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Abstract - The present research article is to investigate the magnetohydrodynamic (MHD) free convective heat 

and mass transfer flow of viscous incompressible electrically conductive fluid over an inclined stretching sheet 

with viscous dissipation and constant heat flux with the help of homotophy perturbation technique. This paper 

gives the description of the effect of flow parameters on velocity, temperature and concentration, which is 

graphically represented in figures. 
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I. INTRODUCTION 

In past decades the magnetohydrodynamic (MHD) flow over an inclined stretching sheet with viscous 

dissipation and heat generation gained lots of interest. It has importance in liquid metals, electrolytes and 

ionized gases. The presence of strong magnetic field effect, the conduction mechanism in ionized gases is 

differing from that in metallic substance. Generally in the ionized gases the electric current carried out by the 

electrons, which undergo the successive collision with other particles may be charged or neutral particles. In the 

presence of strong electric field, the conductivity is affected by a magnetic field. In many applications like glass 

blowing, continuous casting, paper production, hot rolling, drawing in plastic films, wire drawing, polymer 

extrusion, metal spinning and spinning of fibres are based on MHD laminar boundary layer flow over stretching 

sheet. During the process of manufacturing a stretched sheet interacts with the fluid thermally and mechanically. 

Kinematics of stretching and the simultaneous heating or cooling during this kind of process has a decisive 

influence on the quality of the final product. The sheet is stretched some times in the extrusion of a polymer 

sheet from a die. Drawing such a sheet in a viscous fluid, the rate of cooling can be controlled and the final 

product achieved with desired characteristics. 

Raptis and Perdikis (2006) studied the viscous flow over a non-linearly stretching sheet in the presence 

of a chemical reaction and magnetic field. Tan, You, Hang and Liao (2008) investigate a new branch of the 

temperature distribution of boundary layer flows over an impermeable stretching plate. Abel and Mahesha 

(2008) studied the heat transfer in MHD visco-elastic fluid flow over a stretching sheet with variable thermal 

conductivity, non-uniform heat source and radiation. Samad and Mohebujjamanr (2009) discussed MHD heat 

and mass transfer free convection flow along a vertical stretching sheet in presence of magnetic field with heat 

generation. Heat and mass transfer in MHD visco-elastic fluid flow through a porous medium over a stretching 

sheet with chemical reaction analyzed by Alharbi, Saleh, Mohamed, Bazid and Mahmoud Gendy (2010). 

Seddeek and Abdelmeguid (2006) discussed the effects of radiation and thermal diffusivity on heat transfer over 

a stretching surface with variable heat flux. Ali, Alam, Alam, and Alim (2014) studied the radiation and thermal 

diffusion effects on a steady MHD free convection heat and mass transfer flow past an inclined stretching sheet 

with hall current and heat generation. Ibrahim and Shanker (2012) discussed the unsteady MHD boundary layer 

flow and heat transfer due to stretching sheet in the presence of heat source or sink by Quasi-linearization 

technique. Ishak, Nazar and Pop (2009) analyzed boundary layer flow and heat transfer over an unsteady 

stretching vertical surface. Aldawody, Ebashbeshy (2010) also studied heat transfer over an unsteady stretching 

surface with variable heat flux in presence of heat source or sink. MHD boundary layer flow and heat transfer is 

discussed by many researchers like Fadzilah, Nazar, Norihan and Pop (2011), Mohebujjaman, Khalequ and 

Samad (2010), Elbashbeshy and Bazid (2004), Afify (2009), Mathew, Sudha, Nath, Raveendra and Rama Deva 

Prasad (2012) etc. 
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Rashidi (2010) studied the flow using differential transform method and Padé Approximant for solving 

MHD flow in a laminar liquid film from a horizontal stretching surface. Rashidi and Erfani (2011) again 

discussed a new analytical study of MHD stagnation–point flow in porous media with heat transfer. 

Simultaneous effects of partial slip and thermal-diffusion and diffusion-thermo on steady MHD convective flow 

due to a rotating disk was analyzed by Rashidi, Erfani, Hayat, Mohimanian, PourAwatif and A-Hendi (2011). 

Seini and Makinde (2013) discussed the MHD Boundary Layer Flow due to Exponential Stretching Surface 

with Radiation and Chemical Reaction. Kumar and Singh (2012) gives the Mathematical modeling of soret and 

hall effects on oscillatory MHD free convective flow of radiating fluid in a rotating vertical porous channel 

filled with porous medium. Grubka and Bobba (1985) discussed the heat transfer characteristics of a continuous 

stretching surface with variable temperature. Chen (1998) studied the laminar mixed convection adjacent to 

vertical, continuously stretching sheets. Most of the above researchers were not focused on the inclination of the 

angle of the sheet, constant heat flux and viscous dissipation. 

Therefore the present work give emphasis on the heat and mass transfer MHD flow over an inclined 

stretching sheet with viscous dissipation and constant heat flux in the presence of magnetic field using similarity 

solution and homotophy perturbation technique. 

 
II. FORMULATION OF THE PROBLEM 

Let the flow considered to be two dimensional laminar MHD viscous incompressible electrically 

conducting fluid along an inclined stretching sheet. The leading edge of the inclined stretching sheet is along the 

X direction and Y is normal to the X axis. A magnetic field B0 is applying normal to the direction of the flow 

and Tw (Tw > T∞) is the uniform temperature of the plate, where T∞ is the temperature of the fluid away from the 

plate. Let α be the angle of inclination. Let u and v are the velocities along X and Y axis respectively. Using 

general boundary layer approximation and given assumptions the governing equations under the influence of 

external imposed magnetic field are given as: 

 

Equation of continuity: 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                                         ...(1) 

Equation of momentum: 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜐

𝜕2𝑢

𝜕𝑦2 + 𝑔𝛽 𝑇 − 𝑇∞ cos𝛼 + 𝑔𝛽∗ 𝐶 − 𝐶∞ cos𝛼 −
𝜎𝐵0

2𝑢

𝜌
                                                            ...(2) 

Equation of energy: 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2 +
𝜈

𝑐𝑝
 
𝜕𝑢

𝜕𝑦
 

2

                                                                                                                         ...(3) 

Equation of concentration: 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝑚

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑚𝐾𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦2                                                                                                                       ...(4) 

with the boundary conditions 

 𝑦 = 0:  𝑢 = 𝑈0𝑥, 𝑣 = 0,
𝜕𝑇

𝜕𝑦
= −

𝑞

𝑘
, 𝐶 = 𝐶𝑤

𝑦 → ∞:                       𝑢 = 0, 𝑇 = 𝑇∞, 𝐶 = 𝐶∞

                                                                                                       ...(5) 

 

where T, Tw and T∞ are the fluid temperature, the stretching sheet temperature and the free stream 

temperature respectively, C, Cw and C∞ are corresponding concentration, κ is thermal conductivity, 𝑐𝑝  is specific 

heat with constant pressure, α =
𝑘

𝜌𝑐𝑝
 is thermal diffusivity, μ is viscosity, ν is kinematic viscosity, σ is electrical 

conductivity, ρ is density, β is thermal expansion coefficient, 𝛽∗ is concentration expansion coefficient, B0 is 

magnetic field intensity, U0 is stretching sheet parameter, g is acceleration due to gravity, q is constant heat flux 

per unit area, Dm is coefficient of mass diffusivity, KT is thermal diffusion ratio, Tm is mean fluid temperature.  

Now introducing the stream function Ψ(𝑥, 𝑦) such as 

 𝑢 =
∂Ψ

∂y
 and  𝑣 = −

∂Ψ

∂x
                                                                                                                                        ...(6) 

Again introducing following similarity transformation: 

Ψ = 𝑥 2𝜈𝑈0𝑓 𝜂 , 𝜂 =  
𝑈0

2𝜈
𝑦 , 𝜃 𝜂 =

𝑘(𝑇−𝑇∞)

𝑞
 
𝑈0

2𝜈
 , 𝜑 𝜂 =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
                                                                 ...(7) 

Using above similarity transformations in equation (2) to equation (4) we get the non dimensional, nonlinear and 

coupled differential equations as 

𝑓 ′′′ + 2𝑓𝑓 ′′ − 2𝑓 ′2 −𝑀𝑓 ′ + 𝐺𝑟𝜃 cos 𝛾 + 𝐺𝑚𝜑 cos 𝛾 = 0                                                                                 ...(8) 

𝜃 ′′ + 2𝑃𝑟𝑓𝜃 ′ + 𝐸𝑐𝑃𝑟𝑓 ′′2 = 0                                                                                                                             ...(9) 

𝜑′′ + 2𝑆𝑐𝑓𝜑′ + 𝑆𝑐𝑆0𝜃
′′ = 0                                                                                                                             ...(10) 
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Where 𝑓 ′ , 𝜃  and 𝜑  are non-dimensional velocity, temperature and concentration and 𝜂  is similarity 

variable. And the Magnetic Parameter is𝑀 =
2𝜎𝐵0

2

𝜌𝑈0
 , the Grashof Number is =

2𝑔𝛽𝑞

𝑥𝑈0
2  

2𝜈

𝑈0
 , the Modified Grashof 

Number 𝐺𝑚 =
2𝑔𝛽∗ 𝐶𝑤−𝐶∞ 

𝑥𝑈0
2  , the Prandtl Number 𝑃𝑟 =

𝜇𝑐𝑝

𝑘
 , the Eckert Number is 𝐸𝑐 =

𝑘𝑈0
2𝑥2

𝑞𝑐𝑝
 
𝑈0

2𝜈
 , the Schmidt 

Number is 𝑆𝑐 =
𝜈

𝐷𝑚
  and Soret Number is 𝑆0 =

𝐷𝑚𝐾𝑇𝑞

𝑘Tm  𝐶𝑤−𝐶∞ 
 

2

𝜈𝑈0
 . And the transformed boundary conditions are 

 𝜂 = 0: 𝑓 ′ 𝜂 = 1 , 𝑓(𝜂) = 0, 𝜃 ′(𝜂) = −1, 𝜑(𝜂) = 1

𝜂 → ∞:                          𝑓 ′ 𝜂 = 0, 𝜃(𝜂) = 0 , 𝜑(𝜂) = 0
                                                                                    ...(11) 

The homotophy for the above equations defined as 

𝐻 𝑓, 𝑝 =  1 − 𝑝  𝑓 ′′′ −𝑀𝑓 ′ −  3 − 𝜂 𝑒−𝜂 + 𝑀 1 − 𝜂 𝑒−𝜂  + 𝑝 𝑓 ′′′ + 2𝑓𝑓 ′′ − 2𝑓 ′2 −𝑀𝑓 ′ + 𝐺𝑟𝜃 cos 𝛾 +
𝐺𝑚𝜑 cos 𝛾 = 0                                                                                                                                                ...(12) 

𝐻 𝜃, 𝑝 =  1 − 𝑝  𝜃 ′′ − 𝑒−𝜂  + 𝑝 𝜃 ′′ + 2𝑃𝑟𝑓𝜃 ′ + 𝐸𝑐𝑃𝑟𝑓 ′′2 = 0                                                                 ...(13) 

𝐻 𝜑, 𝑝 =  1 − 𝑝  𝜑′′ − 𝑒−𝜂  + 𝑝 𝜑′′ + 2𝑆𝑐𝑓𝜑′ + 𝑆𝑐𝑆0𝜃
′′ = 0                                                                   ...(14) 

It is considered that 

 
𝑓 = 𝑓0 + 𝑝𝑓1 + 𝑝2𝑓2 + ⋯

𝜃 = 𝜃0 + 𝑝𝜃1 + 𝑝2𝜃2 + ⋯

𝜑 = 𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2 + ⋯

                                                                                                                           ...(15) 

Substituting these assumptions in equation (12) to equation (14) and comparing the coefficients of like powers 

of p, we get 

𝑝0: 𝑓0
′′′ −𝑀𝑓0

′ −   3 − 𝜂 −𝑀 1 − 𝜂  𝑒−𝜂 = 0                                                                                              ...(16) 

𝑝1: 𝑓1
′′′ −𝑀𝑓1

′ +   3 − 𝜂 −𝑀 1 − 𝜂  𝑒−𝜂 + 2𝑓0𝑓0
′′ − 2𝑓0

′2 + 𝐺𝑟 cos 𝛾 𝜃0 + 𝐺𝑚cos 𝛾 𝜑0 = 0                    ...(17) 

𝑝0: 𝜃0
′′ − 𝑒−𝜂 = 0                                                                                                                                              ...(18) 

𝑝1: 𝜃1
′′ + 𝑒−𝜂 + 2𝑃𝑟𝑓0𝜃0

′ + 𝐸𝑐𝑃𝑟𝑓0
′′2 = 0                                                                                                        ...(19) 

𝑝0: 𝜑0
′′ − 𝑒−𝜂 = 0                                                                                                                                             ...(20) 

𝑝1: 𝜑0
′′ + 𝑒−𝜂 + 2𝑆𝑐𝑓0𝜑0

′ + 𝑆𝑐𝑆0𝜃0
′′ = 0                                                                                                          ...(21) 

And the corresponding boundary conditions are 

 

𝜂 = 0

 
 

 
𝑓0 = 0, 𝑓1 = 0,… 

𝑓0
′ = 1, 𝑓1

′ = 0,…

𝜃0
′ = −1, 𝜃1

′ = 0,…
𝜑0 = 1, 𝜑1 = 0,…

 

𝜂 → ∞  
𝑓0

′ = 0, 𝑓1
′ = 0,…

𝜃0 = 0, 𝜃1 = 0,…
𝜑0 = 0, 𝜑1 = 0,…

 

 
 
 
 

 
 
 

                                                                                                                        ...(22) 

Solution of above equations (16) to (21) under the boundary conditions (22) are obtained as follows: 

𝑓0 = 𝜂𝑒−𝜂                                                                                                                                                          ...(23) 

𝑓1 =
1

 𝑀
 
𝑀−2

𝑀−4
  1 − 𝑒− 𝑀𝜂 +

1

 𝑀
 
𝐺𝑟+𝐺𝑚

1−𝑀
  1 − 𝑒− 𝑀𝜂 cos 𝛾 +

1

𝑀−4
 𝑒−2𝜂 − 1 +  

𝐺𝑟+𝐺𝑚

1−𝑀
  𝑒−𝜂 − 1 cos 𝛾 −

𝜂𝑒−𝜂                                                                                                                                                                   ...(24) 

𝜃0 = 𝑒−𝜂                                                                                                                                                            ...(25) 

𝜃1 =
1

2
𝑃𝑟 𝜂 + 1 𝑒−2𝜂 −

1

8
𝐸𝑐𝑃𝑟 2𝜂2 − 4𝜂 + 3 𝑒−2𝜂 − 𝑒−𝜂 +  

1

2
𝑃𝑟 −

1

8
𝐸𝑐𝑃𝑟 − 1 𝜂                                 ...(26) 

𝜑0 = 𝑒−𝜂                                                                                                                                                           ...(27) 

𝜑1 =
1

2
𝑆𝑐 𝜂 + 1 𝑒−2𝜂 − 𝑆𝑐𝑆0𝑒

−𝜂 − 𝑒−𝜂 + 1 −
1

2
𝑆𝑐 + 𝑆𝑐𝑆0                                                                          ...(28) 
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The values of 𝑓, 𝜃 𝑎𝑛𝑑 𝜑 are obtained as  

𝑓 = 𝑙𝑖𝑚𝑝→1 𝑓 = 𝑓0 + 𝑓1 + 𝑓2 + ⋯  

𝜃 = 𝑙𝑖𝑚𝑝→1 𝜃 = 𝜃0 + 𝜃1 + 𝜃2 + ⋯  

𝜑 = 𝑙𝑖𝑚𝑝→1 𝜑 = 𝜑0 + 𝜑1 + 𝜑2 + ⋯  

Therefore we obtained 

𝑓 =
1

 𝑀
 
𝑀−2

𝑀−4
  1 − 𝑒− 𝑀𝜂 +

1

 𝑀
 
𝐺𝑟+𝐺𝑚

1−𝑀
  1 − 𝑒− 𝑀𝜂 cos 𝛾 +

1

𝑀−4
 𝑒−2𝜂 − 1 +  

𝐺𝑟+𝐺𝑚

1−𝑀
  𝑒−𝜂 − 1 cos 𝛾          

...(29) 

𝜃 =
1

2
𝑃𝑟 𝜂 + 1 𝑒−2𝜂 −

1

8
𝐸𝑐𝑃𝑟 2𝜂2 − 4𝜂 + 3 𝑒−2𝜂 +  

1

2
𝑃𝑟 −

1

8
𝐸𝑐𝑃𝑟 − 1 𝜂                                             ...(30) 

𝜑 =
1

2
𝑆𝑐 𝜂 + 1 𝑒−2𝜂 − 𝑆𝑐𝑆0𝑒

−𝜂 + 1 −
1

2
𝑆𝑐 + 𝑆𝑐𝑆0                                                                                      ...(31) 

Hence the velocities of the flow are given as 

𝑢 = 𝑥𝑈0   
𝑀−2

𝑀−4
 𝑒

− 𝑀 
𝑈0
2𝜈
𝑦

+  
𝐺𝑟+𝐺𝑚

1−𝑀
 𝑒

− 𝑀 
𝑈0
2𝜈
𝑦
− 

2𝑒
−2 

𝑈0
2𝜈 𝑦

𝑀−4
cos 𝛾 −   

𝐺𝑟+𝐺𝑚

1−𝑀
 𝑒

− 
𝑈0
2𝜈
𝑦

cos 𝛾                        ...(32) 

𝑣 = − 2𝜈𝑈0  
1

 𝑀
 
𝑀−2

𝑀−4
  1 − 𝑒

− 𝑀 
𝑈0
2𝜈
𝑦
 +

1

 𝑀
 
𝐺𝑟+𝐺𝑚

1−𝑀
  1 − 𝑒

− 𝑀 
𝑈0
2𝜈
𝑦
 cos 𝛾 +

1

𝑀−4
 𝑒

−2 
𝑈0
2𝜈
𝑦
− 1 +

 
𝐺𝑟+𝐺𝑚

1−𝑀
  𝑒

− 
𝑈0
2𝜈
𝑦
− 1 cos 𝛾                                                                                                                           ...(33) 

The temperature is given as 

𝑇 =
𝑞

𝑘
 

2𝜈

𝑈0
 

1

2
𝑃𝑟   

𝑈0

2𝜈
+ 1 𝑒

−2 
𝑈0
2𝜈 −

1

8
𝐸𝑐𝑃𝑟  2

𝑈0

2𝜈

2
− 4 

𝑈0

2𝜈
+ 3 𝑒

−2 
𝑈0
2𝜈 +  

1

2
𝑃𝑟 −

1

8
𝐸𝑐𝑃𝑟 − 1  

𝑈0

2𝜈
 + 𝑇∞                                                                                 

...(34) 

The concentration of the flow is given as 

𝐶 =  𝐶𝑤 − 𝐶∞  
1

2
𝑆𝑐   

𝑈0

2𝜈
+ 1 𝑒

−2 
𝑈0
2𝜈 − 𝑆𝑐𝑆0𝑒

− 
𝑈0
2𝜈 + 1 −

1

2
𝑆𝑐 + 𝑆𝑐𝑆0 + 𝐶∞                                          ...(35) 

The important physical quantities are skin friction 𝐶𝑓  and local Sherwood number 𝑆𝑕  are defined as  

𝐶𝑓 ∝ 𝑓 ′′(0)  

𝐶𝑓 ∝ − 𝑀 
𝑀−2

𝑀−4
 +

4

𝑀−4
+ (1 −  𝑀) 

𝐺𝑟+𝐺𝑚

1−𝑀
 cos 𝛾                                                                                      ...(36) 

𝑆𝑕 ∝ −𝜃 ′(0)  

𝑆𝑕 ∝ 1 −
9

8
𝐸𝑐𝑃𝑟                                                                                                                                               ...(37) 
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III. RESULTS AND DISCUSSIONS 

 

M Gr Gm −𝒇′′(𝟎) 

0 -0.2 -0.2 1.3107 

2 -0.2 -0.2 1.9137 

2 -0.3 -0.2 2.1609 

2 -0.2 -0.3 2.1609 

3 -0.2 -0.2 2.3817 

5 -0.2 -0.2 2.5823 

10 -0.2 -0.2 3.4142 

Table 1 : Skin friction coefficient 𝒇′′(𝟎) for different values of M, Gr and Gm with γ = 81
0
 

Ec Pr −𝜽′(𝟎) 

0.5 0.71 -0.6213 

0.5 1 -0.8750 

1 0.71 -0.8875 

Table 2 : Rate of heat transfer (Nusselt Number) −𝜽′(𝟎) for different values of Ec and Pr 

 

 

 

 

 

 

 

Table 3 : Rate of Mass Transfer (Sherwood Number) −𝝋′(𝟎) for different values of Sc and So 

    

 

 

 

 

 

 

 

 

 

Table 4 : Comparison of Skin Friction Coefficient and Local Sherwood number for different Values of M, 

Sc and So 

Sc So −𝝋′(𝟎) 

0.2 0.2 0.5531 

0.22 0.2 0.5543 

0.2 0.3 0.5446 

By Shooting Method By Homotophy Perturbation Method 

−𝒇′′(𝟎) −𝝋′(𝟎) −𝒇′′(𝟎) −𝝋′(𝟎) 

1.912023 (M=2) 
0.554767 

(Sc=0.2,So=0.2) 
1.9137 (M=2) 

0.5531 

(Sc=0.2,So=0.2) 

2.57678 (M=5) 
0.543557 

(Sc=0.22,So=0.2) 
2.5823 (M=5) 

0.5543 

(Sc=0.22,So=0.2) 

3.422358 (M=10)  3.4142 (M=10)  
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Figure 1 : Velocity f’ distribution versus η for different values of M, Gr and Gm 

 

Figure 2 : Velocity f’ distribution versus η for different values of γ the angle of inclination 
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Figure 3 : Temperature θ profile against η for different values of Ec and Pr

 

Figure 4 : Concentration φ profile against η for different values of Sc and So 
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Figure 3 shows the effect of Eckert Number and Prandtl Number on temperature. It is found that the temperature 

increase due to increase of Eckert Number and Prandtl number both. Figure 4 displays the concentration profile 

obtains by the variation in non-dimensional parameters. It is observed that in certain interval of η, the 

concentration profile decreased and then increased due to increase of Schmidt Number and Soret Number. 
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