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Abstract 

                The Liebmann’s and Gauss Seidel finite difference methods of solution are applied to a two dimensional 

second order linear elliptic partial differential equation with specified boundary conditions.The analytical (exact) 

solution obtained shows that the error of the numerical solutions increases with the number of iterations and 

consequentlyhas strong effects on the accuracy of the solution. 

. 

 

1.  INTRODUCTION 

 

The analytical or classical solution of partial differential equations is the ability to write down a general 

formula of the problem as a solution and if possible to show that, the solution exists and depends continuously on 

the data given in the problem [2].This will imply that the solution obtained must be real, analytic or at least infinitely 

differentiable, in other to satisfy the given problem 

                                                                 

                Certain types of boundary value problems can be solved by replacing the differential equations by the 

corresponding difference equation and then solving the latter by a process of iteration. This method was devised and 

first used by L. T. Richardson and it was later improved by H. Liebmann.Finite difference methods are numerical 

methods for approximating the solutions to differential equations using finite difference equations to approximate 

derivatives ([1], [3]). 

 

                 An important aspect of numerical analysis of partial differential equations is the numerical solution of the 

finite linear algebraic systems that are generated by the discrete equations. These are in general very large, but with 

sparse matrices, which makes iterative methods suitable. The development of convergence analysis for such 

methods has paralleled that of the error analysis sketched above. In the 1950s and 1960s particular attention was 

paid to systems associated with finite difference approximation of positive type of second order elliptic equations, 

particularly the five-point scheme, and starting with the Jacobi and Gauss-Seidel methods techniques were 

developed such as the Frankel and Young successive over-relaxation and the Peaceman-Rachford  alternating 

direction methods ([4}, [5], [6], [7]). 

 

2. STATEMENT OF THE PROBLEM 

 

In this work, we investigate the numerical solution of the Laplacian equation ∇2𝑢 = 0 using two methods namely, 

Leibmann’s iteration process and gauss Seidel iteration process with a view to comparing the results obtained with 

the exact solution. 

 

3. MAIN RESULTS 

 

3.1 LIEBMANN’S ITERATION PROCESS 

Given the mesh below with boundary values as shown, we solve the equation ∇2𝑢 = 0in two dimensions 

using Leibmann’s iteration process. 
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SOLUTION: 

Take the central horizontal and vertical lines as AB and CD respectively. Let 𝑢1,𝑢2,… ,𝑢9 be the values of 𝑢 at the 

interior grid points of the mesh. The values of 𝑢 on the boundary are symmetrical w. r. t. the lines AB about AB and 

CD. 

∴ 𝑢1 = 𝑢3 = 𝑢7 = 𝑢9;      𝑢2 = 𝑢8;     𝑢4 = 𝑢6 and 𝑢5 is not equal to any value. 

∴ it is enough if we find 𝑢1,𝑢2,𝑢4, and 𝑢5. 

Rough values of u’s 

𝑈5 =
1

4
 1000 + 2000 + 1000 + 2000 = 1500 (SFPF) 

𝑈1 =
1

4
 0 + 1500 + 2000 + 1000 = 1125 (DFPF) 

𝑈2 =
1

4
 1000 + 1500 + 1125 + 1125 = 1187.5 ≅ 1188 (SFPF) 

𝑈3 =
1

4
 0 + 1500 + 1000 + 2000 = 1125 (DFPF) 

𝑈4 =
1

4
 1125 + 1125 + 2000 + 1500 = 1437.5 ≅ 1438 (SFPF) 

𝑈6 =
1

4
 1125 + 1125 + 1500 + 2000 = 1437.5 ≅ 1438 (SFPF) 

𝑢7 =
1

4
 0 + 1500 + 1000 + 2000 = 1125 (DFPF) 

𝑈8 =
1

4
 1000 + 1125 + 1125 + 1500 = 1187.5 ≅ 1188 (SFPF) 

SO, 𝑢1 = 𝑢3 = 𝑢9 = 𝑢7 = 1125 

𝑢2 = 𝑢8 = 1188 

𝑢4 = 𝑢6 = 1438 

Now, we have got the rough values at all interior grid points and already we possess the boundary values at the 

lattice points. We will now improve the values by using the standard five point formula.  

 

FIRST ITERATION: 

𝑢1
(𝑛+1)

=
1

4
 1000 + 500 + 𝑢2 + 𝑢4 =

1

4
 1000 + 500 + 1188 + 1438 = 1032 

𝑢1
(1)

= 𝑢3
(1)

= 𝑢9
(1)

= 𝑢7
(1)

 

𝑢2
(𝑛+1)

=
1

4
 𝑢1 + 𝑢3 + 𝑢5 + 1000 =

1

4
 1032 + 1032 + 1500 + 1000 = 1141 

𝑢2
(𝑛+1)

= 𝑢8
1 

𝑢4
 𝑛+1 =

1

4
 𝑢1 + 𝑢5 + 2000 + 𝑢7 =

1

4
 1032 + 1500 + 2000 + 1032 = 1391 

𝑢4
(𝑛+1)

= 𝑢6 

𝑢5
(𝑛+1)

=
1

4
 𝑢2 + 𝑢8 + 𝑢4 + 𝑢6 =

1

4
 1141 + 1141 + 1391 + 1391 = 1266 
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SECOND ITERATION 

𝑈1
(2)

=
1

4
 1000 + 500 + 1141 + 1391 = 1008 

𝑈1 = 𝑈3 = 𝑈9 = 𝑈7 

𝑈2
(2)

=
1

4
 1008 + 1008 + 1266 + 1000 = 1069 

𝑈2
(2)

= 𝑈8
(2)

 

𝑈4
(2)

=
1

4
 1008 + 1266 + 2000 + 1008 = 1321 

𝑈4
(2)

= 𝑈6
(2)

 

𝑈5
 2 =

1

4
 1069 + 1069 + 1321 + 1321 = 1195 

SIMILARLY, 

ITERATION 𝑢1 = 𝑢3 = 𝑢9 = 𝑢7 𝑢2 = 𝑢8 𝑢4 = 𝑢6 𝑢5 

Third 973 1035 1288 1162 

Fourth 956 1019 1269 1144 

Fifth 947 1010 1260 1135 

Sixth 942 1005 1255 1130 

Seventh 940 1003 1253 1128 

Eighth 939 1002 1252 1127 

Ninth 939 1001 1251 1126 

 

Very small difference is in the eighth and ninth iteration. Thus, 

 

𝑢1 = 𝑢3 = 𝑢7 = 𝑢9 = 939 

𝑢2 = 𝑢8 = 1001 

𝑢4 = 𝑢6 = 1251 

𝑢5 = 1126 

 

3.2 GAUSS SEIDEL ITERATION 

We now solve the same problem 
𝜕2𝑢

𝜕𝑥 2 +
𝜕2𝑢

𝜕𝑦 2 = 0 in the domain of the figure given below by Gauss’ seidel iteration 

method. 
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SOLUTION 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 0 

The above equation is a second order partial differential equation. It is an elliptic PDE. It has two dimensions. 

To solve the above equation using finite difference method, the second order PDE must first be discretize. Using the 

central difference approximation. 

Recall, 
𝜕2𝑢

𝜕𝑥 2 =
𝑢𝑖+1−2𝑢𝑖,𝑗+𝑢𝑖−1,𝑗

ℎ𝑥2  

𝜕2𝑢

𝜕𝑦2
=
𝑢𝑖,𝑗+1 − 2𝑢𝑖 ,𝑗 + 𝑢𝑖,𝑗−1

ℎ𝑦2
 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
=
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

ℎ𝑥2
+
𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

ℎ𝑦2
 

Let ℎ𝑥 = ℎ𝑦 = ℎ            

 =
𝑢𝑖+1,𝑗+𝑢𝑖−1,𝑗+𝑢𝑖,𝑗+1+𝑢𝑖,𝑗−1−4𝑢𝑖,𝑗

ℎ2  

𝑢𝑖,𝑗 = 𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1 

𝑢𝑖,𝑗 =
𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1

4
 

Then initial approximations are; 𝑢1 = 𝑢2 = 𝑢3 = 𝑢4 = 𝑢5 = 𝑢6 = 𝑢7 = 𝑢8 = 𝑢9 = 0 

Then we perform 10 successive iterations which are given below; 

FIRST ITERATION 

𝑈1 =
1

4
(0 + 𝑈4 + 𝑈2 + 0)𝑈1 =

1

4
 0 + 0 + 0 + 0 = 0 

𝑈2 =
1

4
(𝑈1 + 𝑈5 + 𝑈3 + 0)𝑈2 =

1

4
 0 + 0 + 0 + 0 = 0 

𝑈3 =
1

4
(𝑈2 + 𝑈6 + 0 + 0)𝑈3 =

1

4
 0 + 0 + 0 + 0 = 0 

𝑈4 =
1

4
 0 + 𝑈7 + 𝑈5 + 𝑈1 𝑈4 =

1

4
 0 + 0 + 0 + 0 = 0 

𝑈5 =
1

4
(𝑈4 + 𝑈8 + 𝑈6 + 𝑈2)𝑈5 =

1

4
 0 + 0 + 0 + 0 = 0 

𝑈6 =
1

4
(U5 + 𝑈9 + 0 + 𝑈3)𝑈6 =

1

4
 0 + 0 + 0 + 0 = 0 

𝑈7 =
1

4
(0 + 1 + 𝑈4 + 𝑈8)𝑈7 =

1

4
 0 + 0 + 1 + 0 = 0 

𝑈8 =
1

4
 𝑈7 + 1 + 𝑈9 + 𝑈5 𝑈8 =

1

4
(0.25 + 1 + 0 + 0 = 0.312) 

𝑈9 =
1

4
 𝑈8 + 1 + 0 + 𝑈6                 𝑈9 =

1

4
 0.312 + 1 + 0 + 0 = 0.328 

 

SECOND ITERATION                                                                  

𝑈1
 2 =

1

4
 0 + 0 + 0 + 0 = 0  

𝑈2
(2)

=
1

4
 0 + 0 + 0 + 0 = 0 

𝑈3
(2)

=
1

4
(0 + 0 + 0 + 0) = 0 

𝑈4
(2)

=
1

4
 0 + 0.25 + 0 + 0 = 0.062 

𝑼𝟓
(𝟐)

=
1

4
 𝟎 + 0.312 + 0 + 0 = 0.078 

𝑈6
(2)

=
1

4
(𝑈5 + 𝑈9 + 0 + 𝑈3 = 0.082) 

𝑈7
(2)

=
1

4
 0 + 1 + 0.0312 + 0 = 0.328 
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𝑈8
(2)

=
1

4
 0.25 + 1 + 0 + 0.328 = 0.394 

𝑈9
(2)

=
1

4
 0 + 0.312 + 1 + 0 = 0.328 

 

 

ITERATION U1 U2 U3 U4 U5 U6 U7 U8 U9 

I 0 0 0 0 0 0 0.25 0.312 0.328 

2 0 0 0 0.062 0.078 0.082 0.328 0.394 0.328 

3 0.016 0.024 0.027 0.106 0.100 0.127 0.375 0.398 0.464 

4 0.32 0.053 0.045 0.0140 0.196 0.160 0.401 0.499 0.415 

5 0.048 0.072 0.058 0.161 0.223 0.174 0.415 0.513 0.0422 

6 0.058 0.085 0.065 0.174 0.236 0.181 0.058 0.520 0.425 

7 0.065 0.092 0.068 0.181 0.244 0.184 0.425 0.525 0.427 

8 0.068 0.095 0.070 0.184 0.247 0.186 0.427 0.525 0.428 

9 0.070 0.097 0.071 0.186 0.249 0.187 0.428 0.526 0.428 

10 0.071 0.098 0.071 0.187 0.250 0.187 0.428 0.526 0.428 

 

ANALYTIC SOLUTION  

We consider the equation 

𝜕2𝑢

𝜕𝑥 2 +
𝜕2𝑢

𝜕𝑦 2 = 0.         (1) 

Let  𝑢 = 𝑋 𝑥 .𝑌(𝑦)         (2) 
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Substituting the values of   
𝜕2𝑢

𝜕𝑥 2   and   
𝜕2𝑢

𝜕𝑦 2  in equation (1), we have, 

𝑥 ′′𝑦 + 𝑥𝑦 ′′ = 0 

or 
𝑥 ′′

𝑥
= −

𝑦 ′′

𝑦
= −𝑝2  for some real 𝑝. 

From here, we have that 

𝑋 ′′ = −𝑝2𝑋  or 𝑋 ′′ + 𝑝2𝑋 = 0       (3)  

 𝑌′′ = 𝑝2𝑌 or 𝑌′′ − 𝑝2𝑌 = 0       (4) 

Auxiliary equation corresponding to equation (3) is   

𝑚2 + 𝑝2 = 0  

 => 𝑚 = ± −𝑝2 = ±𝑖𝑝 

𝑋 = 𝐶1 cos𝑝𝑥 + 𝐶2 sin𝑝𝑥. 

Auxiliary equation corresponding to equation (4) is 

𝑚2 + 𝑝2 = 0  

=> 𝑚 = ± −𝑝2 = ±𝑝 

𝑌 = 𝐶3𝑒
𝑝𝑦 + 𝐶4𝑒

−𝑝𝑦 . 

Substituting the values of 𝑋 and 𝑌 in equation (2) we have, 

𝑈 =  𝐶1 cos𝑝𝑥 + 𝐶2 sin𝑝𝑥 (𝐶3𝑒
𝑝𝑦 + 𝐶4𝑒

−𝑝𝑦 ).      (5)  

Substituting𝑥 = 0 and 𝑈 = 0 in equation (5) we have, 

0 = 𝐶1(𝐶3𝑒
𝑝𝑦 + 𝐶4𝑒

−𝑝𝑦 ) 

Equation (5) reduces to  

𝑈 =  𝐶2 sin𝑝𝑥 (𝐶3𝑒
𝑝𝑦 + 𝐶4𝑒

−𝑝𝑦 ) 

 0 = 𝐶2 sin 4𝑝 (𝐶3𝑒
𝑝𝑦 + 𝐶4𝑒

−𝑝𝑦 )        

 (6) 

 𝐶2 ≠ 0   
 ∴ sin 4𝑝 = 0 = sin𝑛𝜋 

This implies that 

4𝑝 = 𝑛𝜋 or  𝑝 =
𝑛𝜋

4
 

Now equation (6) becomes   

𝑈 = 𝐶2 sin
𝑛𝜋𝑥

4
 𝐶3𝑒

𝑛𝜋

4
𝑦 + 𝐶4𝑒

−
𝑛𝜋

4
𝑦        (7) 

Substituting𝑦 = 0 and 𝑈 = 0 in equation (7) we have, 

0 = 𝐶2 sin
𝑛𝜋𝑥

4
 𝐶3 + 𝐶4 .   

This means that 

𝐶3 + 𝐶4 = 0   or  𝐶3 = −𝐶4.   

Equation (7)  becomes  

𝑈 = 𝐶2𝐶3 sin
𝑛𝜋𝑥

4
 𝑒

𝑛𝜋

4
𝑦 − 𝑒−

𝑛𝜋

4
𝑦  .       (8)  

Substituting𝑦 = 4and 𝑈 = 1in equation (8) we get, 

1 = sin
𝜋

2
=𝐶2𝐶3 sin

𝑛𝜋𝑥

4
 𝑒

𝑛𝜋

4
4 + 𝑒−

𝑛𝜋

4
4 ,       (9) 

i.e., 𝐶2𝐶3 =
1

sin
𝑛𝜋𝑥

4
 𝑒𝑛𝜋 +𝑒−𝑛𝜋  

 

Substituting these values in equation (8) we have, 

𝑢 =
1

sin
𝑛𝜋𝑥

4
 𝑒𝑛𝜋 +𝑒−𝑛𝜋  

sin
𝑛𝜋𝑥

4
 𝑒

𝑛𝜋

4
𝑦 − 𝑒−

𝑛𝜋

4
𝑦 , 

𝑢 =
 𝑒

𝑛𝜋
4 𝑦

−𝑒
−
𝑛𝜋
4 𝑦

 

 𝑒𝑛𝜋 +𝑒−𝑛𝜋  
, 

𝑢 =
sinh

𝑛𝜋

4
𝑦

sin 𝑛𝜋
. 
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The figure shows the results of the solution of an elliptic partial differential equation in consideration. 
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