On Non Bondage Number of a Jump Graph

N.Pratap Babu Rao
Department Of Mathematics S.G. Degree College Koppal(Karnataka)India

Abstract

For a jump graph $J(G)$ a set $D \subset V(J(G)$ is a dominating set if every vertex in $V(J(G))$-D is adjacent to at least one vertex in D. The domination number $\sqrt{ }(J(G))$ of $J(G)$ is the minimum cardinality of a total dominating set. The non bondage number $b_{n}(J(G))$ of $J(G)$ is the maximum cardinality among all sets of edges $X \subseteq E(J(G))$ such that $\sqrt{ }(J(G)-X)=\sqrt{ }(J(G))$. A set $D \subseteq V(J(G))$ is a strong dominating set if every vertex in $V(J(G))$-D has a neighbor u in D such that the degree of u is not smaller than the degree of v, The strong domination number $V_{s}(J(G))$ og $J(G)$ is minimum cardinality of a strong dominating set. The non bondage number $b_{s n}(J(G))$ of a non empty jump graph $J_{(G)}$ is the maximum cardinality among all sets of edges $X \subseteq E(J(G))$ such that $V_{s}(J(G)-X)=V_{s}(J(G))$. In this paper some results on the non bondage number, exact values of $b_{n}(J(G))$ for some standard graphs are obtained. Also some result on the strong non bondage number and bondage number are established. Also Nordhaus-Gaddum type results are found.

Key words

Bondage number, Non bondage number strong non bondage number connectivity.

Mathematics subject classification: 05C

Introduction

All graphs considered here are finite, undirected without loops or multiple edges and isolated vertices and hence p vertices and q edges. Any undefined terms here may be found in Harary[1].

A set D of vertices in a jump graph $J(G)$ is a dominating set of $J(G)$ if vertex in $V(J(G))$-D is adjacent to some vertex in d. The dominating set of $\mathrm{J}(\mathrm{G})$. a recent survey if $\sqrt{ }(\mathrm{G})$ can be found in Kulli [2]. Among the various applications of the theory of domination that have been consider3e the one that is perhaps most often discussed concerns a communication network. To minimize the direct communication links in the network. In[4] kulli and janakiram introduced the concept of non bondage number as follows.
The non bondage number $b_{n}(G)$ of a graph G is the maximum cardinality of all sets of edges $X \subseteq E(G)$ for which $\sqrt{ }(G-X)=\sqrt{ }(G)$. let $u v$ be an edge of g Then u and v dominate each other, u strongly dominate v if $\operatorname{deg} u \geq \operatorname{deg} v$. A set $\mathrm{D} \subseteq \mathrm{V}$ is strongly dominating set if every vertex in $\mathrm{V}-\mathrm{d}$ is strongly dominating by some u in D . The strong domination number $V_{s}(\mathrm{G})$ of a graph G is the minimum cardinality of a strong dominating set see[5]. The strong non bondage number $V_{s n}(G)$ of a non empty graph g is the cardinality among all sets of edges $X \subseteq E$ for which $V_{s}(G-X)=V_{s}(G)$ see[6]. The strong bondage number $b_{s}(G)$ of G is minimum cardinality among all sets of edges $X \subseteq E$ for which $V_{s}(G-X)>V_{s}(G)$ see[8].

Analogously we define non bondage number of jump graph. the non bondage number $b_{n}(J(G))$ of a jump graph $\mathrm{J}(\mathrm{G})$ is maximum cardinality of all sets of edges
$X \subseteq E(J(G))$ for which $\sqrt{ }(J(G)-X)=\sqrt{ }(J(G))$. Let uv be an edge of $J(G)$. then u and v dominate each other.
Further u strongly dominates v if $\operatorname{deg} \mathrm{u} \geq \operatorname{deg} \mathrm{v}$. A set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{J}(\mathrm{G})$) is strongly dominating set,if every vertex v in $\mathrm{V}(\mathrm{J}(\mathrm{G})-\mathrm{D}$ is strongly dominating by some u in D .

The strong dominating number $V_{s}(\mathrm{~J}(\mathrm{G})$) of a jump graph $\mathrm{J}(\mathrm{G})$ is he minimum cardinality of a strong dominating set. The strong non bondage number $\mathrm{b}_{\mathrm{sn}}(\mathrm{J}(\mathrm{G})$) of a non empty jump graph $\mathrm{J}(\mathrm{G})$ is the maximum cardinality among all sets of edges $X \subseteq E(J(G))$ for which $V_{\operatorname{sn}}(J(G))=V_{\text {sn }}(J(G))$. The strong bondage number $b_{s}(J(G))$ of $J(G)$ is the maximum cardinality among all sets of edges $X \subseteq E(J(G))$ for which $V_{s}(J(G)-X)>V_{s}(J(G))$

II Exact values of $\mathbf{b}_{\mathbf{n}}(\mathbf{J}(\mathbf{G}))$ for some standard jump gaphs:

Poposition 1; If p_{p} is path with $\mathrm{p} \geq 4$ vertices then $\mathrm{b}_{\mathrm{n}}\left(\mathrm{J}\left(\mathrm{p}_{\mathrm{p}}\right)\right)=\left[\frac{p}{3}\right]-1$.
Proposition 2; If C_{p} is a cycle with $\mathrm{p} \geq 3$ vertices then $\mathrm{b}_{\mathrm{n}}\left(\mathrm{J}\left(\mathrm{C}_{\mathrm{p}}\right)\right)=\left[\frac{p}{3}\right]$
Proposition 3; If K_{p} is a complete graph with $\mathrm{p} \geq 3$ vertices then
$\mathrm{b}_{\mathrm{n}}\left(\mathrm{J}\left(\mathrm{K}_{\mathrm{p}}\right)\right)=\frac{(p-1)(p-2)}{2}$
Proposition 4; If W_{p} is wheel with $p \geq 3$ vertices then $\left.b_{n}\left(J W_{p}\right)\right)=p-1$

III Non bondage number.

Theorem A[4] For any graph $J(G) b_{n}(J(G))=q-p+\sqrt{ }(J(G))$
Theorem 1; For any tee $\mathbf{T}, \mathbf{b}_{\mathbf{n}}(\mathbf{J}(\mathbf{T}))=\sqrt{ }(\mathbf{J}(\mathbf{T})) \mathbf{- 1}$.
Proof: This follows from (1) and for a tree T, $q=p-1$
Theorem 2; For any unicycle jump graph $b_{n}(J(G))=\sqrt{ }(J(G))$
Proof: This follows from (1) and for any unicyclic jump graph $J(G) p=q$
TheoremB[6] For any graph $G b_{n}(G) \leq b_{\text {sn }}(G)$.
Theorem 3. For any jump graph $\mathrm{J}(\mathrm{G}) \quad \mathrm{b}_{\mathrm{n}}(\mathrm{J}(\mathrm{G})) \leq \mathrm{b}_{\mathrm{sn}}(\mathrm{J}(\mathrm{G}))$
Theorem C[6]: For any Tree $T \mathrm{~b}_{\mathrm{sn}}(\mathrm{T}) \leq \frac{4(p-2)}{2} \quad[]$
Theorem 4; For any tree $\mathbf{T} \mathrm{b}_{\text {sn }}(\mathrm{T}) \leq \frac{4(p-2)}{2}$
Proof; This follows from theorem b , theorem C and Theorem D [9]. For any jump graph $\mathrm{J}(\mathrm{G}) . \quad . \sqrt{ }(\mathrm{J}(\mathrm{G})+\sqrt{ }(\mathrm{J}(\bar{G})) \leq$ p+1
In the following theorems, we established Nordhaus-Gaddum type results.

Teorem 5; for a jump graph $\mathrm{J}(\mathrm{G})$ and iots complement $\mathrm{J}(\bar{G})$
$\left.\mathrm{b}_{\mathrm{n}} \mathrm{J}(\mathrm{G})\right)+\mathrm{b}_{\mathrm{n}} \mathrm{J}(\bar{G}) \leq \frac{(p-1)(p-2)}{2}$
By theorem $\mathrm{A}[4] \quad \mathrm{b}_{\mathrm{n}}(\mathrm{J}(\mathrm{G}))+\mathrm{b}_{\mathrm{n}}(\mathrm{J}(\bar{G}))=\mathrm{q}-\mathrm{p}+\sqrt{ }(\mathrm{J}(\mathrm{G}))+\bar{q}-\mathrm{p} \sqrt{ }(\mathrm{J}(\bar{G}))$

$$
\begin{aligned}
=(\mathrm{q}+\bar{q})-2 \mathrm{p} & +\sqrt{ }(\mathrm{J}(\mathrm{G}))+\sqrt{ }((\mathrm{J}(\bar{G})) \\
\leq \mathrm{p}^{2}-5 \mathrm{p} & +\mathrm{p}+1
\end{aligned}
$$

$$
\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\mathrm{G}))+\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\bar{G})) \leq \frac{(p-1)(p-2)}{2}
$$

For any jump graph $\mathrm{j}(\mathrm{g}) \mathrm{b}_{\mathrm{n}}(\mathrm{J}(\mathrm{G})) \leq \mathrm{q}-\Delta(J(G))$

We now give another proof of theorem1.
By theorem E [9]

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\mathrm{G})) \leq \mathrm{q}-\Delta(J(G)) \leq \\
& \begin{aligned}
&\left.\mathrm{b}_{\mathrm{n}}(\mathrm{~J} \bar{G})\right) \leq \bar{q}-\Delta(\mathrm{J}(\mathrm{G})) \\
&\left.\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\mathrm{G}))+\mathrm{b}_{\mathrm{n}}(\mathrm{~J} \bar{G})\right) \quad \begin{aligned}
& \mathrm{q}-\delta(\mathrm{J}(\mathrm{G}))+\bar{q}-\Delta(\mathrm{J}(\bar{G})) \\
& =\mathrm{q}+\bar{q}-\Delta(\mathrm{J}(\bar{G}))+\delta(\mathrm{J}(\mathrm{G}))
\end{aligned} \\
& \leq \frac{\mathrm{p}(\mathrm{p}-1)}{2}-(\mathrm{p}-1)
\end{aligned} \\
& \\
& \quad \leq \underline{(\mathrm{p}-1)(\mathrm{p}-2)}
\end{aligned}
$$

then

Theorem 6,; If $\mathrm{J}(\mathrm{G})$ and $\mathrm{J}(\bar{G})$ are connected then

$$
\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\mathrm{G}))+\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\bar{G})) \leq \mathrm{p}(\mathrm{p}-3)
$$

2

Proof; By theorem(1)

$$
\begin{aligned}
\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\mathrm{G}))+\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\bar{G})) & =(\mathrm{q}+\bar{q})-2 \mathrm{p}+\sqrt{ }(\mathrm{J}(\mathrm{G}))+\sqrt{ }(\mathrm{J}(\mathrm{~J}(\bar{G})) \\
& =\frac{\mathrm{p}^{2}-5 \mathrm{p}}{2}+\sqrt{ }(\mathrm{J}(\mathrm{G}))+\sqrt{ }(\mathrm{J}(\mathrm{~J}(\bar{G}))
\end{aligned}
$$

By theorem [F]

$$
\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\mathrm{G}))+\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\bar{G})) \leq \underline{\mathrm{p}}^{2}-5 \mathrm{p}+\mathrm{p}_{2}=\mathrm{p}^{2}-3 \mathrm{p}
$$

$$
\text { Or } \quad \mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\mathrm{G}))+\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\bar{G})) \leq \mathrm{p}(\mathrm{p}-3)
$$

Theorem 7; if $J(T)$ and $J(\bar{T})$ are connected then

$$
\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\mathrm{~T}))+\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\bar{T})) \quad \leq \mathrm{p}-2
$$

Prtoof; By theorem (1) $\quad b_{n}(J(T))=\quad \sqrt{ }(\mathrm{J}(\mathrm{T}))-1$

$$
\left.\mathrm{b}_{\mathrm{n}}(\mathrm{~J} \bar{T})\right)=\sqrt{ }(\mathrm{J}(\bar{T}))-1
$$

$$
\therefore \quad \mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\mathrm{G}))+\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\bar{G}))=\sqrt{ }(\mathrm{J}(\mathrm{~T}))+\sqrt{ }(\mathrm{J}(\bar{T}))-2
$$

By theorem 1.

$$
\begin{aligned}
& \sqrt{ }(\mathrm{J}(\mathrm{~T}))+\sqrt{ }(\mathrm{J}(\bar{T})) \leq \mathrm{p} \\
& \mathrm{~b}_{\mathrm{n}}(\mathrm{~J}(\mathrm{G}))+\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\bar{G})) \leq \mathrm{p}-2
\end{aligned}
$$

By Theorem H[4] Let g be a unicyclic graph if $\sqrt{ }(\mathrm{G}) \leq \frac{p}{2}$ then $\mathrm{b}_{\mathrm{n}}(\mathrm{G}) \leq \Delta(G)$
Similarly L:et $\mathrm{J}(\mathrm{G})$ be a unicyclic jump graph if $V(\mathrm{~J}(\mathrm{G})) \leq \frac{p}{2}$ then

$$
\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\mathrm{G})) \leq \Delta(J(G))
$$

IV strongly non bondage number;

Theorem J[4] For any connected graph G
$\frac{\operatorname{diam}(G)-2}{3} \quad \leq b_{\mathrm{n}}(\mathrm{G})$

Theorem 8 ; For any connected jump graph $J(G)$
$\frac{\operatorname{diam}(J(G))-2}{3} \leq \mathrm{b}_{\mathrm{n}}(\mathrm{J}(\mathrm{G}))$

Proof; This follows from theorem 2 and theorem 1.
We give a simple proof of the following theorem
Theorem 11[6] let G be a unicyclic graph if $\sqrt{ }(G) \leq \frac{p}{2}$ then $b_{n}(G) \leq \Delta(G)$
Let $\mathrm{J}(\mathrm{G})$ be a unicyclic jump graph if $ل(\mathrm{~J}(\mathrm{G})) \leq \frac{p}{2}$ then

$$
\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\mathrm{G})) \leq \Delta(J(G))
$$

Proof; This follows from Theorem $\mathrm{H}[4]$ and Theorem(2)
Theorem K[4]; For any graph G $b(G) \leq b_{n}(G)+1$
The following result involving the bondage number gives a lower bound for $b_{s n}(G)$.

Theorem;9. For any jump graph $J(G) \quad b(J(G))-1 \leq b_{n}(J(G))$

Proof; By theorem $B[6] b_{n}(J(G)) \leq b_{s n}(J(G))$ and by Theorem $\left.\left.K b(G)\right) \leq b_{n}(G)\right)+1$ $\mathrm{b}_{\mathrm{n}}(\mathrm{J}(\mathrm{G})) \leq \mathrm{b}_{\mathrm{sn}}(\mathrm{J}(\mathrm{G}))+1$.

Bondage number;

We establish Nordhaus-Gaddum type result.
Theorem For any jump graph $\mathrm{J}(\mathrm{G})$ and its complement $\mathrm{J}(\bar{G})$
$\mathrm{b}(\mathrm{J}(\mathrm{G}))+\mathrm{b}(\mathrm{J}(\bar{G})) \leq \mathrm{b}_{\mathrm{n}}(\mathrm{J}(\mathrm{G}))+\mathrm{b}_{\mathrm{n}}(\mathrm{J}(\bar{G}))+2$
By theorem 1
$\mathrm{b}(\mathrm{G})+\mathrm{b}(\bar{G}) \leq \mathrm{b}_{\mathrm{n}}(\mathrm{G})+\mathrm{b}_{\mathrm{n}}(\bar{G})+2$
$\therefore \mathrm{b}(\mathrm{J}(\mathrm{G}))+\mathrm{b}(\mathrm{J}(\bar{G})) \leq \mathrm{b}_{\mathrm{n}}(\mathrm{J}(\mathrm{G}))+\mathrm{b}_{\mathrm{n}}(\mathrm{J}(\bar{G}))+2$

$$
\leq \frac{(p-1)(p-2)}{2}+2 \text { by theorem } 4
$$

Theorem10: If $\mathrm{J}(\mathrm{G})$ and $\mathrm{J}(\bar{G})$ are connected then $\mathrm{b}(\mathrm{J}(\mathrm{G}))+\mathrm{b}(\mathrm{J}(\bar{G})) \leq \frac{p(p-3)}{2}+2$ and this bound is sharp.

Proof; By theorem K.

$$
\mathrm{b}(\mathrm{~J}(\mathrm{G}))+\mathrm{b}(\mathrm{~J}(\bar{G})) \leq \mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\mathrm{G}))+\mathrm{b}_{\mathrm{n}}(\mathrm{~J}(\bar{G}))+2
$$

then by theorem 4

$$
\therefore \mathrm{b}(\mathrm{~J}(\mathrm{G}))+\mathrm{b}(\mathrm{~J}(\bar{G})) \leq \frac{(p-1)(p-2)}{2}+2
$$

REFERENCES

[1] F. Harary, Graph theory, Addison wesley' Reading Mass" 1969.
[2] V.R. Kulli" "Theory of Domination in Graphs" Vishwa international publications, Gulbarga, India 2010
[3] T.W. Haynes, S.T. hedetniemi and P.J. Slater " fundamentals of Domination in Graphs" Marcel Dekkar, Inc, New York (1998)
[4] V.R. Kulli, B. Janakiram "The non bondage num ber of a graph, Graph theory Notes of New York", New York Academy of Sciences, XXX (1996) 14-16
[5] E. Sampathkumar and L. puspa latha, Strong (weak) domination and domination balance in a graph, discrete Math.16191996) 235-242.
[6] K. Ebadi and L. Puspa Latha, The strong nonbondage number of a graph, international Forum, 5 o. 34 (2010) 1691-1996.
[7] J.F. Fink, M.S.Jacobson, I.F.Kinch and J. Roberts, The bondage number of a graph, Discrete Math.86(1990) 47-57.
[8] J. Ghoshal, R.Laskar, D.pillone and C. Wallis. Strong bondage and strong reinforcement number of graph,English congr,numerantinum 108(1995)33-42.
[9] F.Jaeger and C.payan,Relations du type Nordhaus-Gddum pour le nombre d' absorption d'un graphe simple, C.R,Acad.Sci.Paries 274(1992) 728-730.
[10] R. Laskar and K. Peters, Vertex and edge domination paprameters in graphs, Congr.Numer, 48(1985) 291-305.
[11] R.L Brooks, On coloring the nodes of a network, proc. Cambridge Philos.Soc.37(1941) 194-197.
[12] Y.B. Maralabhavi et .al., Domination number of jump Graphs International Mathematical Forum vol8, No.16 753-758 (2013)

