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Abstract— In this paper Trail set is defined for a finite connected graph G and it is found that the set of all 

trail sets  together with empty set partially ordered by set inclusion relation forms a lattice. Also 

derived graph of G, denoted by Gd is defined such that lattices  and  are isomorphic. Some of 

the properties of the lattices so obtained are studied. The definition of trail sets is extended to directed 

graphs and studied. 
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I. INTRODUCTION 

In many research papers, lattices are constructed using graphs and their properties are studied. In fact  in [9], 

it is shown that the set of all convex subgraphs of a directed graph G together with empty set partially ordered 

by set inclusion relation forms a complete semimodular, A-regular lattice. In [7], it is shown that the set of all 

convex sets of a finite connected graph together with empty set partially ordered by set inclusion relation forms 

a lattice. In [8],lattice of path sets of a connected graph is discussed. In [1], [2], lattice of convex edge sets of a 

connected directed graph is discussed. 

 Motivated by the above studies, in this paper we have defined trail sets of a finite connected graph G 

and found that the set of all trail sets of G together with empty set partially ordered by set inclusion relation 

forms a lower semi modular lattice. In section 2 after introducing some basic concepts and notations we have 

shown that the set of all trail sets of a finite connected graph G together with empty set forms a lattice with 

respect to the partial order set inclusion and is denoted by  < , ⊆ > . In section 3 some of the properties of 

such lattices are studied. 

In section 4, derived graph Gd is defined such that  < , ⊆ >  and < , ⊆ > are isomorphic. 

Also we found that for any connected graph G, Gd is a tree. Some of the properties of  < , ⊆ >  are also 

studied.  

In section 5, the definition of trail sets is extended to directed graphs and it is shown that the set of all trail 

sets of a finite connected digraph G together with empty set also forms a lattice with respect to the partial order 

set inclusion with an example. The conditions under which < , ⊆ >  forms a chain and  < , ⊆ > is a 

complemented lattice are studied for a connected digraph G. Necessary and sufficient condition for an element 

A in < , ⊆ > to be doubly irreducible is established. Also it is observed that for certain digraphs there is 

unique < , ⊆ > depending upon its underlying graphs. 

II. PRELIMINARIES 

A walk of a graph G is an alternating sequence of vertices and edges v0,e1,v1,…vn-1,en,vn beginning and 

ending with vertices, in which each edge is incident with the two vertices immediately preceding and following 

it. This walk joins v0 and vn, and may also be denoted by v0,v1,…vn, called v0-vn walk. It is closed if v0 =  vn and 

is open otherwise. An open walk in which no edge is repeated is a trail. A closed walk in which no edge is 

repeated is a circuit. A circuit containing all the vertices of G is called a spanning circuit. A walk in which no 

vertex is repeated is a path. A closed path is called a cycle. A path containing n vertices is denoted by Pn. A 

graph is acyclic, if it has no cycles. A tree is a connected acyclic graph. 

 An element ‘ ’ of a lattice L is join irreducible if  implies that  or .  ‘ ’ is meet 

irreducible if  implies that  or . An element which is both meet and join irreducible is 

called doubly irreducible. A lattice  is said to satisfy the lower covering condition if for   

implies . A lattice  is lower semimodular(LSM)  if  a  covers both a and  implies that both  

and b cover . 
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Let G be a finite connected graph. V(G) be the vertex set of G. A set T ⊆ V(G) is said to be trail set in G if 

it satisfies the following two conditions (i)for every two vertices u, v ϵ T, the vertex set of every u-v trail is 

contained in T, (ii) for every vertex v ϵ T , if there exist a circuit containing v, then the set of all vertices of a 

maximal circuit containing v is contained in T.  

 For a finite connected graph G, let the set of all trail sets in G together with empty set be denoted by . 

Define a binary relation ≤ on by, for A, B ∈ , A ≤ B if and only if A ⊆ B. Then clearly ≤ is a partial 

order on . Moreover < , ⊆ > forms a lattice where for A, B ∈ , A ٨ B = A ∩ B and A ٧ B = < 

A ∪ B >, where < A ∪ B > is the trail set generated by A ∪ B or equivalently the smallest trail set containing 

A ∪ B. 

 

For example, the lattice given in Fig 2.2 represents the lattice < , ⊆ > of the connected graph G given 

in Fig 2.1. 

 
Throughout this paper we consider G as a non trivial graph and we use the notation  to represent the 

lattice < , ⊆ > . The undefined terms and notations used in this paper are from [3], [4] and [5]. 

III. ON THE LATTICE  

Remark 3. 1: The smallest element of  is empty set and the largest element is V(G). 

 

Theorem 3.2: A singleton set  is a trail set if and only if  does not belong to a circuit. 

Proof: Let A =  be a trail set. If   belong to a circuit, then all the vertices of that circuit also belong to A, a 

contradiction. 

Conversely, If  does not belong to a circuit, then  is a trail set. 

 

 Remark 3. 3:  is atomic where atoms are as follows. 

(i) Trail sets containing  single vertex. 

(ii) Trail sets containing all vertices of  maximal circuits of G. 

 

Theorem 3.4:  is a two element chain if and only if either G is P2 or G contains a spanning circuit. 

Proof: Let  be a two element chain. Then there are only two trail sets  and  such that ,  

which implies  is an atom. Therefore G contains a spanning circuit. Conversely, let G contains a spanning 

circuit, then   ,   are the only two trail sets, such that .Thus  is a two element chain. 

 

Remark 3.5:  is a two element chain for all graphs containing spanning circuit. Moreover  is a chain 

only in this case. Infact if G does not contain spanning circuit, then G contains atleast one bridge. Therefore 

 will contain atleast two atoms. Thus   will contain a sublattice as shown in Fig 3.1. Hence we can 

conclude that  is a chain if and only if G has a spanning circuit. 
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Example 3.6: We note that the graphs shown in figures 2.1 and 3.2 are not isomorphic but their lattices shown 

in figures 2.2 and 3.3  are isomorphic.  

 
 

Theorem 3.7: G contains n-1 bridges if and only if  contains n atoms. 

Proof: Let G contains n-1 bridges. Since G is a connected graph, the removal of these n-1 bridges results into a 

disconnected graph with n components.  Each component is either a single vertex or a circuit. Therefore trail 

sets of vertices of these components form atoms of . Hence  contains n atoms. Conversely if  

contains n atoms, then each atom is either a set with single vertex or a set containing vertices of a circuit. But 

then since G is connected, clearly  G must contain n-1 bridges. 

IV. DERIVED GRAPH  

Let G be a connected graph with n-1 bridges, say   and G1 be the graph obtained from G by 

deleting all bridges of G. Then G1 is a disconnected graph with n components. These components are either 

single vertices or sub graphs of G containing circuit. Let us denote the vertex set of components as T1,T2,…Tn. 

These n components are connected by n-1 edges which are bridges of G.  If there is an edge connecting one 

vertex of Ti to one vertex of Tj, then they are adjacent. Let Gd be the graph with vertex set  and 

edge set . We call Gd as the derived graph of G, which is a connected acyclic graph with n 

vertices and n-1 edges. Hence it is a tree.  

For example, the graph given in Fig 4.2 represents the derived graph Gd of the graph G given in Fig 4.1.,  

 
 

where T1={v1} , T2={v2,v3,v4}, T3={v5,v6,v7,v8}, T4={v9} and T5={v10} 

We use the notation   to represent the lattice < , ⊆ >. 

 

Remark4.1: If G itself is a tree , then G is isomorphic to Gd. 
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Remark4.2: Let Gd be the derived graph of G and  be the lattice of trail sets of  Gd .Then the lattices   

and  are isomorphic. 

 

Remark4.3: Following statements are equivalent. 

i) G has spanning circuit 

ii) Gd is a trivial graph 

iii)  is a two element chain.   

 

Theorem4.4:  is planar if and only if Gd
  is a path. 

Proof: Let  be  planar. If Gd is not a path, then there exist a vertex with degree at least three as shown in Fig 

4.3. Then  contains a subposet as shown in Fig  4.4, which implies  can not be planar(see[6]).  

 
 

Conversely, if Gd is a path T1T2…Tn as shown in Fig4.5, then  will be as shown in Fig 4.6 and hence it is 

planar.  

 

Theorem4.5: An element A   is doubly irreducible if and only if A =  where T is a pendant vertex 

of Gd. 

Proof: Let A   be doubly irreducible. If A =  where T is a vertex with two edges incident on it, say 

TT1 and TT2. Then   , a contradiction. On the other hand if A contains more than one 

element, say    ,then . Therefore  for some i, since A is 

join irreducible. 

 Conversely, for any vertex T in Gd, A =    is an atom of . Therefore A is join 

irreducible. If A is meet reducible, say  for some such that 

 ,then T . Consider  ,  where  , . Let  be a 
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shortest path connecting T and U in B. Also let  be a shortest path connecting T and V in C. If 

U1=V1, then U1 , contradiction to  . Also, if   , then  and  are 

two edges  incident on T, contradiction to T is pendant vertex of Gd. Hence A must be irreducible. 

 

Theorem4.6: For any connected graph G,  is lower semimodular. 

Proof: Let Gd be the derived graph of G, with vertex set . 

Since Gd is a tree, if  covers both A and B, then  are of the form  , 

 and  respectively. Where  are common elements in A 

and B. Clearly  =   and it is covered by both  and . Hence  lower semi modular. 

 

Remark 4.7: The following statements are equivalent. 

i) G is a graph with single bridge. 

ii) Gd is P2. 

iii)  will be of the form as shown in Fig 4.7  

 

 
 

Remark 4.8: The following statements are equivalent. 

i) G is a graph with two bridges.  

ii) Gd is P3. 

iii)  will be of the form as shown in Fig 4.8.  

 

Theorem 4.9:  contains n atoms if and only if G contains n-1 bridges. 

 Proof: If  contains n atoms, then  also contains n atoms. Therefore Gd is a tree  with n vertices and 

hence it contains exactly n-1 edges which are nothing but bridges of G. 

Conversely, if G contains n-1 bridges, then Gd contains n vertices. Therefore  as well as  will 

contain n atoms. 

 

Theorem 4.10: A chain containing more than two elements cannot be realized as the lattice of trail sets. 

Proof: If Gd is a trivial graph, then  is a two element chain. If Gd is not a trivial graph, then Gd contains at 

least one edge. Therefore  contains a subposet as shown in Fig4.7.  

 

Theorem 4.11: A lattice shown in Fig 4.9 cannot be realized as a lattice of trail sets [for ] 

Proof: For   , Gd will contain a subgraph P3.Therefore   will contain a subposet as shown in Fig 

4.8. Thus lattice shown in Fig 4.9 cannot be realized as a lattice of trail sets [for ] 
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 Remark4.12: Lattices shown in Fig 4.10, Fig 4.11 cannot be realizable as lattice of trail sets as they are not 

lower semi modular. 

 
Theorem4.13: Let  T be any vertex of Gd. Degree of T = k in Gd if and only if   is covered by k elements in 

  

Proof: If degree of T = k, then there are k edges incident on T . Let  

be the adjacent vertices of T. Then  , ,…  are the elements which cover  . 

Conversely, Let   be covered by k elements, say  , ,…  .Therefore vertex T is 

incident with k edges. Hence degree of T = k 

 

Theorem4.14:  is complemented if and only if either Gd is a single vertex( trivial graph ) or Gd is P2 

Proof:Let  be complemented. If Gd is not a single vertex or P2, then Gd must contain P3 as a subgraph. 

Let  TiTjTk be the subgraph of Gd. Then  is not complemented. And hence  is not complemented, a 

contradiction. Conversely, if Gd is a trivial graph, then  is a two element chain. If Gd is P2, then  

will be as shown in Fig4.7. Clearly both are complemented. 

 

Theorem4.15: ( ) =  

Proof: Let V(Gd) = . Then the longest chain in T(Gd) is 

. Which is of length n. 

 

Theorem4.16: If Gd is Pn , then  

Proof: Let Gd be a path with n vertices. Then there are n trail sets with single element, n-1 trail sets with two 

elements and so on continuing like this finally one trail set with n elements. Including empty set,  

  

 

Theorem4.17: Following statements are equivalent  for any derived graph Gd. 

1. Gd is P1 or P2. 

2.  is distributive. 

3.  is modular. 

4.  satisfies lower covering condition. 

Proof: (1) ⇒ (2): If Gd is P1, then is a two element chain. If Gd is P2 then is of the form as shown 

in Fig 4.7. Both are distributive. 
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(2) ⇒ (3) ⇒ (4) is true for all lattices. 

To prove (4) ⇒ (1) : Let  satisfy lower covering condition. If Gd is not P1 or P2, then Gd contains P3 , say 

TiTjTk. Clearly . But . Contrdiction to  

satisfies lower covering condition. Hence Gd must be P1 or P2.            

 

Remark4.18: is dually atomic. Dual atom Di = V(Gd) - Ti ,where Ti is a pendant vertex of Gd. Thus the 

number of dual atoms of = the number of pendant vertices of Gd.  

 

Remark4.19: For any graph G,  satisfies Jordan dedekind  chain condition since it is lower semi modular. 

V. ON THE LATTICE OF TRAIL SETS OF A CONNECTED DIRECTED GRAPH 

A (directed) walk in a digraph is an alternating sequence of vertices and edges v0,e1,v1….en,vn  in which 

each edge ei is vi-1vi. A closed walk has the same first and last vertices, and a spanning walk contains all the 

vertices. A path is a walk in which all vertices are distinct, and a closed path is called a cycle. If there is a 

path from u to v , then v is said to be reachable from u. Each walk is directed from the first vertex  v0 to the 

last vertex vn. A semiwalk is an alternating sequence v0,e1,v1….en,vn  of vertices and edges in which each 

edge ei is vi-1vi  or vivi-1. Similarly a semipath, semicycle are also defined. 

 A digraph is strongly connected , if every two vertices are mutually reachable, it is unilaterally 

connected , if for any two points at least one is reachable from the other, and it is weakly connected if  

every two points are joined by a semipath. A digraph is disconnected if it is not even weak. For any digraph 

G, the undirected graph obtained by removing the directions is called it’s underlyng graph. 

 

Let G be a connected directed graph. Let E (G) be the edge set of G. A subset A of E (G) is said to be Trail 

set  of G if it satisfies the following conditions, 

i) For every ei  A , all edges which lie on the trail connecting end vertices of ei  A. Also if there is 

any circuit from any end vertex of  ei to itself , then all the edges of that circuit belong to A. 

ii) For any trail ei, ej,… ek,  A all the edges connecting end vertices of this trail belong to A and also 

all edges which connect end vertices of a trail contained in the above trail belong to A. 

 

Let  be the set of all trail sets of G together with the empty set. Define a binary relation  on  

by, for A, B  , A  B if and only if A B. Then clearly  is a partial order on . Moreover 

 ,  forms a lattice where for A, B ,       A B = A B and A B = A B  is the 

smallest convex edge set containing A B. 

 For example, the lattice given in Fig 5. 2 represents the lattice , of the connected digraph 

G given in Fig 5. 1. 

 

 
Here after we use  to denote ,  where G is a connected directed graph. 

 Remark 5. 1: The smallest element of  is empty set and the largest element is E(G). 

 

Remark 5. 2:   is atomic where atoms are as follows 

(i)sets containing edges of a maximal strongly connected subgraphs of G. 

(ii)singleton sets {ei} if there is no directed trail connecting end vertices of ei and also there is no directed circuit 

from any end vertex of ei to itself. 
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Theorem 5. 3:  is a two element chain if and only if either G is a digraph containing single edge or G is a 

strongly connected digraph. 

 Proof: Let  be a two element chain, then  and E(G) are the only trail sets in G such that . 

Therefore E(G) itself is an atom of . Hence G is a digraph containing single edge or G is a strongly 

connected digraph. 

Conversely, let G be a strongly connected digraph. Then every pair of vertices are connected by two 

directed trails. Therefore  and E(G) are the only trail sets in G such that . 

 

Corollary 5.4 : If G is as given in theorem 5.3, then  ,  and   is a Boolean 

algebra. 

 

Theorem 5. 5:  is a three element chain if and only if   where S is the maximal strongly 

connected subgraph of G and A is a nonempty set of edges whose initial(terminal) vertices belong to S and they 

share a common terminal(initial) vertex. 

Proof: Let  be a three element chain of the form . Where  is either singleton set, say 

 or set of edges of a maximal strongly connected subgraph of G. If  is an atom and 

 then contains a subposet as shown in Fig 5.4  Therefore   must be a set of edges of a 

maximal strongly connected subgraph of G. Also  where A is a nonempty set of edges whose 

initial(terminal) vertices belong to  and they share a common terminal(initial) vertex. We take . 

Conversely ,let  where S is the maximal strongly connected subgraph of G and A is a nonempty set 

of edges whose initial(terminal) vertices belong to S and they share a common terminal(initial) vertex.Then  , 

E(S) and E(G) are the only trail sets in G such that .   

 

Corollary 5.6 : If G is as given in theorem 5.5, then  ,  and   is a Boolean 

algebra. 

 

Theorem 5. 7: Depending on the nature of underlying graph ,   will be as follows. 

Figure 5.4,5.6,5.8,5.10,5.12 represent lattices   corresponding to underlying graphs Figures 

5.3,5.5,5.7,5.9,5.11 respectively.  
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Theorem 5.8: If underlying graph of digraph G is of the form as shown in Fig 5.13, then  is a 

Boolean algebra. 

 

 
 

Proof: If G is of the form as shown in Fig 5.13 , then  is a lattice  for A, B  ,  

A B = A B and A B = A B. Clearly  is a complemented distributive lattice. Hence  is a 

Boolean algebra.  

 

Theorem 5.9: If G is a directed path with n edges, then 

(i)  =  

(ii) . 

Proof: (i) If G is a directed path with n edges, then there are  trail sets with single edge,  trail sets with 

two edges,  trail sets with three edges and so on, finally one trail set with n edges. Including empty set, 

    =     =   

 

(ii) Let e1e2……. en be the directed path. 

Then  is the maximum chain. 

Hence  

 

Theorem 5.10: Let G be a digraph containing Euler trail. An element A  is doubly irreducible if and 

only if  where  is a pendant edge without containing circuits at its end vertex OR  A = S , where S is 

a set of edges of a maximal strongly connected subgraph of G such that A is adjacent to at most one vertex of G. 

Proof: Let G be a digraph containing Euler trail. Let A  be doubly irreducible. Then  or A = S. 

Otherwise A will be join reducible. 

If  where  is a pendant edge containing circuits at its end vertex, then  can not be a trail 

set. If  is not a pendant edge, then either  belongs to a directed circuit or there exist a directed path 

. If  belongs to a directed circuit, then  can not be a trail set. If there exist a directed path 

 , then  ,a contradiction. Let A = S, where S is a set of edges of a 

maximal strongly connected sub graph of G. If A is adjacent to two or more vertices of G say  be the 

corresponding edges , then , a contradiction. 

Conversely, if  where  is a pendant edge without containing circuits at its end vertex OR  A 

= S , where S is a set of edges of a maximal strongly connected subgraph of G such that A is adjacent to at most 

one vertex of G, then A is an atom of  . Therefore A is join irreducible. Let  where  is a 

pendant edge without containing circuits at its end vertex. If  is meet reducible say  for 

some such that  .Then . Consider   ,  where 

 , . Let  be the shortest path connecting in . Also let  be the 

shortest path connecting in . If  , then   a contrdiction to . Also if 

 ,then  contains circuit at its end vertex since G contains an euler trail a contradiction. If  A = S and  

 for some such that  , then A is adjacent to atleast two 

vertices. Hence a contradiction. 
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Theorem 5.11 Let G be a directed graph containing Euler trail. Then is complemented if and only if G is 

any of the following three forms. 

i) G contains a spanning circuit. 

ii) G is a directed path containing atmost two edges. 

iii) G is of the form as shown in Fig 5.14, Fig 5.15 where C1 and C2 are directed circuits. 

 

 
Proof : Let  be complemented. If G is not of the form as given in the theorem, then either G contains a 

directed path containing three edges  OR  where S is the maximal strongly connected 

subgraph of G and A is a nonempty set of edges whose initial(terminal) vertices belong to S and they share a 

common terminal(initial) vertex. If G contains a directed path containing three edges , then  is not 

complemented. If  , then  is a three element chain. Hence  is not complemented. 

Conversely, if G contains a spanning circuit or G is a directed path containing one edge, then is a two 

element chain. If G is a directed path with two edges or of the form as shown in Fig 5.14 where C1 and C2 are 

directed circuits, then  is of the form as shown in Fig 5.4 . If  G is of the form as shown in Fig 5.15, then 

 is of the form as shown in Fig 5.16. In all these cases is complemented. Hence the result. 

REFERENCES  

 

[1] Asha Saraswathi B. and Lavanya S., On the Lattice of Convex Edge sets of a Connected directed graph., International Journal of 

Pure and Applied Mathematical Sciences. Volume 8, Number 2(2015),pp.155-161 

[2] Asha Saraswathi B. and Lavanya S., Some Properties Of The Lattice Of Convex Edge Sets Of A Connected Directed Graph., 

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May 2017,1-3 

[3]  Birkhoff. G. Lattice theory, Third edition (New York, 1967) 

[4]  Gratzer, G: General lattice theory, BirkhauserVerlag, academic press, 1978 

[5]  Harary F: Graph theory, Addision-wesley 1969 

[6]  D. Kelly and I. Rival, Planar lattices, CanadJ. Math, 27 No. 3, (1975), 636-665 

[7] Lavanya S. and Subramanya Bhat S., On the lattice of convex sets of a connected graph, Global journal of pure and applied 

Mathematics, Vol 7, 2(2011), 157-162 

[8] Lavanya S., On the lattice of path sets of a connected graph, Indian Journal of Mathematics research, Vol. 1, No.2 (2013), 219-

222. 

[9] Pfaltz. J. L., Convexity in directed graphs, J. Combinatorial theory 10(1971), 143-162. 

 


