On Non Bondage Number of a Jump Graph

N.Pratap Babu Rao

Department Of Mathematics S.G. Degree College Koppal(Karnataka)India

Abstract

For a jump graph J(G) a set $D \subset V(J(G)$ is a dominating set if every vertex in V(J(G))-D is adjacent to at least one vertex in D. The domination number $\sqrt{(J(G))}$ of J(G) is the minimum cardinality of a total dominating set. The non bondage number $b_n(J(G))$ of J(G) is the maximum cardinality among all sets of edges $X \subseteq E(J(G))$ such that $\sqrt{(J(G) - X)} = \sqrt{(J(G))}$. A set $D \subseteq V(J(G))$ is a strong dominating set if every vertex in V(J(G))-D has a neighbor u in D such that the degree of u is not smaller than the degree of v, The strong domination number $\sqrt{_s(J(G))}$ og J(G) is minimum cardinality of a strong dominating set. The non bondage number $b_{sn}(J(G))$ of a non empty jump graph J(G) is the maximum cardinality among all sets of edges $X \subseteq E(J(G))$ such that $\sqrt{_s} (J(G) - X) = \sqrt{_s(J(G))}$. In this paper some results on the non bondage number, exact values of $b_n(J(G))$ for some standard graphs are obtained. Also some result on the strong non bondage number and bondage number are established. Also Nordhaus-Gaddum type results are found.

Key words

Bondage number, Non bondage number strong non bondage number connectivity.

Mathematics subject classification: 05C

Introduction

All graphs considered here are finite, undirected without loops or multiple edges and isolated vertices and hence p vertices and q edges. Any undefined terms here may be found in Harary[1].

A set D of vertices in a jump graph J(G) is a dominating set of J(G) if vertex in V(J(G))-D is adjacent to some vertex in d. The dominating set of J(G). a recent survey if $\sqrt{(G)}$ can be found in Kulli [2]. Among the various applications of the theory of domination that have been consider3e the one that is perhaps most often discussed concerns a communication network. To minimize the direct communication links in the network. In[4] kulli and janakiram introduced the concept of non bondage number as follows.

The non bondage number $b_n(G)$ of a graph G is the maximum cardinality of all sets of edges $X \subseteq E(G)$ for which $\sqrt{(G - X)} = \sqrt{(G)}$. let uv be an edge of g Then u and v dominate each other, u strongly dominate v if deg $u \ge deg v$. A set $D \subseteq V$ is strongly dominating set if every vertex in V - d is strongly dominating by some u in D. The strong domination number $\sqrt{s}(G)$ of a graph G is the minimum cardinality of a strong dominating set see[5]. The strong non bondage number $\sqrt{s_n(G)}$ of a non empty graph g is the cardinality among all sets of edges $X \subseteq E$ for which

 $\sqrt{(G - X)} = \sqrt{(G)} \sec[6]$. The strong bondage number $b_s(G)$ of G is minimum cardinality among all sets of edges $X \subseteq E$ for which $\sqrt{(G - X)} > \sqrt{(G)} \sec[8]$.

Analogously we define non bondage number of jump graph. the non bondage number $b_n(J(G))$ of a jump graph J(G) is maximum cardinality of all sets of edges

 $X \subseteq E(J(G))$ for which $\sqrt{(J(G) - X)} = \sqrt{(J(G))}$. Let uv be an edge of J(G). then u and v dominate each other.

Further u strongly dominates v if deg u \geq deg v. A set D \subseteq V(J(G)) is strongly dominating set, if every vertex v in V(J(G) –D is strongly dominating by some u in D.

The strong dominating number $\sqrt[]{}_{s}(J(G))$ of a jump graph J(G) is he minimum cardinality of a strong dominating set. The strong non bondage number $b_{sn}(J(G))$ of a non empty jump graph J(G) is the maximum cardinality among all sets of edges $X \subseteq E(J(G))$ for which $\sqrt[]{}_{sn}(J(G)) = \sqrt[]{}_{sn}(J(G))$. The strong bondage number $b_{s}(J(G))$ of J(G) is the maximum cardinality among all sets of edges $X \subseteq E(J(G))$ for which $\sqrt[]{}_{sn}(J(G))$ for which $\sqrt[]{}_{s}(J(G) - X) > \sqrt[]{}_{s}(J(G))$

II Exact values of b_n(J(G)) for some standard jump gaphs:

Poposition 1; If p_p is path with $p \ge 4$ vertices then $b_n(J(p_p)) = [\frac{p}{2}] - 1$.

Proposition 2; If C_p is a cycle with $p \ge 3$ vertices then $b_n(J(C_p)) = \lfloor \frac{p}{2} \rfloor$

Proposition 3; If K_p is a complete graph with $p \ge 3$ vertices then $b_n(J(K_p)) = \frac{(p-1)(p-2)}{2}$

Proposition 4; If W_p is wheel with $p \ge 3$ vertices then $b_n(JW_p) = p - 1$

III Non bondage number.

Theorem A[4] For any graph $J(G) b_n(J(G)) = q - p + \sqrt{J(G)}$ (1)

Theorem 1: For any tee T, $\mathbf{b}_n(\mathbf{J}(\mathbf{T})) = \sqrt{(\mathbf{J}(\mathbf{T}))} - 1$. Proof: This follows from (1) and for a tree T, q=p-1

Theorem 2; For any unicycle jump graph $b_n(J(G)) = \sqrt{(J(G))}$ Proof: This follows from (1) and for any unicyclic jump graph J(G) = q

TheoremB[6] For any graph $G b_n(G) \leq b_{sn}(G)$.

Theorem 3. For any jump graph J(G) $b_n(J(G)) \le b_{sn}(J(G))$

Theorem C[6]: For any Tree T $b_{sn}(T) \leq \frac{4(p-2)}{2}$

Theorem 4; For any tree $\mathbf{T} \mathbf{b}_{sn}(T) \leq \frac{4(p-2)}{2}$

Proof; This follows from theorem b, theorem C and Theorem D [9]. For any jump graph J(G). $\sqrt{(J(G) + \sqrt{(J(\bar{G}))} \le p+1)}$

In the following theorems, we established Nordhaus-Gaddum type results.

 $\begin{array}{l} \textbf{Teorem 5; for a jump graph J(G) and iots complement J(\bar{G})}\\ b_nJ(G)) + b_n J(\bar{G}) &\leq \frac{(p-1)(p-2)}{2}\\ \text{By theorem A[4]} \quad b_n(J(G)) + b_n (J(\bar{G})) = q - p + \sqrt{(J(G))} + \bar{q} - p \ \sqrt{(J(\bar{G}))}\\ &= (q + \bar{q} \) - 2p + \sqrt{(J(G))} + \sqrt{((J(\bar{G}))}\\ &\leq \frac{p^2 - 5p}{2} + p + 1\\ 2\\ b_n(J(G)) + b_n (J(\bar{G})) &\leq \frac{(p-1)(p-2)}{2} \end{array}$

For any jump graph $j(g) b_n(J(G)) \le q - \Delta(J(G))$

2

We now give another proof of theorem1.

By theorem E [9]

$$\begin{split} b_n(J(G)) &\leq q - \Delta \left(J(G) \right) \leq q - \delta \left(J(G) \right) \\ b_n(J\bar{G})) &\leq \bar{q} - \Delta \left(J(\bar{G}) \right) \\ \text{then} \qquad b_n(J(G)) + b_n(J\bar{G})) &= q - \delta \left(J(G) \right) + \bar{q} - \Delta \left(J(\bar{G}) \right) \\ &= q + \bar{q} - \Delta \left(J(\bar{G}) \right) + \delta \left(J(G) \right) \\ &\leq \underline{p \left(p - 1 \right)} \\ 2 \\ \end{matrix}$$

Theorem 6,: If J(G) and J(\overline{G}) are connected then $b_n(J(G)) + b_n(J(\overline{G})) \le p(p-3)$

Proof; By theorem(1)

$$\begin{split} b_{n}(J(G)) + b_{n} \left(J(\bar{G})\right) &= (q + \bar{q}) - 2p + \sqrt{(J(G))} + \sqrt{(J(J(\bar{G})))} \\ &= \underline{p^{2} - 5p}_{2} + \sqrt{(J(G))} + \sqrt{(J(J(\bar{G})))} \end{split}$$

By theorem [F]

$$b_{n}(J(G)) + b_{n}(J(\bar{G})) \leq \underline{p^{2}-5p} + p = \underline{p^{2}-3p}$$

$$2 \qquad 2$$
Or
$$b_{n}(J(G)) + b_{n}(J(\bar{G})) \leq \underline{p(p-3)}$$

$$2$$

Theorem 7; if J(T) and $J(\overline{T})$ are connected then

 $b_n(J(T)) + b_n(J(\overline{T})) \qquad \leq p-2$

Prtoof; By theorem (1)
$$b_n(J(T)) = \sqrt{(J(T))} - 1$$

 $b_n(J\overline{T})) = \sqrt{(J(\overline{T}))} - 1$
 $\therefore \quad b_n(J(G)) + b_n(J(\overline{G})) = \sqrt{(J(T))} + \sqrt{(J(\overline{T}))} - 2$
By theorem 1.

$$\sqrt{(\mathbf{J}(\mathbf{T}))} + \sqrt{(\mathbf{J}(\overline{T}))} \le \mathbf{p}$$

$$\begin{split} b_n(J(G)) + b_n(J(\bar{G}) \) &\leq p-2 \\ \text{By Theorem H[4] Let g be a unicyclic graph if } \sqrt{(G)} &\leq \frac{p}{2} \ \text{then } b_n(G) \leq \Delta(G) \\ \text{Similarly L:et } J(G) \ \text{be a unicyclic jump graph } \ \text{if } \sqrt{(J(G))} &\leq \frac{p}{2} \ \text{then } \\ b_n(J(G)) \leq \Delta(J(G)) \end{split}$$

IV strongly non bondage number;

Theorem J[4] For any connected graph G $\frac{diam(G)-2}{3} \leq b_n(G)$

Theorem 8 ; For any connected jump graph J(G) $\frac{\text{diam} (J(G)) - 2}{3} \leq b_n(J(G))$ **Proof;** This follows from theorem 2 and theorem 1. We give a simple proof of the following theorem Theorem 11[6] let G be a unicyclic graph if $\sqrt{(G)} \le \frac{p}{2}$ then $b_n(G) \le \Delta(G)$ Let J(G) be a unicyclic jump graph if $\sqrt{(J(G))} \le \frac{p}{2}$ then $b_n(J(G)) \le \Delta(J(G))$

Proof; This follows from Theorem H[4] and Theorem(2) Theorem K[4]; For any graph G b(G) \leq b_n(G) + 1 The following result involving the bondage number gives a lower bound for b_{sn}(G).

Theorem;9. For any jump graph J(G) $b(J(G)) - 1 \le b_n(J(G))$

Proof; By theorem B[6] $b_n(J(G)) \le b_{sn}(J(G))$ and by Theorem K $b(G)) \le b_n(G)) + 1$ $b_n(J(G)) \le b_{sn}(J(G)) + 1$.

Bondage number;

We establish Nordhaus-Gaddum type result. Theorem For any jump graph J(G) and its complement J(\overline{G}) b(J(G)) + b(J(\overline{G})) \leq b_n(J(G)) + b_n(J(\overline{G})) + 2 By theorem 1 b(G) + b (\overline{G}) \leq b_n(G) + b_n (\overline{G}) + 2 \therefore b(J(G)) + b(J(\overline{G})) \leq b_n(J(G)) + b_n(J(\overline{G})) + 2 $\leq \frac{(p-1)(p-2)}{2} + 2$ by theorem 4

Theorem10: If J(G) and J(\overline{G}) are connected then $b(J(G)) + b(J(\overline{G})) \le \frac{p(p-3)}{2} + 2$ and this bound is sharp.

Proof; By theorem K.

 $b(J(G)) + b(J(\overline{G})) \le b_n(J(G)) + b_n(J(\overline{G})) + 2$ then by theorem 4

$$\therefore \mathbf{b}(\mathbf{J}(\mathbf{G})) + \mathbf{b}(\mathbf{J}(\bar{\mathbf{G}})) \leq \frac{(p-1)(p-2)}{2} + 2$$

REFERENCES

- [1] F. Harary, Graph theory, Addison wesley' Reading Mass" 1969.
- [2] V.R. Kulli' "Theory of Domination in Graphs" Vishwa international publications, Gulbarga, India 2010
- [3] T.W. Haynes, S.T. hedetniemi and P.J. Slater "fundamentals of Domination in Graphs" Marcel Dekkar, Inc, New York (1998)
- [4] V.R. Kulli, B. Janakiram "The non bondage num ber of a graph, Graph theory Notes of New York", New York Academy of Sciences, XXX (1996) 14-16
- [5] E. Sampathkumar and L. puspa latha, Strong (weak) domination and domination balance in a graph, discrete Math.16191996) 235-242.
- [6] K. Ebadi and L. Puspa Latha, The strong nonbondage number of a graph, international Forum, 5 o.34 (2010) 1691-1996.
- [7] J.F. Fink, M.S.Jacobson, I.F.Kinch and J. Roberts, The bondage number of a graph, Discrete Math.86(1990) 47-57.
- [8] J. Ghoshal, R.Laskar, D.pillone and C. Wallis. Strong bondage and strong reinforcement number of graph, English congr, numerantinum 108(1995)33-42.
- [9] F.Jaeger and C.payan, Relations du type Nordhaus-Gddum pour le nombre d'absorption d'un graphe simple, C.R, Acad.Sci.Paries 274(1992) 728-730.
- [10] R. Laskar and K. Peters, Vertex and edge domination paprameters in graphs, Congr.Numer, 48(1985) 291-305.
- [11] R.L Brooks, On coloring the nodes of a network, proc. Cambridge Philos.Soc.37(1941) 194-197.
- [12] Y.B. Maralabhavi et .al., Domination number of jump Graphs International Mathematical Forum vol8, No.16 753-758 (2013)