One Point Union Families and Invariance under Cordial Labeling

Mukund V. Bapat ${ }^{1}$

Abstract

We discuss graphs of type $\mathrm{G}^{(k)}$ i.e. one point union of k -copies of G for cordial labeling. We take G as tail graph. A tail graph (orantenna graph) is obtained by attaching a path P_{m} to a vertex of given graph. It is denoted by tail $\left(G, P_{m}\right)$ where G is given graph. We take G as C_{3} and restrict our attention to $m=2,3,4$ in P_{m}. Further we consider all possible structures of $\mathrm{G}^{(\mathrm{k})}$ by changing the common point and obtain non-isomorphic structures. We show all these structures as cordial graphs.This is called as invariance of different structures of $\mathrm{G}^{(k)}$ under cordial labeling.

Key words

cordial,one point union, tail graph, cycle,labeling, path.
Subject Classification: 05C78

I.Introduction

The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [6], A dynamic survey of graph labeling by J.Gallian [8] and Douglas West.[9].I.Cahit introduced the concept of cordial labeling[5]. f:V(G) $\rightarrow\{0,1\}$ be a function. From this label of any edge (uv) is given by $|f(u)-f(v)|$. Further number of vertices labeled with 0 i.ev $\mathrm{v}_{\mathrm{f}}(0)$ and the number of vertices labeled with 1 i.e. $\mathrm{v}_{\mathrm{f}}(1)$ differ at most by one .Similarly number of edges labeled with 0 i.e. $\mathrm{e}_{\mathrm{f}}(0)$ and number of edges labeled with 1 i.e. $\mathrm{e}_{\mathrm{f}}(1)$ differ by at most one. Then the function f is called as cordial labeling.Cahit has shown that : every tree is cordial; Kn is cordial if and only if $\mathrm{n} \leq 3 ; \mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is cordial for all m and n ; the friendship graph $\mathrm{C}_{3}{ }^{(t)}$ (i.e., the one-point union of t copies of $\left.C_{3}\right)$ is cordial if and only if tis not congruent to $2(\bmod 4)$; all fans are cordial; the wheel W_{n} is cordial if and only if n is not congruent to $3(\bmod 4)$. A lot of work has been done in this type of labeling. One may refer dynamic survey by J. Gallian[8].
Our focus of attention is onone point unions on different graphs. For a given graph there are different one point unions (upto isomorphism) structures possible. It depends on which point on G is used to fuse to obtain one point union. We have shown that for $\mathrm{G}=$ bull on C_{3}, bull on $\mathrm{C}_{4}, \mathrm{C}_{3}{ }^{+}, \mathrm{C}_{4}{ }^{+}$- e the different path union $\mathrm{P}_{\mathrm{m}}(\mathrm{G})$ are cordial[4].It is called as invariance under cordial labeling. We use the convention that $\mathrm{v}_{\mathrm{f}}(0,1)=(\mathrm{a}, \mathrm{b})$ to indicate the number of vertices labeled with 0 are a in number and that number of vertices labeled with 1 are b. Further $e_{f}(0,1)=(x, y)$ we mean the number of edges labeled with o are x and number of edges labeled with 1 are.The graph whose cordial labeling is available is called as cordial graph. In this paper we define tail graph and obtain one point union graphs on it.

II.Preliminaries

3.1Tail Graph: $\mathrm{A}(\mathrm{p}, \mathrm{q})$ graph G to which a path P_{m} is fused at some vertex. This also can be explained as take a copy of graph G and at any vertex of it fuse a path P_{m} with it's one of the pendent vertex. It's number of vertices are $\mathrm{P}+\mathrm{m}$ 1 and edges are by $q+m$-1.It is denoted by tail $\left(G, P_{m}\right)$.In this paper we fix G as C_{3} and take P_{m} for $m=2,3,4,5$.
3.2 Fusion of vertices. Let $u \neq v$ be any two vertices of G. We replace these two vertices by a single vertex say x and all edges incident to u and v are now incident to x . If loop is formed then it is deleted.
$3.3 \mathrm{G}^{(\mathrm{K})}$ it is One point union of k copies of G is obtained by taking k copies of G and fusing a fixed vertex of each copy with same fixed vertex of other copies to create a single vertex common to all copies.If G is $\mathrm{a}(\mathrm{p}, \mathrm{q})$ graph then $\mid V\left(G_{(k)}\right)=k(p-1)+1$ and $|E(G)|=k . q$

4. Theorems Proved

4.1 Theorem: Let $\mathrm{G}=\operatorname{tail}\left(\mathrm{C}_{3}, \mathrm{P}_{2}\right)$.Then $\mathrm{G}^{(\mathrm{k})}$ is cordial.

Proof: Under the function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ we define different types of units as shown below.

Fig 4.1 $\mathrm{G}=$ tail $\left(\mathrm{C}_{3}, \mathrm{P}_{2}\right)$

Fig $4.2 \mathrm{v}_{\mathrm{f}}(0,1)=(2,2)$, $\mathrm{e}_{\mathrm{f}}(0,1)=(2,2)$

Fig $4.3 \mathrm{v}_{\mathrm{f}}(0,1)=(1,3)$, $\mathrm{e}_{\mathrm{f}}(0,1)=(2,2)$

Fig $4.4 \mathrm{v}_{\mathrm{f}}(0,1), \mathrm{e}_{\mathrm{f}}(0,1)$
$=(2,2)$

Fromfig 4.1 It follows that we can take one point union at points ' a ' or ' b ' or ' d ' and all will be different.(up toisomorphism). We call them as three different structures.

Structure1 :Pendent vertex ' a ' on G is used as common vertex on $G^{(k)}$. The $\mathrm{i}^{\text {th }}$ copy on $\mathrm{G}^{(k)}$ is type \mathbf{A} with vertex ' x ' - a common vertex on it when $\mathrm{i}=1(\bmod 2)$ and type \mathbf{B} label with vertex ' x ' - a common vertex on it when $\mathrm{i} \equiv 0(\bmod$ 2).

Structure 2 : vertex ' b ' on G is used as common vertex on $G^{(k)}$. The $i^{\text {th }}$ copy on $G^{(k)}$ is type \mathbf{A} with vertex ' e ' on it when $\mathrm{i}=1(\bmod 2)$ and type \mathbf{B} label with vertex ' e ' on it when $\mathrm{i} \equiv 0(\bmod 2)$.

Structure 3 : vertex ' d ' on G is used as common vertex on $\mathrm{G}^{(k)}$. The $\mathrm{i}^{\text {th }}$ copy on $\mathrm{G}^{(k)}$ is type \mathbf{C} with vertex ' j ' on it when $\mathrm{i} \equiv 1(\bmod 2)$ and type B label with vertex ' h ' on it when $\mathrm{i} \equiv 0(\bmod 2)$. The label number distribution for all structures above is as follows: $\mathrm{v}_{\mathrm{f}}(0,1)=(3 \mathrm{x}+2,3 \mathrm{x}+2)$ and $\mathrm{e}_{\mathrm{f}}(0,1)=(2 \mathrm{k}, 2 \mathrm{k})$ when k is an odd number given by $2 \mathrm{x}+1, \mathrm{x}$ $=0,1,2$.
$\mathrm{v}_{\mathrm{f}}(0,1)=(3 \mathrm{x}, 3 \mathrm{x}+1)$ and $\mathrm{e}_{\mathrm{f}}(0,1)=(2 \mathrm{k}, 2 \mathrm{k})$ when k is an odd number given by $2 \mathrm{x}, \mathrm{x}=1,2 .$.
Thus all possible 3 structures on $\mathrm{G}^{(k)}$ arecordial. This is also called as $\mathrm{G}^{(k)}$ is invariant under cordial labeling when $\mathrm{G}=\operatorname{tail}\left(\mathrm{C}_{3}, \mathrm{P}_{2}\right)$.

Thus the graph is cordial. \#
4.2 Theorem: Let $\mathrm{G}=\operatorname{tail}\left(\mathrm{C}_{3}, \mathrm{P}_{3}\right)$.Then $\mathrm{G}^{(\mathrm{k})}$ is cordial.

Proof: Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows: We define four types of labels as above, Type A, Type B, Type C and Type D. All are cordial but pairwise non isomorphic. They differ in label numbers or label of vertex are not same.

Structure 1: vertex ' x ' from Type A and vertex ' y ' from Type C are fused together.In $G^{(k)}$ the $i^{\text {th }}$ copy is of type A if $i \equiv 1(\bmod 2) i . e . i$ is of type $2 x+1 . x=0,1,2, .$. and of type C if $i \equiv 0(\bmod 2)$.i.e. i is of type $2 x, x=1,2,$. The label numbers are as follows:
if k is of type $2 x+1, x=0,1,2, .$. then $v_{f}(0,1)=(2+4 x, 3+4 x)$ and $e_{f}(0,1)=(3+5 x, 2+5 x)$.
If k is of type $2 x, x=1,2,3 \ldots$ then $v_{f}(0,1)=(4 x, 1+4 x)$ and $e_{f}(0,1)=(5 x, 5 x)$.
Thus structure 1 is cordial.
Structure 2 and structure 3: These are obtained by fusing vertex ' a ' on G and vertex ' b ' on G respectively for Structure 2 and structure 3.

For structure 2 vertex 'e' from type B and vertex ' f ' from type D are fused together. To obtain a labeled copy of $G^{(k)}$ we use type B label as each $i^{\text {th }}$ copy if $i \equiv 1(\bmod 2)$ i.e. i is of type $2 x+1 . x=0,1,2, \ldots$ and copy type D if $i \equiv 0(\bmod$ 2).i.e. i is of type $2 x, x=1,2, . . \quad(i=1,2, .$.

To obtain structure 3 fuse vertex ' i ' from type B and ' f ' from type D. To obtain a labeled copy of $\mathrm{G}^{(\mathrm{k})}$ we use type B label as each $i^{\text {th }}$ copy if $i=1(\bmod 2)$ i.e. i is of type $2 x+1 . x=0,1,2, .$. and copy type D if $i=0(\bmod 2)$.i.e. i is of type $2 x, x=1,2, .$.

The resultant label numbers for both structures are as follows:
if k is of type $2 x+1, x=0,1,2, .$. then $v_{f}(0,1)=(3+4 x, 2+4 x)$ and $e_{f}(0,1)=(2+5 x, 3+5 x)$.
If k is of type $2 x, x=1,2,3 \ldots$ then $v_{f}(0,1)=(1+4 x, 4 x)$ and $e_{f}(0,1)=(5 x, 5 x)$.
Thus Structure 2 and structure 3 are cordial graphs.
Structure 4: When $k=2 x, x=1,2, .$. we use Type E label. We take xcopies of Type E label and fuse it at vertex v to get labeled copy of $G^{(2 x)}$. The label numbers are $v_{f}(0,1)=(4 x, 4 x+1), e_{f}(0,1)=(5 x, 5 x)$. To obtain a labeled copy of $G^{(k)}$ for $k=2 x+1$ we start with labeled copy of $G^{(2 x)}$. Choose type C label and fuse it at vertex ' t ' on it with $G^{(2 x)}$ with vertex v on $G^{(2 x)}$. The resultant graph has label distribution given by $v_{f}(0,1)=(4 x+2,4 x+3), e_{f}(0,1)=(5 x+2,5 x+3)$.

Thus the graph is cordial. \#.
4.3 Theorem: One point union of k copies of $\mathrm{G}=$ tail $\left(\mathrm{C}_{3}, \mathrm{p}_{4}\right)$ is cordial.

Proof. Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1]$ as follows. Under f we get labeled copies Type A, type B and Type C. Only type A is cordial labeling and not type B and type C. We use these copies suitably to obtain labeled copy of $\mathrm{G}^{(\mathrm{k})}$.

Fig 4.11 ordinary labeling of tail $\left(\mathrm{C}_{3}, \mathrm{P}_{4}\right)$

Fig $4.12 v_{f}(0,1)=(4,2), e_{f}(0,1)=(3,3)$

If we take one point union at point 'b ' structure 1 is obtained. If we take one point union at point 'c ' structure $\mathbf{2}$ is obtained. If we take one point union at point ' d ' structure 3 is obtained.

If we take one point union at point ' e ' structure 4 is obtained. If we take one point union at point ' f ' or ' g ' structure $\mathbf{5}$ is obtained.

To obtain labeled copy of structure 1 we take labeled copy of type A and Type B and fuse it at vertex ' x ' on it. For $i=1$, 2use Type A label. For $i>2$, thei ${ }^{\text {th }}$ copy on $G^{(k)}$ will be type B label if $i \equiv 1(\bmod 2)$ and Type A, if $i \equiv 0(\bmod 2)$.

To obtain labeled copy of structure 2 we take labeled copy of type A and Type B and fuse it at vertex ' y ' on it. For $i=1$, 2use Type A label. For $i>2$, thei ${ }^{\text {th }}$ copy on $G^{(k)}$ will be type B label if $i \equiv 1(\bmod 2)$ and Type A, if $i \equiv 0(\bmod 2)$.

To obtain labeled copy of structure 5 we take labeled copy of type A and Type B and fuse it at vertex ' t ' on it. For $i=1,2$ use Type A label. For $i>2$, the $i^{\text {th }}$ copy on $G^{(k)}$ will be type B label if $i \equiv 1(\bmod 2)$ and Type A, if $i \equiv 0(\bmod 2)$.

The resultant label numbers for above three structures are as follows :

$$
\mathrm{v}_{\mathrm{f}}(0,1)=(3+5 \mathrm{x}, 3+5 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(3 \mathrm{k}, 3 \mathrm{k}) \text { when } \mathrm{m} \text { is of the type } 2 \mathrm{x}+1, \mathrm{x}=0,1,2 .
$$

$\mathrm{v}_{\mathrm{f}}(0,1)=(5 \mathrm{x}, 1+5 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(3 \mathrm{k}, 3 \mathrm{k})$ when m can be written as $2 \mathrm{x}, \mathrm{x}=0,1,2 \ldots$
To obtain labeled copy of structure 3 we take labeled copy of type A and Type C and fuse it at vertex ' z ' on it. For i $=1,2$ use Type A label. For $\mathrm{i}>2$, thei ${ }^{\text {th }}$ copy on $\mathrm{G}^{(\mathrm{k})}$ will be type C label if $\mathrm{i} \equiv 1(\bmod 2)$ and Type A , if $\mathrm{i} \equiv 0(\bmod 2)$.

To obtain labeled copy of structure 4 we take labeled copy of type A and Type C and fuse it at vertex ' q ' on it. For $i=1,2$ use Type A label. For $i>2$, thei ${ }^{\text {th }}$ copy on $G^{(k)}$ will be type C label if $i \equiv 1(\bmod 2)$ and Type A, if $i \equiv 0(\bmod 2)$.

The resultant label numbers for above two structures are as follows :
$\mathrm{v}_{\mathrm{f}}(0,1)=(3+5 \mathrm{x}, 3+5 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(3 \mathrm{k}, 3 \mathrm{k})$ when k is of the type $2 \mathrm{x}+1, \mathrm{x}=0,1,2 .$.
$\mathrm{v}_{\mathrm{f}}(0,1)=(6+5 \mathrm{x}, 5+5 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(3 \mathrm{k}, 3 \mathrm{k})$ when k can be written as $2 \mathrm{x}, \mathrm{x}=0,1,2 \ldots$
Thus the graph is cordial. \#.
Theorem $4.4 \quad G^{(k)}$ is cordial where $G=\operatorname{tail}\left(\mathrm{C}_{3}, \mathrm{P}_{5}\right)$
Proof:From fig 4.15 it follows that there are 6 non- isomorphic structures possible on $\mathrm{G}^{(\mathrm{k})}$.

If we take one point union at point 'a' structure lis obtained.If we take one point union at point 'b ' structure 2 is obtained. If we take one point union at point ' c ' structure 3 is obtained.If we take one point union at point ' d ' structure 4 is obtained.If we take one point union at point ' e ' structure 5 is obtained.If we take one point union at point ' f 'or ${ }^{\prime} g$ ' structure 6 is obtained.

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ then different types of labeling are obtained as shown in figure.
To obtain labeled copy of structure 1 we take labeled copy of type C and Type D and fuse it at vertex ' x ' on it.The $i^{\text {th }}$ copy on $G^{(k)}$ will be type C label if $i \equiv 1(\bmod 2)$. And Type D if $i \equiv 0(\bmod 2)$.

To obtain labeled copy of structure 2 we take labeled copy of type C and Type A and fuse it at vertex ' y ' on it. The $\mathrm{i}^{\text {th }}$ copy on $\mathrm{G}^{(\mathrm{k})}$ will be type C label if $\mathrm{i} \equiv 1(\bmod 2)$. And Type A if $\mathrm{i} \equiv 0(\bmod 2)$.

To obtain labeled copy of structure 3 we take labeled copy of type C and Type A and fuse it at vertex ' z ' on it. The $\mathrm{i}^{\text {th }}$ copy on $\mathrm{G}^{(\mathrm{k})}$ will be type C label if $\mathrm{i} \equiv 1(\bmod 2)$. And Type A if $\mathrm{i} \equiv 0(\bmod 2)$.

To obtain labeled copy of structure 4 we take labeled copy of type A and Type E and fuse it at vertex ' t ' on it. The $i^{\text {th }}$ copy on $G^{(k)}$ will be type E label if $i \equiv 1(\bmod 2)$. And Type A if $i \equiv 0(\bmod 2)$.

To obtain labeled copy of structure 5 we take labeled copy of type D and Type E and fuse it at vertex ' q ' on it. The $i^{\text {th }}$ copy on $G^{(k)}$ will be type E label if $i \equiv 1(\bmod 2)$. And Type D if $i \equiv 0(\bmod 2)$.

To obtain labeled copy of structure 6 we take labeled copy of type D and Type E and fuse it at vertex ' r ' on it. The $i^{\text {th }}$ copy on $G^{(k)}$ will be type E label if $i \equiv 1(\bmod 2)$. And Type D if $i \equiv 0(\bmod 2)$.

The resultant label numbers are as follows and same for all structures.

$$
v_{f}(0,1)=(4+6 x, 3+6 x), e_{f}(0,1)=(4+7 x, 3+7 x) \text { for } k=2 x+1, x=0,1,2 \ldots
$$

$\operatorname{Andv}_{f}(0,1)=(1+6 x, 6 x), e_{f}(0,1)=(7 x, 7 x)$ for $k=2 x, x=1,2 \ldots$
Thus the graph is cordial
\#

Theorem 4.5: $\quad G^{(k)}$ is cordial where $G=\operatorname{tail}\left(C_{3}, P_{6}\right)$
Proof. Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1]$ as follows. Under f we get labeled copies Type A, type B and Type C. Type A is cordial but Type B and Type C are not. We use these copies suitably to obtain labeled copy of $\mathrm{G}^{(\mathrm{k})}$

Fig 4.20; tail $\left(\mathrm{C}_{3}, \mathrm{P}_{6}\right)$

Fig $4.21 \mathrm{v}_{\mathrm{f}}(0,1)=(4,4), \mathrm{e}_{\mathrm{f}}(0,1)=(4,4)$

Fig $4.23 v_{f}(0,1)=(3,5) e_{f}(0,1)=(4,4)$

We take one point union at point ' h ' structure 1 is obtained.
If we take one point union at point 'a 'structure 2 is obtained.
If we take one point union at point ' b ' structure $\mathbf{3}$ is obtained.
If we take one point union at point ' c ' structure 4 is obtained.
If we take one point union at point 'd ' structure 5 is obtained.
If we take one point union at point ' e ' structure6 is obtained.
If we take one point union at point ' f 'or ' g ' structure 7 is obtained.

To obtain labeled copy of structure 1 we take labeled copy of type A and Type B and fuse it at vertex ' q ' on it. For $i=1,2$ use Type A label. For $i>2$, the $i^{\text {th }}$ copy on $G^{(k)}$ will be type B label if $i \equiv 1(\bmod 2)$ and Type A, if $i \equiv 0(\bmod 2)$.

To obtain labeled copy of structure 2 we take labeled copy of type A and Type B and fuse it at vertex 'r' on it. For i $=1,2$ use Type A label. For $\mathrm{i}>2$, the $\mathrm{i}^{\text {th }}$ copy on $\mathrm{G}^{(\mathrm{k})}$ will be type B label if $\mathrm{i} \equiv 1(\bmod 2)$ and Type A , if $\mathrm{i} \equiv 0(\bmod 2)$.

To obtain labeled copy of structure 6 we take labeled copy of type A and Type B and fuse it at vertex 's' on it. For $i=1,2$ use Type A label. For $i>2$,the $i^{\text {th }}$ copy on $G^{(k)}$ will be type B label if $i \equiv 1(\bmod 2)$ and Type A, if $i \equiv 0(\bmod 2)$.

To obtain labeled copy of structure 7 we take labeled copy of type A and Type B and fuse it at vertex ' v ' on it. For $i=1,2$ use Type A label. For $i>2$, the $i^{\text {th }}$ copy on $G^{(k)}$ will be type B label if $i \equiv 1(\bmod 2)$ and Type A, if $i \equiv 0(\bmod 2)$.

The resultant label numbers for above four structures are as follows :
$\mathrm{v}_{\mathrm{f}}(0,1)=(4+7 \mathrm{x}, 4+7 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(4 \mathrm{k}, 4 \mathrm{k})$ when m is of the type $2 \mathrm{x}+1, \mathrm{x}=0,1,2 .$.
$\mathrm{v}_{\mathrm{f}}(0,1)=(7 \mathrm{x}+1,7 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(4 \mathrm{k}, 4 \mathrm{k})$ when m can be written as $2 \mathrm{x}, \mathrm{x}=1,2 \ldots$
To obtain labeled copy of structure 3 we take labeled copy of type A and Type C and fuse it at vertex ' y ' on it. For $i=1,2$ use Type A label. For $i>2$, the $i^{\text {th }}$ copy on $G^{(k)}$ will be type A label if $i \equiv 1(\bmod 2)$ and Type C, if $i \equiv 0(\bmod 2)$.

To obtain labeled copy of structure 4 we take labeled copy of type A and Type C and fuse it at vertex ' z ' on it. For i $=1,2$ use Type A label. For $\mathrm{i}>2$, the $\mathrm{i}^{\text {th }}$ copy on $\mathrm{G}^{(\mathrm{k})}$ will be type A label if $\mathrm{i} \equiv 1(\bmod 2)$ and Type C , if $\mathrm{i} \equiv 0(\bmod 2)$.

To obtain labeled copy of structure 5 we take labeled copy of type A and Type C and fuse it at vertex ' t ' on it. For i $=1,2$ use Type A label. For $i>2$,the $i^{\text {th }}$ copy on $G^{(k)}$ will be type A label if $i \equiv 1(\bmod 2)$ and Type C, if $i \equiv 0(\bmod 2)$.

The resultant label numbers for above three structures are as follows :
$\mathrm{v}_{\mathrm{f}}(0,1)=(4+7 \mathrm{x}, 4+7 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(4 \mathrm{k}, 4 \mathrm{k})$ when m is of the type $2 \mathrm{x}+1, \mathrm{x}=0,1,2 .$.
$\mathrm{v}_{\mathrm{f}}(0,1)=(7 \mathrm{x}, 7 \mathrm{x}+1), \mathrm{e}_{\mathrm{f}}(0,1)=(4 \mathrm{k}, 4 \mathrm{k})$ when m can be written as $2 \mathrm{x}, \mathrm{x}=0,1,2 \ldots$
Thus the graph is cordial
\#.
Conclusions: A tail graph is obtained by attaching a path P_{m} to a vertex on G.We have investigated and shown that for $G=C_{3}$ and $m=2$ to 6 . The one point union of k copiestaken at different vertices on copies of tail $\left(G, P_{m}\right)$ are shown to be cordial. We expect that if $G=\operatorname{tail}\left(\mathrm{C}_{3}, \mathrm{P}_{\mathrm{m}}\right)$ then $\mathrm{G}^{(\mathrm{k})}$ is cordial for all m and given k . We have proved that:

1) Let $G=\operatorname{tail}\left(\mathrm{C}_{3}, \mathrm{P}_{2}\right)$.Then $\mathrm{G}^{(\mathrm{k})}$ is cordial.
2) Let $G=\operatorname{tail}\left(C_{3}, P_{3}\right)$.Then $G^{(k)}$ is cordial.
3) One point union of k copies of $G=\operatorname{tail}\left(\mathrm{C}_{3}, \mathrm{p}_{4}\right)$ is cordial.
4.) $\quad G^{(k)}$ is cordial where $G=\operatorname{tail}\left(\mathrm{C}_{3}, \mathrm{P}_{5}\right)$
5.) $\quad \mathrm{G}^{(\mathrm{k})}$ is cordial where $\mathrm{G}=\operatorname{tail}\left(\mathrm{C}_{3}, \mathrm{P}_{6}\right)$.

It is necessary to investigate such type of graphs further for cordiality.

References:

[1] M. Andar, S. Boxwala, and N. Limaye, New families of cordial graphs, J. Combin. Math. Combin. Comput., 53 (2005) 117-154. [134]
[2] M. Andar, S. Boxwala, and N. Limaye, On the cordiality of the t-ply Pt(u,v), ArsCombin., 77 (2005) 245-259. [135]
[3] BapatMukund,Ph.D. thesis submitted to university of Mumbai.India 2004.
[4] BapatMukund V. Some Path Unions Invariance Under Cordial labeling, accepted IJSAM feb. 2018 issue.
[5] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, ArsCombin., 23 (1987) 201-207.
[6] Harary,Graph Theory,Narosapublishing ,New Delhi
[7] Yilmaz,Cahit,E-cordial graphs,Arscombina,46,251-256.
[8] J.Gallian, Dynamic survey of graph labeling,E.J.C 2017
[9] D. WEST,Introduction to Graph Theory,Pearson Education Asia.
a. ${ }^{1}$ Mukund V. Bapat, Hindale, Tal: Devgad,Sindhudurg
b. Maharashtra, India 416630
c. mukundbapat@yahoo.com

