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Abstract 

              Some biomedical instruments, for example, blood pumps in dialysis and the heart lung machine utilize 

this guideline. Peristaltic transport of a dangerous fluid is utilized as a part of atomic industry to maintain a 

strategic distance from tainting of the outside environment. The mechanical utilization of this pumping 

component in roller/finger pumps to pump slurries and destructive liquids is notable. The goal of this paper is to 

concentrate the MHD impacts on peristaltic stream of a couple stretch liquids in a channel with porous 

dividers. Utilizing long wavelength and low Reynolds number approximations. 

  

Keywords 

                 Peristaltic flow, non-Newtonian fluids, high polymer additive, electro-rheological fluids. 

 

I. INTRODUCTION  

             Peristalsis is a characteristic instrument of transport for some physiological liquids. This is 

accomplished by the entry of dynamic rushes of zone compression or extension along the limit of a liquid filled 

distensible tube. Diverse physiological wonders, for example, the stream of pee from kidney to the bladder 

through ureters, transport of nourishment material through the stomach related tract, development of 

spermatozoa in the pipe's efferent's of the male regenerative tract and cervical channel and the vehicle of ovum 

in the fallopian tube, occur by the instrument of peristalsis. Some biomedical instruments, for example, blood 

pumps in dialysis and the heart lung machine utilize this rule. Peristaltic transport of a poisonous fluid is utilized 

as a part of atomic industry to maintain a strategic distance from tainting of the outside environment. The 

modern utilization of this pumping system in roller/finger pumps to pump slurries and destructive liquids is 

outstanding. A few reviews have been made on peristalsis with reference to mechanical and physiological 

circumstances. ( Misra and Pandey [11], [10], Mishra and Rao [9]). 

                      

                                 Magnetohydrodynamics (MHD) is the science which manages the movement of leading 

liquids within the sight of an attractive field. The movement of the directing liquid over the attractive field 

creates electric streams which change the attractive field and the activity of the attractive field on these ebbs and 

flows offers ascend to mechanical strengths which alter the stream of the liquid (Mekheimer [7]). MHD stream 

of a liquid in a channel with flexible, musically contracting dividers (peristaltic stream) is of enthusiasm for 

association with specific issues of the development of conductive physiological liquids (illustration: the blood 

and blood pump machines) (Hayat et al. [8]). At present, contemplates on peristaltic movement in MHD streams 

of electrically directing physiological liquids have turned into a subject of developing enthusiasm for scientists. 

This is because of the way that such reviews are helpful especially to get an appropriate comprehension of the 

working of various machines utilized by clinicians for pumping blood. Misra et al. [4] called attention to that 

hypothetical looks into with a mean to investigate the impact of an attractive field on the stream of blood in 

atherosclerotic vessels likewise discover application in a blood pump utilized via heart specialists amid the 

surgical methodology. 

 

                                 It is outstanding that most physiological liquids including blood carry on as non-

Newtonian liquids. Subsequently, the investigation of peristaltic transport of non-Newtonian liquids may show 

signs of improvement comprehension of the organic frameworks. A few re-searchers considered peristaltic 

transport of non-Newtonian liquids. [8].  

 

                                Couple stretch liquids are liquids comprising of unbending, arbitrarily arranged particles 

suspended in a thick medium. Couple push liquid is known to be a superior model for bio-liquids, for example, 
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blood, greases containing little measure of high polymer added substance, electro-rheological liquids and 

manufactured liquids. The principle highlight of couple stress liquids is that the anxiety tensor is against 

symmetric and their exact stream conduct can't be anticipated by the established Newtonian hypothesis. Stirs 

summed up the established model to incorporate the impact of the nearness of the couple stresses and this model 

has been generally utilized on account of its relative numerical straightforwardness (M. Hussain, Mehwish 

Ashraf, [3]). For couple stretch liquids, there have been various reviews did because of its far reaching modern 

and logical applications, for example, the works of Mekheimer and Abd elmaboud [5] and Sobh [6]. Ramesh [2] 

investigate the peristaltic transport of couple stress fluid in an asymmetric channel. The channel asymmetry is 

produced by choosing the peristaltic wave train on the walls to have different wave amplitudes and phase 

differences, and M.G.Reddy [1]  discussed under the long wavelength and low Reynolds number approximation. 

The resultant dimensionless nonlinear governing equations have been tackled numerically.The goal of this paper 

is to concentrate the MHD impacts on peristaltic stream of a couple push liquid in a channel with penetrable 

dividers. Utilizing long wavelength and low Reynolds number approximations. The impacts of different 

important parameters on the time found the middle value of stream rate and weight distinction have been talked 

about through charts. 

II. P II  FORMULATION OF THE PROBLEM  

Consider the MHD consequences for peristaltic stream of a couple push liquid in a channel with porous 

dividers under long wavelength and low Reynolds number suspicions in a channel of half – width "an" and 

longitudinal prepare of dynamic sinusoidal waves happens on the upper and lower dividers of the channel. We 

accept that a uniform attractive field quality 'B0'is connected along the bearing of the Y-pivot and the instigated 

attractive field is thought to be irrelevant. For effortlessness we confine our discourse to the half width of the 

direct channel as appeared in the Figure 1.  

The divider twisting is given by 

H(X,t) = a+b sin (X-ct)                 (4.3.1) 

Under the presumptions that the channel length is an essential different of the wavelength λ and the weight 

contrast over the closures of the channel is a consistent, the stream turns out to be relentless in the wave outline 

(x, y) moving with speed c far from the fixed(laboratory) outline ( X,Y). The change between these casings is 

given by  

 

x = X – ct, y = Y, u(x, y) = U(X-ct, Y) and v(x, y) = V(X-ct, Y) where U and V are speed segments in the 

research facility casing and u and v are speed segments in the wave outline. In the numerous physiological 

circumstances it is demonstrated tentatively that the Reynolds number of the stream is little. In this way, we 

expect that the wavelength is vast. So the stream is of Poiseuille sort at every neighborhood cross - segment.  

Under these suppositions the administering conditions of the stream are 
3
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We introduce the stream function 
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Substituting the above non- dimensional quantities in equations (4.3.2) and (4.3.3), then the governing 

dimensionless equations of the flow (dropping the bars) are 
4 2
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The non- dimensional boundary conditions are 
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After dropping bars, the non dimensional wall deformation of equation (4.3.1) is 

1 2h Sin x  
                   (4.3.12) 

                                                                                III.   SOLUTION OF THE PROBLEM 

 Obviously the dimensionless governing equation (4.3.7) is a linear differential equation. The analytical 

procedure to solve the linear differential equation has two important features. Firstly, investigating the part of 

complimentary function (C.F), secondly, finding out the part of particular integral (P.I). Finally, the sum of (C.F) 

and (P.I) gives the required general arrangement of the direct differential condition.. We now make use of the 

general procedure method of linear differential equations to solve the equation (4.3.7) subject to the limit 

conditions (4.3.9), (4.3.10) and (4.3.11) we obtain the velocity as 
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The volume flux q through each cross- section on the wave frame is given by 

0
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The instantaneous volume flow rate Q (X, t) in the laboratory frame between the centre line and the 

permeable wall is 

Q (X,t) = 0 0

( , , ) ( 1)

H h

U X Y t dY u dy q h    
                       (4.4.3) 

The average volume flow rate 
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The pumping characteristics : 

Integrating the equation (4.4.4) with respect to x over one wave length, we get the pressure rise (drop) over 

one cycle of the wave as 
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The time average flux at zero pressure rise is denoted by 0Q
 and the pressure rise required to produce zero 

average flow rate is denoted by 0p
 so we have 
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The dimensionless friction force F at the wall across one wave length in the channel is given by 
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                                       IV.   DISCUSSION OF THE PROBLEM 

          From Figures 2, 3 we have ascertained for various estimations of ∅ and α. In figure 2, we have 

ascertained the weight contrast as an element of Q ̅ for various estimations of abundancy proportion ∅ with α = 

0.2; Da =0.01; M =1.25. It is watched that for picked parameters the pumping bends converge at a guide 

conclusion toward Q ̅≈ 0.575. For Q ̅< 0.575 we watched that the weight rise increments with the adequacy 

proportion ∅. The conduct is generally when Q ̅ > 0.575. For nothing pumping the Q ̅ diminishes with the 

expanding ∅. 

In figure 3, we have computed the weight distinction as a component of Q ̅ for various estimations of slip 

parameter (α) with Da =0.01; M =1.25; ∅= 0.5. It is watched that the pumping bends meet at a point between Q ̅ 
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=0.2 and Q ̅ = 0.4 this esteem evaluated as Q ̅ = 0.375. At the point when Q ̅ < 0.375 weight rise increments with 

expanding slip parameter (α). The inverse conduct is seen for Q ̅ > 0.375.  

From Figures 4, 5 we have ascertained for various estimations of Da and M .We have computed the weight 

contrast with time found the middle value of stream rate Q ̅ for various estimations of Darcy number Da , with α 

= 0.2; M =1.25; ∅= 0.5 and is appeared in Figure 4. It is watched that the pumping bends meet at a point 

between Q ̅ =0.2 and Q ̅ = 0.4 this esteem evaluated as Q ̅ = 0.395. At the point when Q ̅ < 0.395 weight rise 

diminishes with expanding Da. The inverse conduct is seen for Q ̅ > 0.395.  

In figure 5, we have ascertained the weight contrast as a component of Q ̅ for various estimations of Magnetic 

parameter M with α = 0.2; Da =0.01; ∅= 0.5. It is watched that for picked parameters the pumping bends are 

expanding.  

We have computed the Frictional compel F as a component of Q ̅ for various plentifulness proportion (∅), slip 

parameter (α), Darcy number (Da), Hartmann number (M) and it is watched that the frictional drive F has the 

inverse conduct contrasted with weight rise (∆p) and is portrayed in figures (6 – 9). 

 

III. TABLE I 

 

Fig: 1: Physical model for Couple stress fluid. 
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Fig: 2. The variation of  with  for different values of  for fixed  

 = 0.2 ; Da =0.01 ; M =1.25;   
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Fig: 3. The variation of  with  for different values of  for fixed  

 Da =0.01; M =1.25;   0.5;  
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Fig: 4. The variation of  with  for different values of Da for fixed  

 = 0.2; M =1.25;   0.5;  
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Fig: 5. The variation of  with  for different values of M for fixed  

 = 0.2; Da =0.01;   0.5;  

 

 

 

 

 

           M 

I 1.25 

II 1.35 

III 1.45 

IV 1.55 

 

I

V 

III 

I

I 
I 

 

 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 58 Issue 1 – June 2018 

 

ISSN: 2231-5373                        http://www.ijmttjournal.org                                      Page 33 

 

 

Fig: 6. The variation of  with  for different values of  for fixed  

 = 0.2; Da =0.01; M =1.25;   
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Fig: 7. The variation of  with  for different values of   for fixed  

Da =0.01; M =1.25;   0.5;  
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 Fig: 8. The variation of  with  for different values of  for fixed  

 = 0.2; M =1.25;   0.5;  
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Fig: 9. The variation of  with  for different values of  for fixed  

 = 0.2; Da =0.01;   0.5;  
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IV. CONCLUSIONS 

In the present review an examination of MHD impacts on peristaltic stream of a Couple stretch liquid in a 

channel with porous dividers under long wave length and low Reynolds number approximations has been talked 

about for the instance of free pumping. The representing two-dimensional conditions are improved by utilizing 

long wave length presumptions. The correct arrangements of rearranged conditions are computed. The outcomes 

are talked about through diagrams. We close with the accompanying perceptions. 

 

It is watched that in the peristaltic pumping district, the weight rise increments with an expansion in 

Hartmann number (M), adequacy proportion (∅) and slip parameter (α). 


