every e> 0, there exists N € N such that G (x,,, x,,, X, )<¢, foralln,m > N.

(3) {x,}is a Cauchy sequence in the metric space (X, d;).

Definition 1.11. A G —metric space (X, G) is said to be G-complete (or a complete G-metric space) if
every G-Cauchy sequence in (X, G) is G-convergent in (X, ).

Corollary 1.12. Every G-convergent sequence in a G —metric space is G-Cauchy.

Corollary 1.13. If a G-Cauchy sequence in a G-metric space (X, G) contains a G —convergent subsequence,
then the sequence itself is G-convergent.

Proposition 1.14. A G-metric space (X, ¢) is G-complete if and only if(X, d.;) is a complete metric space.

Corollary 1.15.1fY is a non-empty subset of a G —complete metric space (X, G), then (Y, G|Y ) is complete if
and only if Y is G —closed in (X, G).

Definition 1.16. Let (X,G)and (X',G ") be G-metric spaces and let f: (X,G) - (X',G ") be a function,
then f is said to be G-continuous at a point a € X if given € > 0, there exists 8 > 0 such that x,y €
X; G(a,x,y) < dimpliesG’' (f(a),f(x), f(¥) < e.

A function f is G —continuous on X if and only if it is G-continuous at all a € X.

Proposition 1.17. Let (X,G) and(X ',G ') be G-metric spaces and letf : (X,G) - (X',G") is G —conti-
nuous at a point x € X if and only if G —sequentially continuousat x € X; that is whenever {x,} is G —con-
vergent to x we have (f(x,)) is G —convergent to (f (x)).

Definition1.18.Let (X, d) be a metric space and T be a self map on X.Then T is called a Meir-Keeler type
contraction whenever for each € > 0, there exists § > 0 such that

e<dx,y)<e+ 6§=2d(Tx,Ty)<c¢

This contraction has been modified and extended by many authors in metric spaces and some other related
structures[1-38, 40-41,43].Now we prove a unique fixed point result by using generalized Meir-Keeler con-
traction on G-metric spaces.
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2.Main Results

Definition2.1.Let (X, G)be a G —Metric spaceand T be a self map on X .ThenT is called a generalized
Meir-Keeler type contraction whenever for each € > 0, there exists § > 0 such that

eE<M(x,y,z) <e+ §=>G(Tx, Ty, Tz) < ¢
(2.1)

WhereM (x,y, z) = max{G(x,y,z),G(Tx,x,x),G(x,Ty, z), G(x,y,Tz)}
Remark 2.2. Note that if T is a generalized Meir-Keeler type contraction then we have

G(Tx,Ty,Tz) < M(x,y,7z).
(2.2)

Now we come to our main results.

Proposition2.3.. Let (X, G) be a G —Metric space and let T: X — X be a generalized Meir-Keeler type con-
traction. Then

lim,, e G(T™*'x, T"x,T"x) = Ofor all x € X.
Proof: Let x, € X.we define an iterative sequence {x,} as

x, = Tx, = T" x,
2.3)

foralln = 0. 1f x,, 41 = x, for some ny = 0, then x,,, is required fixed point of T. Indeed ,

0

TXpy = Xng41 = Xn,- In this case, the proposition follows. Throughout the proof, we assume that
X1 # xifor all k = ny.consequently, we have M (x,, .1, X, x,,) > 0 for everyn > 0. By remark 2.2, we get

G(Xn42) Xn11 Xnt1) = G(Tx 41, Ty, Toxy) < M(xpyq, X5, %)
= max{G (X1, % %), G (T X1, Xns1, X115 G (st T, %), G (g1, X, T}
= max{G(Xn 41, X, Xn), G(Xn42) Xn 11, Xn11)}
Since M (x,,,1,%,, x,) > 0 for each n, we find that
GOtz Xng1, Xpg1) < MQppq, X, %) < max{G (g1, X, %3, G (X 42, X 41, Xn41)}
By the use of remark 2.2 again,we notice that the case where
max{G (Xn 1, Xn, Xn ), G(Xn12, Xn11, Xp11)} = G(Xn 42, Xn 11, Xng1)
is impossible . Hence we derive that
G(Xn42) X1 Xng1) < M(xppq, Xn, %) = G(Xny1, X, X)) (2.4)
for every n.

Thus {G(x,11,%,, X, ) n=o IS decreasing sequence which is bounded by 0. Hence, it converges to some
£ €]0,00),i.e.

limy, o0 G(Xp 11, X, Xp) = € (2.5)
In particular, we have

limy, oo M (X141, Xn, Xp) = € (2.6)
Here ¢ = inf{G(x,41, Xn, x,): N € N}

We claim that € = 0. Suppose to the contrary that € > 0. Regarding (2.6) together with the assumption that
T is a generalized Meir- Keeler type contraction, for this , there exists a 8 > 0and a natural no m such that

€< M(p41, X, %) < €+ Simplies
G(TXm 11, TXony Ty) = G (X g2, Xy X)) < € (2.7)
which is a contradiction Because &€ = inf{G (x,, 11, X, x,,):n € N}.

Theorem2.4. : Let (X, G) be a complete G —metric space and T: X — X be an orbitally continuous genera-
lized Meir- Keeler type contraction. Then T has a unique fixed point, say w € X.
verlim,, ,, G(T"x,w,w) = 0 forall x € X.
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Proof: Let x, € X.we define an iterative sequence {x, } as
x, = Tx, = T" x, (2.8)

for all n > 0. We claim that lim,, , ., G(x,,, x,,, X, ) = 0. If this is not the case , then there exist a € > 0 and
a subsequence {x,;} of {x,} such that

G (% (i) Xn(i1y Xn(ieny) > 2€ (2.9)
For the same & > Oabove,36 > 0 such that

e<M(x,y,z)<e+6
which implies that G(Tx, Ty, Tz) < e.

Set r = minig, §} and g,, = G(x,, x,, x,41) for all n = 1. By proposition 2.3, one can choose a natural no
n, such that

In = G, Xn, X 1) <7 (2.10)
foralln = n,. Letn(i) > ny. Wehave n(i) <n(i+1) — 1.
G (X (1)) Xn(i41) -1 Xn(i+1)—1) S € + %
Then by using (G5)we derive
G (X () Xn 41 Xn(i+1) S G (Kn @) Xn(40-1 Xn(41-1) + 6 (Kn(41-1 Xn(+1) Xn(i+1))

<&+ % + Gn+)-1 < e+ %T < 2¢ (2.11)
which contradicts the assumption(2.9). Therefore, there are values of k such that
n(i) <k <n(i+ 1)and G(xn(i),xk,xk) > e+ %
Now if(xn(l-),xn(l—)H,xn(l—)H) >e+ % >r+ g > i.
This is a contradiction because of (2.10). Hence there are values of k with n(i) < k < n(i + 1) such that
G(xn(l-),xk, xk) <e+ %
We choose the smallest integer k with k > n(i) such that G (x, ) x;, ;) = € + % Then, we find
G(xn(l-),xk_l,xk_l) <e+ %

So we see that

3
G(xn(l-)‘xk,xk) < G(xn(l-),xk_l,xk_l) + G(xk_llxk_l,xk) <e+ % + Z =&+ Tr (2.12)
Now we can choose a natural number k satisfying n(i) < k < n(i + 1) such that
3

& +£ < G(xn(i),xk,xk) <&+ Tr (213)
Therefore we obtain the inequalities

G(xn(i)‘xk, xk) <e+ 2%<£ +7, (2.14)
G(xn(i),xn(i)+1'xn(i)+1) =0 < £<5 +7, (2.15)
andG(xk,xk+1,xk+1) = dk < £<€ +r (216)

By (2.14) -(2.16),we get thatM(xn(i),xk,xk) < e+7r < e+ 6.SinceT is a generalized Meir-Keeler type con-
traction,

G (X ()41, X410 Xpe1) < €
By using (G5), we obtain
G(T®xg, T*xq, T*xg) < G(TOxg, TPO+xy, THOH ) + G (T O+, Tk xg, T x)
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< G(T”(i)xo, Tn(i)+1x0’ Tn(i)+1x0) +G (Tn(i)+1x0’ Tk+1x0, Tk+1x0) + G(Tk+1x0, T"xo, Tkxo)
We combine the inequality above with (2.13), (2.15) and (2.16) to conclude

G(xn(i)+1,xk+1:xk+1) = G(xn(i),xk:xk) - G(xk,xk+1:xk+1) >e+ %“% =e.

which is a contradiction. Therefore our claim is proved. So {x,} = {T"x,} is a G — Cauchy sequence. Since
(X,G) is G — complete, the sequence {x, } converges to some w € X.

By proposition 2.3, we have
lim G(T"xy, w,w) = lim G(T"x,, T"xy,w) = 0.
n—oo n-—-oo
Next we will prove w is a fixed point of T.
Since T is orbitally continuous and lim,,_,., G(T"xy, w,w) =0, we get
lim G(TT"xy, Tw,Tw) = lim G(x,41,Tw,Tw) =0
n-—-oo

n—oo
wherex, ,; = TT"x, = T""x,. Thus {x,,,} converges to Tw in (X, G). By the uniqueness of limit , we get
Tw =w.

Finally we show that T has a unique fixed point. If there exist u € X such that Tu = u and G(u,w,w) # 0,
then we get M (u, w,w) = G (u, w,w) > 0.SinceT is a generalized Meir-Keeler type contraction, we derive

0<Glu,w,w)=G6(Tu,Tw,Tw) < M(u,w,w)
= max{G (u,w,w), G(Tu, u,w), G (u, Tw,w), G(u,w, Tw)} = max{G (u, w,w), 0}
=G(u,w,w)

which is a contradiction. Thus we find that G(u,w,w) = 0.So by (G1) we conclude that u =w. In
lar,T has a unique fixed point.
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