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Abstract

In this paper we proved the existence of the common fixed point theorems in Non-Archimedean Menger
PM-space by using the R-weakly commuting mappings, reciprocal continuity are established in this paper. The
presented results extend some known existence results from the literature.
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I. INTRODUCTION

In 1942, K. Menger introduced the probabilistic metric space in which the metric whose value is non-
negative real number is the probabilistic metric. The generalization of probabilistic metric spaces leads to the
investigation of physical quantities and probabilistic functions. Istratescu and Crivat [7] had defined the non-
Archimedean Probability metric space and explained basic topological fundamentals of non-Archimedean
Probability metric space in [7]. Istratescu et al. showed the existence of fixed point of contractive maps in non-
Archimedean PM-space in [7], [8] which was the generalization of the existing. In this paper we find the
common fixed point of R-weakly commuting mappings, in N. A. Menger PM-space.

Il. PRELIMINARIES
First we need the following definitions and results that will be used subsequently.

Definition 2.1.
Let X be any non-empty set and the set of all left continuous distribution functions be denoted as D. An ordered
pair (X, G) is defined to be the non-Archimedean probabilistic metric space (N.A.PM-space), if G is a mapping

from X X X — D satisfies the following conditions

(i) Gxy;ty=1forallt>0ifandonlyif x =¥

(i) G(x,y;t = G(y,x;t)

(i) G(x,y;0 =0

(iv) If G(x,v.t;) = G(y,z,t,) = 1, then G(x,z, max{t,, t,}) = L.

Definition 2.2
A t-norm is a function &:[0,1] x [0,1] = [0,1] which is associative, commutative, non-decreasing in each
coordinate and 8(b,1) = b for all b€ [0,1].

Definition 2.3.

A N.A.Menger PM-space is said to be in ordered triplet(X, F &), where 0 is at-norm and (x, F), is a N.A.PM-
space fulfilling the following condition,

F(x,z,max{t;, t,}) = §(F(x, v, t;),F(y,z.t;) ) forallx, ¥,z EX, t,t; = 0.

Definition 2.4.

A sequence £%.} in N. A. Menger PM-space(x, F &) converges to x if and only if for each £>0, 2>0 there
exists M (g, A) such that QJ[:F(xn,x, E]) < @(l—A)foralln, n =M.
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Definition 2.5.
A sequence £X.} in N.A.Menger PM-space is said to be Cauchy sequence iff for each £>Q A>0 there exists

—_ = =
an integer M(s, 2) such that ¥ (F[x”’x”ﬂ”'g)) <e¢(l-Aforalln, n=Mandp =1

Definition 2.6.
Two maps S and T of a N. A. Menger PM-space (X, F &) into itself are said to be R weakly commuting of type

A_if forx€Xand R>0

o (F (STx.TTx, 1)) < @ F| Sx.Tx, L, .
h ' WM R

Definition 2.7.

Two maps S and T of a N. A. Menger PM-space (X, F &) into itself are said to be R weakly commuting of

type Ay if forx € X and R>0
o Ny
@(P (STx.TTx. r]) <@ F| Sx.Tx, % [ |

\S b v

Lemma 2.8.
If a function 1: [0, c0) — [0, oo) satisfies the condition () then we get

1i “(t) =0, where w=(t
i) Forallt>0, ===~ (£) =8, where w0 is the n™ iteration of W(t)

i) If {t.} is a non-decreasing sequence of real numbers and t,,.; < ¥(t,),n = 1,2, ...then
lim, .. t, = 0. Inparticular, if t< v(), Vt>0 thent=0.

Lemma 2.9.
lim F(y_.¥ :t) =1 for each t = 0.

Let {y,} be a sequence in X such that »—= e If the sequence {y,}is not a
Cauchy sequence in X, then there exist €0 > 0 t,> 0, and two sequences {m;} and £} of positive integers

and 1, —® 23 13 ®. Fy_y, it))<l-g amd Fy__.v, t,)2 -, i=L2....

such that m;>n; +1

IHLLMAIN RESULTS
Theorem 3.1.
Let A, B, S and T be the self-maps of N.A.Menger PM-space (X, F, &) satisfying
(i) AX)CT(X),B(X)CS(X)
(ii) Oneof #{-X1.B{X}. X} or (X} jg complete
(iii) The pairs (A,S) and (B,T) are R-weakly commuting of type 4. and A, respectively
e(Y(F(Sx Ax, t))). (¥ (F(Ty. By, t)]),}
@ (W(F(Sx,T,£))), o(W(F(Ty, Ax, £)))
for all x,yeXandt>0, where :[0,1] = [0,1] is some continuous function such that
w(t) <t and ¥(1) = 1. .Then A, B, Sand T have a unique common fixed point in X.
Proof:
Let Xo € X be an arbitrary point. As A(X) C T(X) and B(X) C S(X)

Ax, =Tx, . Bx, =5

(iv) rp(F(f-lx, By; t]) < max{

there exist X, %, € X such that Xz Inductively we can construct

Sequences {1} and {\} in X such that

Voo = ANy, =TX o (¥, =Bx ), =5x,, , forn=01_. (1.1)

X,.V=X

Now, Using (iv) with * t1-1 e get
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P(F(Y2m: Yon+1,t) = @(F(Ax2,, BX sy, t)
ax{@(w(F(szmAxﬁmt}}}x QU(?P(F(sznﬂ:sznﬂJt}]‘l}
@(‘P(F(SXEHJTXEH+1J}))J @(w(F(Tx2n+1JAx2wt}}}

@(UJ(F(}’:n—ij Yo t}}}, @(W(F(}’zm Vins1, I')}:l,

40(1P(F(}’:n—1: Yo, t})l @(‘P(F(}"Zm}"lm t]})

= mﬂ{@(‘i’(F(}’zn—L ¥Yan, I)}}, @(‘P(F(}’zm Vans1, t})}}

If $(¢(F(}EnJ}2n+1x t}}} ‘p(l)b(F(}tn 1J}2mt3‘}) then
O(F(Vans Van s t) = ?’(%ﬁ(f’(}’zm}’:n s t))) < @’[F(- Vaur ¥an+1r ’-Lj) a contraction.
Therefore @(F (¥, Van21.t) < @@ (F(¥2p-1, V2, 1)) forall t> 0.
Hence @(F(V,, Vns1t) < @@ (F(y,_q, v t))) forallt>0 and n =12, ...
Therefore, by lemma 2.8, lim,, .., @(F(¥,,¥,+1,t)) = 0 forallt > 0.
Before preceding the proof of the theorem, we have to prove a claim.
Claim:
Let A, B, Sand T: X — X be the maps satisfying (i) , (ii) and the sequence {y,}defined by (1.1) such that
lim, _,.. @(F(¥,.¥,21,t)) = 0 isa Cauchy sequence in X.
Proof:
Since ¢ € it follows that lim, .. F(v,.,V,+.t) =1 foreacht=0 ifandonlyif
1i_1>n @(F(¥,.Vns1,t)) =0 for eacht> 0.

i:max{

By Lemma 2.9, if {y,} is not a Cauchy sequence in X, then there exists &y > 0, t, > 0 and two sequences {m;}
and {n;} of positive integers such that
m; =n;, +land n; —»=c asi— =

(a) 1 1
by OF V¥ 3800 > 01 =20) and Q(F(Y,, 1., 310)) < 01 =8o) 1 1= 1.2
Since cp(t) =1—t. Thus, we have

o(l-g,)<o(F(y, V. )

<O (YY) OF (V. Ve 1 0))
SOF(V.. Vot )+ 0l—g) o
limo(F(y, .v, ;t,)=0(l-¢,)

On the other hand, we have
ofl-g)<o(F{y_.¥, .a:t.))

.._-:;[:H_:xFa}-=_:}-=_-; ey (1.4)
. pE(Y. . Yooty m. and n
Now, consider S e in (1.4) and assume that both ™ :
are even. Then by lemma (1.2), we have
w(F(}"mJ}"n+1J t} = @(F(Axm.l an+1Jt)
{W(w(F(SmeAme t}}}: ‘p(w(F(Txn+1J E-"C?‘.!+1.l t)}}x}
N qﬂ(‘f(?('s(?mﬁ Txnjl-}:lj t}){), ?(ﬂf}(F(Txn+]jﬁme t})}
@ 11':‘1 F ’mJ}’th » @ 1}"‘ F "nJ}"n+1Jt ’
= 1.5
e {40 (ﬂJ (F(ym— 1: ¥ t}) }J w(ﬁJ(F(}"m—il Vo t})) ( )
Now, consider @& F=-%=50 from (1 5)
(¥, ¥ 0 S olF(y, o ¥ ) T o(F(y. .30 0 (16)

Using (1.6) in (1.5) and letting i — .
P(1— g5) = max{ @(W(1 —£,)).0, e(W(1—£,)).0} i.e.p(l—gp) = @(W(1—gp))

This is a contradiction. Hence the sequence {y, = Ax,} defined by the result (1.1) is a Cauchy sequence.
Case I:

. _ _ z(say)eT [ X)
T(X) is complete and {J'“} is a Cauchy sequence in T(X) so { ¥,,} converges to some : * and

Axy b ABxy b and {Tx, .} _
hence the subsequence’s (A0} B "2=15 must also converge to z € T(X). Since z € T(X),

there exists uz € T(X) such that z = Twu.
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Step I:
By putting x = x,,,,v = u in (iv), we get
@(F(sz;"z’ BH,I’))

< max{@ (Y(F (52, AX 20, ), 0 (% (F (T, B, £))), @ (W(F (Sx 0, T, £))), 0 (W(F (T, Ax 5, £)))}

J’ @(F(z.z. 2)).¢(F(z.Bu.a:t)). ]|

@ F{-Z’B’:'{’ I) : = wi_max |@(F(z.z.2)). g(F(zz. 1)) |

Letting 12 —* C2, we have i
which implies that z=Bu=Tu As (B,T) is R-weakly commuting of type Ay so

R — [ =f -~ I
o\ F(Blu TTu 1)) =p F| Bulu, —

-

L R/J R>0, whichyields ST =TTu te. Bz =Iz
Step I1:
By putting * = Xz,,¥ = Z in(iv), we have
@(F(Ax,, Bz 1))

< max{e (Y(F(S5x,,,A%,,,t))),@(¥(F(Tz,Bzt))),e(Y(F(Sx,,, Tz, t))), @ (F(Tz,4x,,,t)))]}
Taking.  _, oo we get Bz=z =Tz

Step 11
As B(X) c 5(X), there exists v € X such that z=Bz=Sv,

By putting x = v, ¥ = z in (iv) , we get

@(F(Av, Bz ,t))

< max{p (W(F(5v,4v,1))), o(W(F(Tz Bz, 1)), ¢ (¥(F(5v,T2,1))), p (W(F (Tz,Av, 1))}
o(F(4v,z,)) < max{p (Y(F(z,Av, 1))),0,0, o(4 (F(z,Av, 1))}

Therefore, Awv = z = Sv. Since (A,S) is R-weakly commuting of type 4., so

=i ASv= 5% fe, Az =5t

-

bbb ode. o

=0, which implies that

: I\.: V.a¥. E__'__'
Step IV:
By putting x = z, ¥ = z in (iv) and assuming Az =Bz, we get
@(F(Az, Bz ,t))

< max{p (YP(F(S5z,A4z,t))), o(@(F(Tz Bz,t))), (@ (F(5z,Tz t))),@(Y(F(Tz Az, t)))}

ie, @(F(Az Bz,t)) < max{0,0, p(Y(F(Az, Bz,t))), ¢ (Y (F(Bz Az t)))}

which is a contradiction and we get AZ =Bz Combining all the results we get Z =-42=532=32=I2  Thatisz
is a common fixed point of A, B, Sand T.

Case II:

S(X) is complete so the sequence {y,} must converge to zes(x) and hence the subsequence's
{Ax,, }, {Bx,,. 1) and {Tx,, ., } must also converge to z € S(X). As ze 5(X), there exists wE X such
that z = Sw.

Step I:

=T i (iv), we get

By putting *
@(F(Aw, Bx,, ,t}))
< max{e (Y(F(Sw,Aw, 1)), @(Y(F(Tx4,, Bxs,, t) ), @(W(F(Sw,Tx,,, t))), ¢ (Y(F(Tx;,, Aw, t)))]}
Letting n — oo, we getdw = z = Sw. Now, (A,S) are R-weakly commuting of type 4_,

of F( 45v.55.1)) c:-;. Flavsv Ll

S0 Y ..__-__.I , R>0 , which Implles that ASw = 55w b Ar=25z .

Step 11:

Putting x = z,¥ = x5, in (iv) , we get

@(F(Az, Bx,, ,t))

< max{e (Y(F(5z,4z,1))), p(Y(F(Tx 0, Bxp, 1)), @ (W(F (52, Tx 1)), 0 (W(F (Txy,,, Az, 1))
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Letting = — oo, we get AZ=2=%,

Step 111:
As A(X) c T(X), there exists u, € x such that z = Az = Tu,. By putting x = x,, , ¥ = 1, in (iv), we obtain
@(F(Ax,,, Buy ,t))

< max{e (Y(F (5%, A%, £))), @ (W (F (T, Buy, £))), @ (W(F (5% 20 Ty, £))), @ (W(F (T y, Axy,, £)))]
Letting n— co, we get z = Bu, = Tu,. Now (B,T) is R-weakly commuting of type Ar

. o e [ of — Ehh
ol A I.Eg'.'.i_:g'g'.'.i_:fliiﬂl o E-'.i_:.d'-'i_:E (1 F.}ﬂ

S0 Lo . This implies that =7 = 154 te. S2=12

Step 1V:
By putting x = z, ¥ = z in (iv), we get 4z = BZ.
Hence z = Az = 5z = Bz = Tz That is z is the common fixed point of A, B, Sand T.

Case I11:
If A(X) or B(X) is complete. As A(X) = T(X) and B(X) = S(X), the result follows respectively from Case |
and Case Il. The uniqueness of the fixed point follows directly from (iv) and hence the theorem
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