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Abstract 

              The onset of oscillatory convection in a horizontal sparsely packed porous layer saturated with 

viscoelastic fluid which is heated from below is analyzed. A linear stability analysis based on the normal mode 

technique is used to study the eigen value problem with the free-free and isothermal boundaries. Darcy-

Rayleigh number on the onset of stationary and oscillatory convection has been derived and effects of various 

viscoelastic properties and Darcy number have been examined. 
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I. INTRODUCTION 

The study of viscoelastic fluid flow in porous media is seen in various engineering fields such as 

enhanced oil recovery, paper and textile coating, composite manufacturing process and bioengineering. On one 

hand, the high viscosity in viscoelastic fluids reduces the chances of occurrence of instability, its elastic nature, 

while on the other hand, it increases the chances of oscillatory convection. This phenomenon in viscoelastic 

fluids apart from its rheological importance makes the study of the Rayleigh-B𝑒 nard convection for viscoelastic 

fluids interesting and challenging to the researchers. Some oil sands contain waxy crudes at shallow depth of the 

reservoirs which are considered to be viscoelastic fluids. In these situations, a viscoelastic model of fluid serves 

to be more realistic than the Newtonian model. Besides this viscoelastic fluid exhibits unique patterns of 

instabilities such as the overstability that is not predicted or observed in a Newtonian flow. 

Herbert [1] and Green [2] were the first to study the oscillatory convection in an ordinary viscoelastic 

fluid of the Oldroyd type under the condition of infinitesimal disturbances. Vest and Arpaci [3] studied 

overstability in a viscoelastic fluid layer heated from below, and obtained the condition for the onset of 

thermally induced overstability. Bhatia and Steiner [4] studied convective instability in a rotating viscoelastic 

fluid layer, considering two sets of boundary conditions. They found destabilizing effects of rotation instead of 

stabilizing as in the case of Newtonian fluid. Bhatia and Steiner [5,6] studied the effect of magnetic field on 

oscillatory convection in a viscoelastic fluid layer. 

Kim et al. [7] studied the thermal instability of viscoelastic fluids in porous media, conducted linear analysis for 

obtaining stability criteria for convective flow, and nonlinear analysis for heat transfer. Malashettyet al. [8] have 

analyzed that the effect of thermal modulation on the onset of convection in a horizontal, anisotropic porous 

layer saturated by a viscoelastic fluid. Tan and Masuoka [9] studied the stability of a Maxwell fluid in a porous 

medium using modified Darcy-Brinkman- Maxwell model and found the criterion for the onset of oscillatory 

convection. Malashettyet al. [10] investigated the onset of convection in a viscoelastic fluid-saturated 

anisotropic porous layer, using a generalized Darcy model, and studied the effects of mechanical and thermal 

anisotropic parameters. Larozeet al. [11] have investigated this problem of viscoelastic flow in a rotating porous 

medium and obtained the convective thresholds for the case of rigid boundary conditions.  

Patil and Vaidyanathan [12] have studied thermal convection in a rotating fluid saturated porous layer 

under the influence of variable viscosity using the Brinkman model.Shivakumaraet al. [13] have investigated 

linear and weakly nonlinear thermal convection in a rotating porous layer and they have shown that decrease in 

the permeability and increase in the effective viscosity of the fluid have a destabilizing effect on the onset of 
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stationary convection at high rotation rates. Recently, Falsaperlaet al. [14] have considered the problem of 

thermal convection in a rotating horizontal layer of porous medium with Newton-Robin type of temperature 

boundary conditions. 

There are some works related to thermal stability in viscoelastic fluid saturated porous media; 

Rudraiahet al. [15] studied the stability of a viscoelastic fluid in a densely packed saturated porous layer 

considering an Oldroyd model. Yoon et al. [16,17] made a linear stability analysis to study convection in a 

viscoelastic fluid saturated porous layer, and obtained the expression of Darcy-Rayleigh number for oscillatory 

case to describe the onset of convection. Bertola and Cafaro [18] studied theoretically the stability of 

viscoelastic fluid heated from below. Sheuet al. [19] analysed chaotic convection for viscoelastic fluids, using 

truncated Galerkin expansion. Kumar and Bhadauria [20] studied thermal instability in a rotating viscoelastic 

fluid saturated porous layer, and calculated the heat transfer. Also Kumar and Bhadauria [21] studied linear and 

nonlinear double diffusive convection in a viscoelastic fluid saturated porous layer. Further, they [22] studied 

double diffusive convection in a rotating porous layer saturated by a viscoelastic fluid and studied heat and mass 

transfer across the fluid layer. 

Due to geographical and pedagogical processes like sedimentation, compactation, frost action and 

reorientation of the solid matrix, inhomogeneity and anisotropicity are characteristics of most of the natural 

porous materials. It is to be noted that early studies on convection in a porous medium have usually ignored 

these aspects of porous materials. There are artificial porous media encountered in numerous systems in 

industries as well like pelleting used in chemical engineering process, fiber material used for insulating purpose 

and many more. Despite the practical importance of the topic, very few studies are reported on the Rayleigh-

B𝑒 nard convection for anisotropic porous material. Epherre [23] performed the first study of the onset of 

convection in a horizontal layer with an anisotropic permeability. Tyvand [24] studied the problem of 

thermohaline instability in anisotropic porous media. 

Since not much research has been carried out in the case of sparsely packed porous medium until recently, 

the present work is carried out to examine the effect of viscoelastic properties on oscillatory behavior of 

convective instabilities in a horizontal sparsely packed porous layer heated from below using linear theory. 

II. MATHEMATICAL FORMULATION 

Consider an infinite horizontal porous layer saturated with viscoelastic fluid of depth „d‟ confined with 

two rigid boundaries. The bottom boundary is heated slowly with a constant temperature T1 and upper boundary 

temperature is kept at a lower temperature T2. Cartesian co-ordinate system is taken with origin in the lower 

boundary and z-axis vertically upwards. Let ∆T be the temperature difference between the upper and lower 

boundaries. 

 

Fig. 1 Physical Configuration of the problem. 

The governing equations for an incompressible viscoelastic fluid under the Boussinesq approximation are  

Equation of Continuity: 

∇ · 𝑈   = 0(1)  

Equation of Linear Momentum: 

                                                      (2) 

Equation of Energy: 
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 (3) 

Equation of State: 

ρ = ρo(1 − β(T –To))                  (4) 

where, 𝑈   is the velocity vector, P is the pressure, T is the temperature, 𝜖is the retardation time, λ is the relaxation 

time, µ is the viscosity, ρ is the density, β is the thermal expansion coefficient, K is the permeability of porous 

media, α is the effective thermal diffusivity, g is the gravitational acceleration and 𝜇  is the effective viscosity. 

A. Basic State: 

The basic state of the fluid is quiescent and the quantities in this state are given by 

  

                                                                                       (5) 

where the suffix „b‟ represents the quantity in the basic state. 

Substituting (5) in (1)-(4) we get the following relations, 

 

(6) 

  (7) 

𝜌b= ρo[1 − β (Tb –To)] 

The solution of (7), subjected to boundary conditions 

T1=To+ ∆T, at z=0 

T2=To,at z=d is given by 

(8) 

  (9) 

B. Perturbed State: 

Let the basic state be superimposed by infinitesimally small disturbance in the following form. 

  (10) 

where the primes denote perturbed quantities. 

Using (10) in (1)-(4) and using the basic state equations, the linearized equations governing small disturbances 

turn out to be 

 (12) 

 (13) 

 𝜌′ =  −𝜌o 𝛽 𝑇′(14) 

Substituting (14) in (12) and considering the kth component, 

∇ · 𝑈   ′= 0 

 

(11) 
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 𝜖
𝜕

𝜕𝑡
+ 1 𝑤   ′ = −

𝐾

𝜇
 𝜆

𝜕

𝜕𝑡
+ 1 (∇𝑃′ − 𝜌o𝛽𝑇′𝑔 − 𝜇  ∇2𝑤   ′)(15) 

Non-dimensionalising (13) and(15) using the length, time, velocity and temperature scales as given below 

; (16)                                                    

Substituting (16) in (13) and (15) and operating curl twice on (15) and dropping asterisks we obtain, 

 (17) 

 (18)        

where θ is the dimensionless temperature and the non-dimensional parameters are defined as, 

Darcy-Rayleigh number, RaD =
𝐾𝛽𝑑 ∆𝑇𝑔

𝛼𝛾
 

Dimensionless retardation time,   

Darcy Number, Da=  

Ratio of the viscosities,   

Deborah number or dimensionless relaxation time,   

Kinematic Viscosity,   

The appropriate boundary conditions for (17) and (18) are given by  

w = θ = 0 at z = 0,1. (19) 

 
III. STABILITY ANALYSIS 

Under the Normal mode analysis, we assume the time dependent periodic disturbances in a horizontal plane of 

the form 

w = w(z)ei(lx+my)+σt 

(20) 

θ = θ (z)ei(lx+my)+σt 
(21) 

where l and m are the dimensionless wave numbers in the x and y directions and σ is the growth rate. The 

stability governing equations can be obtained by introducing (20) and (21) in (17) and (18), noting that the 

principle of exchange of stabilities is valid and is given by 

 (22) 

σθ− w = (D2 − a2)θ (23) 

 

where is the differential operator and a = 𝑙2 + 𝑚2is the horizontal wavenumber. 

 In view of (20) and (21), the boundary conditions(19) take the form 

θ = D2θ = 0 at z = 0,1                               (24)         

Both boundaries are isothermal and free of viscous stresses in Darcy-Brinkman law. 

The eigenvalue problem given by (22) and (24) involving  and Da as parameters is solved upon 
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assuming 

θ = θosin(nπz) for n = 1,2,3... (25) 

where θ0 denotes the integration constant subject to the boundary conditions. Substituting (25) in (22) results in 

the following characteristic equation: 

 (26) 

The algebraic expression can be rearranged into the form of the 2nd order polynomials of σ as 

 

This equation is denoted symbolically as 

A1σ
2 + A2σ + A3 = 0.                                                           (28)               

where, 

 

 

A3 = (n2π2 + a2)2 + ΛDa(n2π2 + a2)2(n2π2 + a2) –RaDa2 

A. Stationary Convection: 

The onset of stationary convection (σ = 0) occurs at the following condition: 

A3 = 0 (29) 

From the above condition we obtain the Darcy-Rayleigh number for stationary mode as 

 

                                            (30) 

Moreover, in the limiting case when Da=0 we obtain 

 (31) 

which is the well-known expression in the context of Darcy porous medium convection in a Newtonian Fourier 

fluid (Nield and Bejan, [25]). We find that RaD(stat)assumes its minimum value at 4π2 at critical wavenumberac = 

π. 

 

B. Oscillatory convection: 

From the elementary theory of algebraic equations, it is apparent that a marginally oscillatory mode (i.e. σ = 

iσi) 

occurs at the following conditions:   

   

A1A3 >0, A2=0 (32) 

   

Substituting σ = iσiin (28) and equating the imaginary part to 0, we obtain the Darcy-Rayleigh number for 

oscillatory modes. 
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  (33) 

In the limiting case of Da=0, one recovers the result of Darcy-Rayleigh number of Do-Young Yoon, Min 

Chan 

Kim and Chang Kyun Choi [16], and the associated Darcy-Rayleigh number RaD is given by, 

 

 (34) 

 

In this case RaD(osc) assumes its minimum value at the critical wavenumber . 

 

IV. RESULTS AND DISCUSSIONS 

In this work, we carry out a study of heat transport for oscillatory convection in a horizontal sparsely 

packed porous medium saturated with viscoelastic fluid. In order to illustrate the effects of relaxation time (𝜆 ), 
retardation time (𝜖 ) and Darcy number(Da) on heat transport, we plot the marginal stability curves for Darcy-

Rayleigh number versus wavenumber where our consideration is confined to the lowest order mode, n=1. The 

oscillatory type of instability is possible only when the relaxation parameter (𝜆 )is greater than the retardation 

parameter (𝜖 ). 

Variations of Darcy-Rayleigh number with wavenumber for different relaxation time when 𝜖 =1, 

Da=0.5 and Λ =0.4 are plotted in Fig. 2 for representing the exchange of stabilities and overstability at the 

marginal state. The dimensionless relaxation time 𝜆 means the usual Deborah number used in rheology for 

characterization ofthe fluid and material. The larger the Deborah number, the material behaviour enters the non- 

Newtonian regime, increasingly dominated by elasticity and exhibiting solidlike behaviour. The solid curve 

represents the Rayleigh number for oscillatory convection as a function of wave number, while the broken 

curves represent the same for stationary convection. It is clear from (33) that the oscillatory convection depends 

on both relaxation time, retardation time, Darcy number where in the permeability factor is involved and ratio 

of the viscosities of the porous medium. The marginal stability curve for oscillatory convection is located below 

the Newtonian fluid case for𝜖 = 𝜆 . It is observed that the Darcy-Rayleigh number decreases with increase in the 

value of relaxation time for fixed values of𝜖  , Da and Λ indicating that the effect of increasing relaxation time is 

to destabilize the system. It is observed that the overstability curves lie below that of the steady convection, that 

is, RaD(osc) < RaD(stat) for the same wavenumber. This implies that the oscillatory convection sets in before 

stationary convection. 

Variations of Darcy Rayleigh number with wavenumber for different retardation time when 𝜖 =1, 

Da=0.2 and Λ =0.4 are plotted in Fig.3. We observe that viscoelastic fluids with higher value of retardation 

time exhibits overstability at higher Darcy-Rayleigh number, it increases with increasing retardation time, 

which has a stabilizing effect on the system. It is interesting that the criteria for the overstability are dependent 

on the values of viscoelastic properties of the saturated liquid. 

Variations of Darcy-Rayleigh number with wavenumber for different Darcy number for fixed 

=0.5 , 1, 1.5 respectively are plotted from Fig. 4-6. The effect of Darcy number on the onset of 

convection is also important, as many practically used viscoelastic fluids have large Darcy numbers. The Darcy 

number represents the scale factor, which describes the extent of division of porous structure(permeability) as 

compared to the vertical extent of the porous layer. When the permeability is very high, the resistance to the 

flow becomes effectively controlled by ordinary viscous resistance. We see that as Da decreases, RaD(osc) 

decreases and it is found that the decrease in the Darcy number has a destabilizing effect on the system and the 

effect of increase in Darcy number contracts the dimension of the convective cells. It is also seen that the 

increase in the value of relaxation as well as retardation time in these cases advances the onset of convection. 

Fig. 7 depicts the variations of Darcy Rayleigh number with wavenumber for different Λ with fixed 

value of Da=0.8 and  increases, RaD(osc) increases and therefore the increase in the ratio of the 

viscosities 

has a stabilizing effect on the system. 
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Fig. 2 Oscillatory Darcy- Rayleigh number against wavenumber for given 𝜖 =1, Da=0.5 and Λ=0.4 withdifferent relaxation time. 

 

 

Fig. 3 Oscillatory Darcy- Rayleigh number against wavenumber for given 𝜖 =1, Da=0.2 and Λ=0.4 withdifferent retardation time. 

 

 

Fig. 4   Oscillatory Darcy-Rayleigh number against wavenumber for given Λ= 0.4 and 𝜖 =𝜆 = 0.5 with different Darcy number 
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Fig. 5  Oscillatory Darcy- Rayleigh number against wavenumber for given Λ =0.4 and 𝜖 =𝜆  = 1 withdifferent Darcy number

Fig. 6   Oscillatory Darcy-Rayleigh number against wavenumber for given Λ= 0.4 and 𝜖 =𝜆 = 1.5 with Darcy number 

 

Fig. 7  Oscillatory Darcy- Rayleigh number against wavenumber for given Da=0.8 and𝜖 =𝜆 = 1.25 with different Λ.

IV. CONCLUSIONS 

Viscoelastic fluids show different behaviors of evolving convective instabilities. As the elasticity of 

viscoelastic fluids allows the periodic instability to be sustained in addition to the stationary modes, these fluids 

exhibit an oscillatory convection at the threshold of stationary mode. We also see that the oscillatory convection 

sets in early as compared to the study carried out by Do-Young Yoon, Min Chan Kim and ChangKyun Choi 

[16] in a horizontal darcian porous layer saturated with viscoelastic fluid. The following conclusions are made: 

1. The increase in relaxation time is to advance the onset of convection, and hence enhance the heat transport. 

2. The increase in retardation time is to delay the onset of convection, and hence decrease the heat transport. 

3. The oscillatory Darcy-Rayleigh number depends on𝜖, 𝜆 , Λ and Da but in stationary case it is independent of 

𝜖   and𝜆 . 

4. The effect of decrease in Darcy number where the permeability factor is involved is to advance the onset of 

convection. 

5. The increase in ratio of the viscosities of the porous medium is to delay the onset of convection. 
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NOMENCLATURE 

a:dimensionless horizontal wave number, a = 𝑙2 + 𝑚2 

D   :differential operator  

g     :gravitational acceleration[m/s2] 

K    :permeability[m2]  

k     :unit vector in vertical direction 

d     :depth of porous layer[m]  

P     : pressure[Pa ] 

RaD :Darcy-Rayleigh number, 
𝐾𝛽𝑑∆𝑇𝑔

𝛼𝛾

 T   : Temperature[℃]  

 t     :time[s] 

𝑈      :velocity vector[m/s] 

w:dimensionless velocity component in vertical direction 

(x,y,z):dimensionless Cartesian coordinate 

Da:Darcy number  

Greek Letters  

𝛼: effective thermal diffusivity[m2/s] β    

:thermal expansion coefficient[℃-1] 

𝜖:retardation time[s]  

θ :dimensionless temperature λ 

:relaxation time[s]  

µ :dynamic viscosity[Pa.s]  

γ :kinematic viscosity[m2/s]  

ρ :density[kg/m3]  

σ :temporal growth rate 

Λ     :ratio of the viscosities of the porous layer 

Subscripts 

b      :basicstate 

(stat):stationary mode 

(osc) :oscillatory mode 

Superscripts 

′ :perturbed quantity 
*
:dimensionless quantity 
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