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Abstract — The modern approach, to explore scientific ideas to convince others of their validations, is through 

computer simulations. In simulation, one needs to convert a physical model into a mathematical model. Often also 

in real-life applications the mathematical models are represented by linear time-invariant (LTI) continuous-time 

systems. A large system leads to additional memory requirements and enormous computational efforts. 

Therefore,reducing the size of the system is an indispensable task for fast simulations. Various techniques are 

proposed in the literature to reduce the size of the large-scale LTI continuous-time systems. Among those, the 

Gramian based method Balanced truncation (BT) and interpolatoryprojection based method Iterative rational 

Krylov algorithm (IRKA) are most commonly used techniques. This article shows the comparisons between the BT 

andIRKA using their recent developments. 

 

Index Terms — LTI continuous-time system, model reduction,balanced truncation, iterative rational Krylov 

algorithm. 

 

I. INTRODUCTION 

 

In this article we describe generalized LTI continuous-time systems of the form: 

            𝐸𝑥(𝑡) = 𝐴𝑥(𝑡)  +  𝐵𝑢(𝑡);(1) 

𝑦(𝑡) = 𝐶𝑥(𝑡)  +  𝐷𝑢(𝑡); 

where the vector x(t) ∈Rnis the state vector, u(t) ∈Rpis the input vector and y(t) 2 Rmis the output vector and E. , BC 

and D are all matrices with appropriatedimensions. If p = m = 1, the system is referred to as a single-inputsingle-

output (SISO) system, otherwise it is called a multiinput multi-output (MIMO) system. In the MIMO case, we 

assume that the number of inputs andoutputs are much less than the number of states, i.e., p; m << n. 

Thecorresponding transfer function of this system is defined by 

  G(s) = C(sE - A)-1B + D,                    (2) 

where s ∈C. In real-life applications such mathematical models arise in different disciplines of science and 

engineering. See, e.g., [1], [2] for some motivating examples. In general, such systems are generated by finite 

element or finite difference methods (cite here). If the grid resolution becomes very fine, because many details must 

be resolved, the systems become very large. Moreover they are sparse, i.e., most of the elements in the matrices of 

the system are zero, which are not stored. A high dimensional system will always be complex, requiring a great deal 

of memory, thereby hindering computational performance significantly in      simulation. Sometimes the systems are 

too large to store due to memory restrictions. Therefore, we seek to reduce the complexity of the model by applying 

model order reduction (MOR), i.e., we want to approximate the system (1) by the lower dimensional model: 

𝐸 𝑥  𝑡 =  𝐴 𝑥  𝑡 +  𝐵 𝑢  (𝑡), 𝑦  (𝑡) =  𝐶 𝑥 (𝑡) +  𝐷 𝑢(𝑡),(3) 

where 𝐸 , 𝐴 ∈ Rlxl‘×‘ and B ∈RlxpC∈ RmxlandD ∶=D The quality of the reduced order model (ROM) relies on the 

difference of the two outputs y and y^ which can also be   measured by 

||𝐺 .  − 𝐺  .  ||,               (4) 

where 𝐺 (𝑠)  =  𝐶 (𝑠𝐸  − 𝐴 )−1𝐵, 𝑠  ∈  𝐶 is the transfer functions of (3). Note that k:kdenotes a suitable norm e.g., the 

H1 or H2 norms (see [1]). For motivations, applications, restrictions, and techniques of MOR see, e.g., [1], [2]. 

During the last few decades many MOR methods have been developed to find reduced order models for large-scale 

LTI continuous-time systems. In a broad sense, those techniques can be classified into two categories , namely, 
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Gramian based methods and momentmatching based methods. Recently, two prominent methods, namely the 

balanced truncation (BT) and the iterative rational Krylov algorithm (IRKA) based interpolatory projection method 

are frequently used for the model reduction of large-scale dynamical systems. Both of them have merits and 

demerits. Balanced truncation preserve stability of the system and it has an a-priori error bound. However, in this 

method one has to solve two Lyapunov equations which is computationally expensive. On the other hand, the 

recentlydeveloped,interpolatory method via IRKA is attractive to the model reduction community since it is 

computationally efficient. It requires only matrix - vector products or linear solves. Unfortunately, this prominent 

method has neither an a-priori error bound nor guaranteed stability preservation. In this article we show the 

comparisons of these two prominent techniques i.e., the BT and IRKA using their recent updates . II. BALANCED 

TRUNCATION (BT) A good motivation of balanced truncation can be found in [1]. The fundamental idea of 

balanced truncation is to truncate the less-important states from a system. A less-important state is a state that is 

difficult to control and observe. Those states essentially correspond to the smallest Hankel Singular values (HSVs) 

of the system. In reality, the states which are difficult to control may not be difficult to observe and vice versa. This 

implicates if we eliminate the states that are hard to be controlled directly from the original system, then we may 

also eliminate some states that are easy to observe.However,in an application, the easily observable states are 

essential to be preserved. The same contradiction might appear for those states that are difficult to be observed but 

easily controlled. This problem can be resolved by transforming the system into a balanced form. In a balanced, 

system the degree of controllability and the degree of observability of each state are the same. A balanced system 

can also be defined as follows. 

Definition II.1. A stable and minimal LTI system is called balanced if the controllability Gramian and the 

observability Gramian of the system are equal and diagonal. The diagonal elements are the system’s HSVs. 

The system’s controllability Gramin (P) and observability Gramain (Q) are the solutions of the following two 

Lyapunov equations 

 

APET+ EPAT= -BBT(5) 

AT QE + ETQA = -CTC(6) 

 

respectively. Equation (5) and (6) are respectively, known as continuous-time controllability and observability 

Lyapunov equations. In a balanced system the relation 

           P = Q = diag (σ1, σ2,… ,σn) 

holds true. A system can be balanced via the balancing transformation. 

 

Definition II.2.A state space transformation T is called balancing transformation if it causes 

TP T*=T-*QT-1= 
∑1

∑2
   ,      (7) 

where P and Q are the controllability and observ -ability Gramians, Σ1 = diag (σ1,...., σr), Σ2=diag (σr+1,…, σn), and 
 𝜎𝑖 𝑖=1 

𝑛 are the system’s HSVs. 

Under the balancing transformations, according to theGramians in (7), the state space realization is transformed into 

(E, A, B, C, D) →(TET-1, TAT-1, TB, CT-1, D )=   
𝐸11 𝐸12

𝐸21 𝐸22
 ,  

𝐴11 𝐴12

𝐴21 𝐴22
 ,  

𝐵1

𝐵2
 ,  𝐶1 𝐶2 , 𝐷 . 

Now picking up the block matrices E11, A11, B1, C1 one can form the ROM (3), where (𝐸 , 𝐴 , 𝐵 , 𝐶 ) = (E11, A11, B1, 

C1).From the above discussion we can conclude that in the balancing based model reduction one must first compute 

the balancing transformation (T) to convert the system into a balanced form. Then the truncation is performed on the 

balanced system. For a large-scale system, balancing the whole system before truncation is infeasible. Hence, for 

such systems, usually the balancing and truncation are carried out simultaneously, by using the so-called balancing 

and truncating transformations. The author of [1] reviews several approaches to compute the balancing and 

truncating transformations among which we will focus on the square-root method (SRM), originally defined in [3]. 

To perform this method, we compute the Gramian factors Rcand Lc, such that P = RcRcT; Q = LcLTc Then the 

balancing transformation can be formed using the SVD 

𝑅𝑐
𝑇  𝐸𝐿𝑐  =  𝑈𝛴𝑉𝑇  =  𝑈1 𝑈2  

∑1

∑2
  

𝑉1
𝑇

𝑉2
𝑇  
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Algorithm 1: LR-SRM. 

Input :E,A,B,C,D  

Output:𝐸 , 𝐴 , 𝐵 , 𝐶 , 𝐷 ≔ 𝐷 
1 Compute R and L as defined in (9) by solving the 

    Lyapunov equations (5) and (6). 

2 Compute SVD 

RTEL = UΣV T=  𝑈1 𝑈2  
∑1

∑2
  

𝑉1
𝑇

𝑉2
𝑇  

3 Construct 𝑉 ≔ 𝐿𝑉1Σ1

− 
1

2, W ≔RU1Σ1

− 
1

2 

4 Form 

 𝐸 = 𝑊𝑇𝐸𝑉, 𝐴 = 𝑊𝑇𝐴𝑉, 𝐵 = 𝑊𝑇𝐵, 𝐶 = 𝐶𝑉 

and defining 

𝑉 ≔ 𝐿𝐶𝑉1Σ1

− 
1

2  , 𝑊 ≔ 𝑅𝑐𝑈1Σ1

− 
1

2,             (8) 

where 𝑈1and 𝑉1are composed of the leading k columns of U and V , respectively, Σ1 is the first k × k block of the 

matrix  Σ = diag (σ1, σ2,…, σk,…, σn). Finally, by applying the balancing transformations to the system (1), one can 

derive the ROM (3).TheGramian factors Rcand Lcare obtained by usingthe Cholesky decompositions of the 

GramiansP and Q. The Gramians can be computed by solving the corresponding Lyapunov equations (5) and (6). 

There exist direct solvers [4] as well as iterative solvers [5] to compute P and Q from (5-6).All these methods are 

applicable for a small dense systems. If the number of inputs and outputs are much smaller than the dimension of the 

system, then the GramiansP and Q can usually be approximated by low-rank factors, i.e, 

P ≈ RRTand Q ≈ LLT(9) 

where R and L are thin rectangular matrices. Therefore, instead of computing the full Gramian factors, one can 

compute low-rank factors of the Gramians. During the last few decades, several iterative methods were proposed, 

e.g., lowrank Cholesky factor - alternating direction implicit (LRCFADI) iterations [6], cyclic low-rank Smith 

methods [7], projection methods [8], and sign function methods [9]. Although most of the methods are shown to be 

applicable for large scale dynamical systems, the LRCF-ADI iteration is more attractive in the context of Gramian 

based model reduction for large sparse systems with few inputs and outputs. A motivation of this prominent method 

can be found in [10]. Readers are referred to [11, Chapter 2] to see the updated algorithm and implementing details 

of LRCF-ADI method. 
Using the low-rank Gramian factors R and L, the squareroot method is summarized in Algorithm 1. Note that weuse 

[11,Algorithm 5] to compute the R and L. The reducedsystems obtained by this algorithm satisfies [1] the global 

error bound 

||𝐺 − 𝐺 ||𝐻∞
≤ 2 ∑ 𝜎𝑖

𝑛
𝑖=𝑘+1 (10) 

where  𝐺 is the transfer function of the reduced model. Therelation (10) is an a-priori error bound. Thus, for a given 

errorbound (tolerance) one can use it to fix the required dimensionof the reduced system. 

 

III. ITERATIVE RATIONAL KRYLOV ALGORITHM (IRKA) 

 

Interpolatory projection methods seek a ROM (3) by constructing the matrices V and W in such way that the 

reducedtransferfunction defined in (4) interpolates the original transferfunction (2) at a predefined set of 

interpolation points. Thatmeans to find𝐺 (s) such that 

 

G(αi) =  𝐺 (αi); 

C(αi E - A)-1B = 𝐶  ( αi𝐸  - 𝐴 )-1𝐵 ,for i= 1,…, r,       (11) 
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where αi∈C are the interpolation points. Often, in additionto the above conditions, we are interested in matching 

more 

quantities, that is 

 

G(j)( αi) =𝐺 (j)( αi); 

C[(αi E –A)-1E]j(αi E - A)-1B:=           (12) 

𝐶 [(αi𝐸 –𝐴 )-1𝐸 ]j(αi𝐸 - 𝐴 )-1𝐵 , 

 

for j = 0,1,…, q; where C[(αi E –A)-1E]j(αi E - A)-1Bis called the j-th moment of G(s) at αi, and 𝐺  (j)(αi) represents the 

j-thderivative of G(s) evaluated at σI. Note that forj = 0, these conditions reduce to (11). In this paper, we restrict 

ourselves to simpleHermite interpolation (Cite here), wherej = 0 and j = 1. In the following, we discuss how a ROM 

can be generated by computingfirst the appropriate projection so that a reduced interpolating approximation is 

guaranteed. The concept of projection forinterpolatory model reduction was first discussed in [12], and later, 

Grimme in [13] modified the approach by utilizing therational Krylov method [?]. Since Krylov based methods can 

achieve moments matching without explicitly computing themoments (explicit computationof moments is known to 

be ill-conditioned [14]), they areextremely useful for model reduction of large scale systems. 

The following Lemma suggests a choice of V and W thatensure Hermite interpolation with the use of a rational 

Krylovsubspace. 

 

Lemma III.1([15]). Let us consider two sets of distinctinterpolation points, { 𝛼𝑖}𝑖=1
𝑟 ⊂Cand { 𝛽𝑖}𝑖=1

𝑟 ⊂C,whichare 

closed under conjugation (i.e., the points are either realor appear in conjugate pairs). Suppose V and W satisfy 

 

Range (V ) = span {(α1E - A)-1B,…,(αrE- A)-1B},   (13a) 

Range (W) = span {(β1E
T-AT)-1CT,…,(βrE

T- AT)-1CT }, (13b) 

Then V and W can be chosen real and 𝐺 (s) = 𝐶 (s𝐸 –𝐴 )-1𝑐 where 𝐸 ,𝐴 ,𝐵 and 𝐶 are defined in (3), satisfies 

theinterpolation conditions 

G(αi) =𝐺 (αi); G(βi) = 𝐺 (βi); and 

𝐺’(αi) = 𝐺 ′ (αi) when αi= βi; 

for i= 1,…, r.The subspace in (13a), that is, the span of the column vectors (αiE- A)-1B for i= 1,…, r, can be 

considered as the union of shifted rational Krylov subspaces. For a given shift frequency α ∈C, the rational 

KrylovsubspaceKq((αE - A)-1; (αE - A)-1B) is defined as 

Kq((αE - A)-1; (αE - A)-1B) :=span (αE - A)-1B,…,(αE - A)-qB. 

If q = 1 for each ( αi,i= 1,…, r, then the union of suchshifted rational Krylov subspaces is equivalent to the subspace 

in (13a). Analogously, the subspace in (13b) can also be defined as the union of shifted rational Krylov subspaces 

given above. Tosummarize, rational Krylov based model reduction requires a suitable choice of interpolation points, 

the construction of V and W as in Lemma III.1, and the use of Petrov-Galerkin conditions (cite here).The quality of 

the reduced model is highly dependent on the choice of interpolation points and therefore various techniques [12] 

have been developed for the selection of interpolation points. Recently in [15], the issue of selecting a good choice 

of interpolation points is linked to the problem of H2-optimal model reduction. 

 

Definition III.2. A ROM (3) is called H2 optimal if it satisfies 

  𝐺  
𝐻2

=min||𝐺 − 𝐺 ||𝐻∞
.               (14) 

   dim (𝐺 )=r 

Now a days IRKA becomes of of the best choice in MOR using Krylov subspace approaches [15]. Upon 

convergence, itidentifies a choice of interpolation points that guarantees the H2-optimality conditions for the reduced 

system. Starting from an initial set of interpolation points, the IRKA iteration updates the interpolation points until 

they converge to a fixed value. A complete procedure of IRKA for a SISO system is given in [15, Algorithm 

4.1].For model reduction of MIMO dynamical systems, rationaltangential interpolation has been developed by 

Gallivan et. al. [16]. The problem of rational tangentialinterpolation is to construct V and W such that the reduced 

transfer function𝐺 (s) tangentiallyinterpolates the original transfer functionG(s) at a predefined set of interpolation 

points and some fixedtangent directions. That is 

G(αi)bi= 𝐺  (αi)bi , 𝑐𝑖
𝑇G(αi) = 𝑐𝑖

𝑇𝐺  (αi),and 

𝑐𝑖
𝑇G(αi)bi= 𝑐𝑖

𝑇𝐺 (αi)bi; for i= 1,…, r, 
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where bi ∈Cmand ci∈Cpare the right and left tangentialdirections, respectively, and both correspond to the 

interpolation points αi. With these quantities, the rational tangential interpolation can be achieved. The IRKA based 

interpolatoryprojection methods for MIMO systems have been discussed in [15], where the algorithm updates 

interpolation points as well as tangential directions until the reduced system satisfies the necessary condition for H2 

optimality. We have summarized a complete procedure for a MIMO system in Algorithm 2. 

 

IV. NUMERICAL RESULTS 

This section discusses the numerical results to show thecomparisons between the BT and IRKA based model 

reduction methods. We consider a model example; the International Space Station model (ISSM). The details of the 

model can be found in [17]. The dimension of the original model is 270 and the number of inputs-outputs are 3. For 

each model we compute different dimensional reduced models via projecting the systems onto the eigen-space of 

Gramians.Applying Algorithm 1 and 2 we form exemplary reduced order models of dimension 50. Figure 1 shows 

the frequency responses (largest singular value of G(𝜔) of full and the 50dimensional reduced order models 

obtained by BT and IRKA in frequency domain over range of 10-2to104. The absolute error between the frequency 

responses of full and reduced 

Algorithm 2: IRKA for MIMO systems. 

Input :E,A,B,C,D 

Output: 𝐸 , 𝐴, 𝐵 , 𝐶 , 𝐷 ∶= 𝐷. 

1 Make an initial selection of  𝛼𝑖 𝑖=1
𝑟  and  𝑏𝑖 𝑖=1

𝑟  

 𝑐𝑖 𝑖=1
𝑟  

2 V = [(α1E - A)-1Bb1,…, (αrE - A)-1Bbr] 

3W =[ (α1E
T - AT)-1CT c1; · · · ; (αrE

T – A)-1CT cr.] 

4 while (not converged) do 

5 𝐸  = WT EV , 𝐴  = WT AV , 𝐴  = WT B, 𝐶  = CV . 

6 Compute A𝑧 i= 𝜆  i E𝑧 iand 𝑦𝑖
∗𝐴  =  𝜆 𝑖𝑦𝑖

∗𝐸 . 

7 𝛼𝑖 ← 𝜆𝑖 , 𝑏𝑖
∗ ← 𝑦𝑖

∗𝐵 and 𝑐𝑖 ← 𝐶 𝑧𝑖 , for 

i= 1,…, r. 

8 V = [(α1E - A)-1Bb1; · · · ; (αrE - A-1Bbr], 

W = (α1E
T - AT)-1CT c1,…, (αrE

T - AT)- 1Ccr. 

9 i=i+ 1 

 

10 𝐸 = 𝑊𝑇𝐸𝑉, 𝐴 = 𝑊𝑇𝐴𝑉, 𝐵 = 𝑊𝑇𝐵𝑎𝑛𝑑𝐶 = 𝐶𝑉. 
 

 

10-2 

 

 

10-4            

 

 

10-6            

 

 

 10-2          10-1      100      101      102      103    104 

Fig. 1: Sigma plot (maximum singular values) of full andreducedorder models. 

 

models are shown in Figure 2. In both the cases the computed errors are satisfactory. This figure deficits that in the 

lower frequencies the performances of the BT method is better than the IRKA. On the other hand in the higher 

frequencies the result is vice versa. 

 

 

 

full model 

BT 

IRKA 

 

 
𝜎

𝑚
𝑎
𝑥
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𝜔
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Fig. 2: Absolute error in the sigma plot of full and reducedorder models. 

 

V. CONCLUSIONS 

In this article we have discussed two prominent methods,such as balanced truncation and IRKA for model 

reductionof large-scale LTI continuous-time systems. The advantages and disadvantages of both methods have been 

discussed elaborately. For theboth methods we havepresented the updated algorithms of the MIMO systems. The 

comparisons are also shown by using numerical results. 
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