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Abstract 

                  Variational calculus studied methods for finding maximum and minimum values of functional. It has 

its inception in 1696 yearby Johan Bernoulli  with its glorious problem for the brachistochrone: to find a curve, 

connecting two points A and B , which does not lie in a vertical, so that heavy point descending on this curve 

from position A to reach position in for at least time. In functional analysis variational calculus takes the same 

space, as well as theory of maxima and minimum intensity in the classic analysis. 

We will prove a theoremfor functional where prove that necessary condition for extreme of functional is the 

variation of functional is equal to zero. We describe the solution of the equation of Eulerwith example of 

application, such as the problem of brachistochrone. 
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I. INTRODUCTION 

We will explore for extreme of the functional 
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With the limit points of the allowable set of curves: 0 0( )y x y and 1 1( )y x y . Will we consider that the 

function ( , , ')F x y y  isthree times differentiable. We know that necessary condition for extreme is the variation 

in the functional is equal to zero.We will now show how the main theorem is applied to the given functional 

(0.1). 

Assume that extreme reached on two times differentiable curve ( )y y x  (required only the existence of a 

derived from the first line of residue curves, otherwise, it may be that of the curve on which is reached extreme, 

there is a second derived). We are taking some close to ( )y y x limit curves ( )y y x  and  include curves

( )y y x and ( )y y x  to the family curves with one parameter 

 ( , ) ( ) ( ( ) ( ) )y x y x y x y x    . 

When 0   we receive the curve ( )y y x  , when 1  we receive ( )y y x  . 

As we already know, the difference ( ) ( )y x y x  is called variation of the function ( )y x  and means with the 

y .  

The variation y  in variational problems play a role analogous to the role of the increase ∆𝑥of an independent 

variable x  inproblems for study of extreme of function ( )f x . The variation of function ( ) ( )y y x y x    is 

a function of the x . 

This function can be differentiated one or several times, as ( ) ' '( ) '( ) 'y y x y x y     it is generated of the 

variance is equal to the variance of the generated, and similarly 
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And so, we analyzethe family ( , )y y x  , where ( , ) ( )y x y x y    , containingthe 0   curves, of 

which reaches an extreme, and in some 1  close tolerances and curves that are called curves of comparison. 

If we look at the values of functional (0.1), only of the family curves ( , )y y x   ,it the functionalturned into 

function of  : 

 [ ( , )] ( ),v y x     

As in the case that we consider [ ( , )]v y x  is functional depending on parameter, the value of the parameter 

determines the curve of the family ( , )y y x   and so determined and the value of functional [ ( , )]v y x  . 

 

 

II. Theorem 1. 

If functional
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y F x y y d x   has a local extreme in y , the necessary condition for extreme of 

functional  is 
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Proofof theorem 1. 

We analyze the function ( )  . It reaches its extreme at 0   , and when 0   we receive ( )y y x  , and 

the functional, in assumption, reaches extreme compared with any permissible curve, and in particular, in terms 

of the nearly  families curves ( , )y y x   . 

Necessary condition for extreme of the function ( )  at 0   , as is known, is its a derivative is equal to zero 

at 0   , i.e. 

 '(0 ) 0  . 

 

Since 
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And we get 
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As we know, '( 0 )  is called variation of functional  and means v . 

Necessary condition for extreme of functionalis its variation is equal to zero 

 0v  . 

 

For the functional(0.1) this condition has a type of 
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Integrate the equation (0.3)inparts, whereas ' ( ) 'y y  , we get 
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Since, all of the possible (permissible) curves in the given problem pass through fixed limit points, we get 
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Note. 

The first multiplier 
'

''y y

d
F F

d x
  of the curve ( )y y x  reaches extreme of the continuous function, and the 

second multiplier y , random for the choice of the curve in comparison ( )y y x  , is arbitrary function 

having passed only certain general conditions, namely: the function y  in the border points 0x x , and

1x x is equal to zero, continuous and differentiableone or several times, y  or y  and 'y  are small in  

absolute value. 

To simplifiedtheobtain necessarycondition (0.2), we will use the following lemma: 

 

III. Fundamental lemma of the variational calculus 

If for any continuous function ( )x is true 
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Where the function ( )x is continuous in the interval 0 1[ , ]x x , it 

 ( ) 0x   

in this interval. 

 

Proof of  the fundamental lemma of variational calculus 

We accept that, in the point x x  , resting in the interval 0 1( , )x x  , ( ) 0x  ,is a contradiction. 

Indeed, the continuity of the function ( )x , it follows that if ( ) 0x   it ( )x keeps characters in vicinity of 

x ( 0 1x x x   ). We choose function ( )x which also retains the mark in that vicinity and is equal to zero 

outside of this vicinity. We receive 
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Since product ( ) ( )x x retains its mark in the interval 0 1x x x   and is equal to zero in the same interval. 

And so, we come to a contradiction, therefore ( ) 0x  . 

 

           

Note. 

Adoption of lemma and its proof remain unchanged if the function ( )x requires the following restrictions: 

 0 1( ) ( ) 0 ,x x    

 ( )x  There is a continuous derived to line n  , 

 ( )
( ) , ( 0 ,1, , ; )

s
x s q q n    . 

 

The function ( )x can be selected, e.g. : 

 

 
2 2

0 1 0 1

0 10 1

( ) ( ) , [ , ]
( )

0 [ , ] \ [ , ] ,

n n
k x x x x x x x

x

x x x x x



   
 



 

where n is a positive number, k is a constant. 
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Apparently, that the function ( )x satisfies the above conditions: it is a continuous, there is a continuous 

derived to line 2 1n   , in the points 0x and 1x is equal to zero and by reducing the factor by k we can do

( )
( )

s
x  for the 0 1[ , ]x x x  .  

Now we will apply the fundamental lemma of variational calculus to simplify the above necessary condition for 

extreme (0.2)of functional(0.1). 

IV. Consequence1.1. 

If functional
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continuous, then it ( )y y x  is a solution to the differential equation (equation of Euler) 
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Or in an expanded form 

 

 
' ' ' '' '' 0y xy yy y yF F F y F y    . 

 

Proof of consequence 1.1. 

                                      The proof of consequence 1.1 follows immediately from the fundamental lemma of 

variational calculus. 

 

 

This equation is called equation of Euler (1744 year). Integral curve 1 2( , , )y y x C C equation of Euler is 

called extreme. 

To find a curve, which is reached extreme of functional(0.1) we integrate the equation of Euler and spell out 

random constants, satisfying the general solution of this equation, of the conditions of borders

0 0 1 1( ) , ( )y x y y x y  . 

Only if they are satisfied with these conditions, can be reached extreme of functional. 

 However, in order to determine whether they are really extreme (maximum or minimum), must be studied and 

sufficient conditions for extreme. 

To recall, that border problem 
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not always has a solution, and if there is asolution, then this may not be sole. 

It should be taken into account that in many variational problems the existence of solutions is evident, from 

physical or geometrical sense of the problem, and in the solution of the equations of Euler satisfying the border 

conditions, only a single extreme may be the solution of the given problem. 

V. Problem of the brachistochrone 

To determine curve, connecting two given pointsAand B, in whose movement, material item provided for the 

shortest time from A point to pointB (friction and resistance of the environment).We will shift  the origin of the 

coordinate system in the point A, the axis O x we will put horizontally, and the axis O y , vertically. Speed of 

movement of the stock point is  
𝑑𝑠

𝑑𝑡
=  2𝑔𝑦, where we find the time spent in the movement of the point from 

position A(0,0) to position 1 1( , )B x y  : 
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Since this functional is one of the simplest types, and the integrand function does not contain x , so the equation 

of Euler has a first integral 

 
'

'' yF y F C  , 

or in this case, 
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where after a simplification, 
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we have
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We're introducing parameter t by the application 'y c tg t . Therefore, we have 
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Integrate, and obtain 
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The equation of the curve in parametric form has the type 
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If replace for parameter 12 t t  , and take into account that the 2 0C  , 0x  , 0y  , it receive 

equation of family cycloids in normal form: 
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where
1

2

C
 is radius of the rolling circle, which is determined by the conditions of the passing cycloid through 

the point 1 1( , )B x y . 

And so, the brachistochrone is cycloid.  

 

VI. CONCLUSIONS 

It should be taken into account that in many variational problems the existence of solutions is evident, from 

physical or geometrical sense of the problem, and in the solution of the equations of Euler satisfying the border 

conditions, only a single extreme may be the solution of the given problem. 
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