Star Related Reverse - Magic Graphoidal Graphs

Mini.S.Thomas ${ }^{1}$, Mathew Varkey T.K ${ }^{2}$
Asst. Prof, Department of Mathematics, ILM Engineering College, Eranakulam, India ${ }^{l}$
Asst. Prof, Department of Mathematics, T.K.M College of Engineering, Kollam, Kerala, India ${ }^{2}$

Abstract

Let $G=(V, E)$ be a graph and let ψ be a graphoidal cover of G. A graph G is called magic graphoidal if there exists a minimum graphoidal cover ψ of G such that G admits ψ-magic graphoidal total labelling. The minimum cardinality of such cover is known as graphoidal covering number of G.. In this paper we explained a reverse process of magic graphoidal called reverse-magic graphoidal labelling and proved $\left[P_{n}: S_{2}\right]$, Double Crowned star $K_{1, n} \odot 2 K_{1},<K_{1, n}: n>$, graph $K_{2}+m K_{1}$, are reverse magic graphoidal.

Keywords

Graphoidal Constant, Graphoidal Cover, Magic Graphoidal, reverse magic graphoidal.

1. INTRODUCTION

B.D. Acharya and E. Sampath Kumar defined Graphoidal cover as partition of edge set of G in to internally disjoint paths (not necessarily open). The maximum cardinality of such cover is known as graphoidal covering number of G.

A graph G is said to be magic if there exist a bijection $f: V \cup E \rightarrow\{1,2,3 \ldots \ldots . m+n\}$; where ' n ' is the number of vertices and ' m ' is the number of edges of a graph. Such that for all edges $x y, f(x)+f(y)+f(x y)$ is a constant. Such a bijection is called a magic labeling of G.

Let $G=(V, E)$ be a graph and let ψ be a graphoidal cover of G. Define $f: V \cup E \rightarrow\{1,2 \ldots \ldots, m+n\}$ such that for every path $P=\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ in ψ with $\quad f *(p)=f\left(v_{l}\right)+f\left(v_{n}\right)+\sum_{i=1}^{n-1} f\left(v_{i} v_{i+1}\right)=k$ is a constant, where f^{*} is the induced labeling on ψ. Then, we say that G admits ψ - magic graphoidal total labeling of G . A graph G is called magic graphoidal if there exists a minimum graphoidal cover ψ of G such that G admits ψ - magic graphoidal total labelling of G.

Here we introduced a new type of ie. reverse process of magic graphoidal total labeling is called reverse magic graphoidal total labeling.

Definition1.1

A complete bipartite graph $K_{1, n}$ is called a star and it has $(n+1)$ vertices and n edges
Definition 1.2
The Trivial graph K_{1} or P_{1} is the graph with one vertex and no edges

Definition1.3

Let $K_{1, n} \Theta 2 K_{1}$ be the Double Crowned Star which is the graph obtained from a star $K_{1, n}$ by attaching double edge at each end vertex of $K_{1, n}$.

Definition 1.4

Let $S_{2}=\left(v_{1} v_{0} v_{1}\right)$ be a star and let $\left[P_{n}: S_{2}\right]$ be the graph obtained from n copies of S_{2} and the path $P_{n}=$ $\left(u_{1}, u_{2}, u_{3}, \ldots \ldots \ldots \ldots, u_{n}\right)$ by joining u_{j} with the vertex v_{0} of the $j^{t h}$ copy of S_{2} by means of an edge, for $1 \leq j \leq n$

Definition 1.5

The graph $<K_{1, n}: n>$ is obtained by the subdivision of the edges of star $K_{1, n}$

II.MAIN RESULTS

Definition 2.1

A reverse magic graphoidal labeling of a graph G is one-to-one map f from $V(G) \cup E(G) \rightarrow\{1,2,3, \ldots \ldots \ldots, m+$ $n\}$, where ' n ' is the number of vertices of a graph and ' m ' is the number of the edges of a graph, with the property that, there is an integer constant ' μ ' such that
$f^{*}(p)=\sum_{i=1}^{n-1} f\left(v_{i} v_{i+1}\right)-\left\{f\left(v_{1}\right)+f\left(v_{n}\right)\right\}=\mu_{r m g C}$, is a contant
Then the reverse methodology of magic graphoidal labeling is called reverse magic graphoidal labeling (rmgl). Reverse process of magic graphoidal of a graph is called reverse magic graphoidal graph.(rmgg).

Theorem 2.1

The graph $\left[P_{n}: S_{2}\right]$ is reversed magic graphoidal for $n>1$

Proof:

Let $\quad G=\left[P_{n}: S_{2}\right]$

$$
\begin{aligned}
& V(G)=\left\{\begin{array}{lc}
v_{i}, u_{i} ; & 1 \leq i \leq n \\
v_{i j} ; & 1 \leq i \leq n, j=1,2
\end{array}\right. \\
& E(G)=\left\{\left[\left(v_{i} v_{i+1}\right) ; \quad 1 \leq i \leq n-1\right] \cup\left[\left(v_{i} u_{i}\right) ; 1 \leq i \leq n\right] \cup\right. \\
& \\
& \left.\quad\left[\left(u_{i 1} u_{i}\right) ; 1 \leq i \leq n\right] \cup\left[\left(u_{1} u_{i 2}\right) ; 1 \leq i \leq n\right]\right\}
\end{aligned}
$$

Define $f: V \cup E \rightarrow\{1,2,3, \ldots \ldots, m+n\}$ by

$$
\begin{array}{ll}
f\left(u_{1}\right)=1 & \\
f\left(u_{2}\right)=m+n=8 n-1 & \\
f\left(v_{i+1}\right)=i+1 ; & 1 \leq i \leq n-2 \\
f\left(u_{i+2}\right)=8 n-1-i ; & 1 \leq i \leq n-2 \\
f\left(u_{i 1}\right)=n-1+i ; & 1 \leq i \leq n \\
f\left(u_{i 2}\right)=7 n+1-i ; & 1 \leq i \leq n \\
f\left(u_{1} v_{1}\right)=2 n & \\
f\left(v_{1} v_{2}\right)=2 n+1 & \\
f\left(v_{2} u_{2}\right)=4 n+2 & 1 \leq i \leq n-2 \\
f\left(v_{i+1} v_{i+2}\right)=4 n+1-i ; &
\end{array}
$$

$$
\begin{array}{ll}
f\left(v_{i+2} u_{i+2}\right)=4 n+2+i ; & 1 \leq i \leq n-2 \\
f\left(u_{i 1} u_{i}\right)=6 n+1-i ; & 1 \leq i \leq n \\
f\left(u_{i} u_{i 2}\right)=2 n+2+i ; & 1 \leq i \leq n
\end{array}
$$

Let $\psi=\left\{P_{1}=\left[\left(u_{1} v_{1} v_{2} u_{2}\right)\right], P_{2}=\left[\left(v_{i+1} v_{i+2} u_{i+2}\right) ; 1 \leq i \leq n-2\right]\right.$,

$$
\begin{align*}
f^{*}\left(P_{1}\right) & \left.=f\left(u_{1} v_{1}\right)+f\left(v_{1} v_{2}\right)+f\left(v_{2} u_{2}\right)-\left\{f\left(u_{i 1} u_{i} u_{i 2}\right) ; 1 \leq i \leq n\right]\right\} \\
& =2 n+2 n+1+4 n+2-\{1+8 n-1\} \\
& =3=\mu_{r m g c} \\
f^{*}\left(P_{2}\right) & =f\left(v_{i+1} v_{i+2}\right)+f\left(v_{i+2} u_{i+2}\right)-\left\{f\left(v_{i+1}\right)+f\left(u_{i+2}\right)\right\} ; \tag{1}\\
& =4 n+1-i+4 n+2+i-\{i+1+8 n-1-i\} \\
& =3=\mu_{r m g c} \\
f^{*}\left(P_{3}\right) & =f\left(u_{i 1} u_{i}\right)+f\left(u_{i} u_{i 2}\right)-\left\{f\left(u_{i 1}\right)+f\left(u_{i 2}\right)\right\} \\
& =6 n+1-i+2 n+2+i-\{n-1+i+7 n+1-i\} \tag{2}\\
& =3=\mu_{r m g c}
\end{align*}
$$

from (1), (2), and (3); we conclude that G admit ψ - reverse magic graphoidal labeling. The reverse magic graphoidal constant $\mu_{r m g c}$ of $\left[P_{n}: S_{2}\right.$] is always 3 .

Theorem 2.2

The graph Double Crowned star $K_{1, n} \odot 2 K_{1}$ is reverse magic graphoidal

Proof:

Let G be the graph $K_{1, n} \odot 2 K_{1}$.

When nis even :

$$
\begin{aligned}
& \text { Let } V(G)=\left\{u, u_{i}, u_{i j} ; \quad 1 \leq i \leq n, \quad j=1,2\right\} \\
& \text { And } \quad E(G)= \begin{cases}u u_{2 i-1}, u u_{2 i} ; & 1 \leq i \leq \frac{n}{2} \\
u_{i} u_{i 1}, u_{i} u_{i 2} ; & 1 \leq i \leq n\end{cases}
\end{aligned}
$$

Define $f: V \cup E \rightarrow\{1,2, \ldots \ldots, m+n\}$ by
Here, $\quad m+n=6 n+2$

$$
\begin{array}{ll}
f\left(u_{2 i-1}\right)=i ; & 1 \leq i \leq \frac{n}{2} \\
f\left(u_{2 i}\right)=6 n+2-i ; & 1 \leq i \leq \frac{n}{2} \\
f\left(u_{i 1}\right)=\frac{n}{2}+i ; & 1 \leq i \leq n
\end{array}
$$

$$
\begin{array}{ll}
f\left(u_{i 2}\right)=\frac{11 n}{2}+2-i ; & 1 \leq i \leq n \\
f\left(u u_{2 i-1}\right)=\frac{3 n}{2}+i ; & 1 \leq i \leq \frac{n}{2} \\
f\left(u u_{2 i}\right)=\frac{9}{2} n+2-i ; & 1 \leq i \leq \frac{n}{2} \\
f\left(u_{i 1} u_{i}\right)=2 n+i ; & 1 \leq i \leq n \\
f\left(u_{i 2} u_{i}\right)=4 n+2-i ; & 1 \leq i \leq n
\end{array}
$$

Let $\psi=\left\{P_{1}=\left[\left(u_{2 i-1} u u_{2 i}\right) ; \quad 1 \leq i \leq \frac{n}{2}\right], \quad P_{2}=\left[\left(u_{i 1} u_{i} u_{i 2}\right) ; \quad 1 \leq i \leq n\right]\right\}$

$$
\begin{array}{rlr}
f^{*}\left(P_{1}\right) & =f\left(u_{2 i-1} u\right)+f\left(u u_{2 i}\right)-\left\{f\left(u_{2 i-1}\right)+f\left(u_{2 i}\right)\right\} & 1 \leq i \leq \frac{n}{2} \\
& =\frac{3 n}{2}+i+\frac{9 n}{2}+2-i-\{i+6 n+2-i\} \\
& =6 n+2-\{6 n+2\} \\
& =0=\mu_{r m g c} \\
f^{*}\left(P_{2}\right) & =f\left(u_{i 1} u_{i}\right)+f\left(u_{i} u_{i 2}\right)-\left\{f\left(u_{i 1}\right)+f\left(u_{i 2}\right)\right\} ; \\
& =2 n+i+4 n+2-i-\left\{\frac{n}{2}+i+\frac{11 n}{2}+2-i\right\} \\
& =6 n+2-\{6 n+2\} \\
& =0=\mu_{r m g c}
\end{array}
$$

from (1) and (2) we conclude that G admits ψ - reverse magic graphoidal labeling. Hence $K_{1, n} \odot 2 K_{1}$ is reverse magic graphoidal. The reverse magic graphoidal constant $\mu_{r m g c}$ of $K_{1,4} \odot 2 K_{1}$ is ' 0 '.

When n is odd

Let $V(G)=\left\{u, u_{i}, u_{i j}\right\} ; \quad 1 \leq i \leq n, j=1,2$
and $\quad E(G)= \begin{cases}u u_{i} ; & 1 \leq i \leq n \\ u_{i} u_{i 1}, u_{i} u_{i 2} ; & 1 \leq i \leq n\end{cases}$

Define $f: V \cup E \rightarrow\{1,2, \ldots m+n\}$ by
Here, $\quad m+n=6 n+1$

$$
\begin{aligned}
& f(u)=1 \\
& f\left(u_{1}\right)=6 n
\end{aligned}
$$

$$
\begin{array}{ll}
f\left(u_{2 i}\right)=i+1 ; & 1 \leq i \leq \frac{n-1}{2} \\
f\left(u_{2 i+1}\right)=6 n-i ; & 1 \leq i \leq \frac{n-1}{2}
\end{array}
$$

$$
\begin{array}{ll}
f\left(u_{i 1}\right)=\frac{n+1}{2}+i ; & 1 \leq i \leq n \\
f\left(u_{i 2}\right)=\frac{11 n+1}{2}-i ; & 1 \leq i \leq n \\
f\left(u u_{1}\right)=6 n+1 ; & \\
f\left(u u_{2 i}\right)=\frac{3 n+1}{2}+i ; & 1 \leq i \leq \frac{n-1}{2} \\
f\left(u u_{2 i+1}\right)=\frac{9 n+1}{2}-i ; & 1 \leq i \leq \frac{n-1}{2} \\
f\left(u_{i} u_{i 1}\right)=2 n+i ; & 1 \leq i \leq n \\
f\left(u_{i} u_{i 2}\right)=4 n+1-i ; & 1 \leq i \leq n
\end{array}
$$

Let $\psi=\left\{P_{1}=\left[\left(u u_{1}\right)\right], \quad P_{2}=\left[\left(u_{2 i} u u_{2 i+1}\right) ; \quad 1 \leq i \leq \frac{n-1}{2}\right]\right.$,

$$
\left.P_{3}=\left[\left(u_{i 1} u_{i} u_{i 2}\right) ; \quad 1 \leq i \leq n\right]\right\}
$$

$$
\begin{align*}
f^{*}\left(P_{1}\right) & =f\left(u u_{1}\right)-\left\{f(u)++f\left(u_{1}\right)\right\} \\
& =6 n+1-\{6 n-1\} \\
& =0=\mu_{r m g c} \tag{1}\\
f^{*}\left(P_{2}\right) & =f\left(u u_{2 i}\right)+f\left(u u_{2 i+1}\right)-\left\{f\left(u_{2 i}\right)+f\left(u_{2 i+1}\right)\right\} \\
& =\frac{3 n+1}{2}+i+\frac{9 n+1}{2} i-\{i+1+6 n-i\} \\
& =\frac{12 n+2}{2}-\{1+6 n\} \\
& =6 n+1-\{1+6 n\} \\
& =0=\mu_{r m g c}-1 u^{2} \tag{2}\\
f^{*}\left(P_{3}\right) & =f\left(u_{i} u_{i 1}\right)+f\left(u_{i} u_{i 2}\right)-\left\{f\left(u_{i 1}\right)+f\left(u_{i 2}\right)\right\} \\
& =2 n+i+4 n+1-i\left\{\frac{n+1}{2}+i+\frac{11 n+1}{2}-i\right\} \\
& =6 n+1-\left\{\frac{12 n+2}{2}\right\} \\
& =6 n+1-\{6 n+1\} \\
& =0=\mu_{r m g c}-\frac{1}{2} \tag{3}
\end{align*}
$$

from (1), (2), and (3), when n is odd, G admits ψ-revere magic graphoidal labeling. The reverse magic graphoidal constant $\mu_{r m g c}$ of $K_{1, n} \odot 2 K_{1}$ is 0 . Hence $K_{1, n} \odot 2 K_{1}$ is reverse magic graphoidal.

Theorem 2.3

The graph $<K_{1, n}: n>$ is reverse magic graphoidal for $n \geq 2$

Proof:

Let G be the graph $\left\langle K_{1, n}: n>\right.$.
Let $V(G)=\left\{v_{i}, w_{i}, u ;\right.$ $1 \leq i \leq n\}$

And $E(G)=\left\{v_{2 i-1} w_{2 i-1} u w_{2 i} v_{2 i}\right.$; $\left.1 \leq i \leq \frac{n}{2}\right\}$

Define $f: V \cup E \rightarrow\{1,2, \ldots \ldots, m+n\}$ by
Here, $m+n=4 n+1$

When n is odd

$$
\begin{array}{ll}
f(u)=1 & \\
f\left(v_{n}\right)=2 n+1 & \\
f\left(v_{2 i-1}\right)=\frac{n+3}{2}-i ; & 1 \leq i \leq \frac{n-1}{2} \\
f\left(v_{2 i}\right)=\frac{3 n+1}{2}+i ; & 1 \leq i \leq \frac{n-1}{2} \\
f\left(v_{2 i-1} w_{2 i-1}\right)=\frac{n-1}{2}+2 i ; & 1 \leq i \leq \frac{n-1}{2} \\
f\left(w_{2 i-1} u\right)=3 n+2-2 i ; & 1 \leq i \leq \frac{n-1}{2} \\
f\left(u w_{2 i}\right)=3 n+1-2 i ; & 1 \leq i \leq \frac{n-1}{2} \\
f\left(w_{2 i} v_{2 i}\right)=\frac{n+1}{2}+2 i ; & 1 \leq i \leq \frac{n-1}{2} \\
f\left(u w_{n}\right)=3 n+2 & \\
f\left(w_{n} v_{n}\right)=4 n+1 &
\end{array}
$$

Let $\psi=\left\{P_{1}=\left[\left(v_{2 i-1} w_{2 i-1} u w_{2 i} v_{2 i} ; \quad 1 \leq i \leq \frac{n-1}{2}\right)\right], P_{2}=\left[\left(u w_{n} v_{n}\right)\right]\right\}$

$$
\begin{align*}
f^{*}\left(P_{1}\right) & =f\left(v_{2 i-1} w_{2 i-1}\right)+f\left(w_{2 i-1} u\right)+f\left(u w_{2 i}\right)+f\left(w_{2 i} v_{2 i}\right)-\left\{f\left(v_{2 i-1}\right)+f\left(v_{2 i}\right)\right\} \\
& =\frac{n-1}{2}+2 i+3 n+2-2 i+3 n+1-2 i+\frac{n+1}{2}+2 i-\left\{\frac{n+3}{2}-i+\frac{3 n+1}{2}+i\right\} \\
& =n+6 n+3-\left\{\frac{4 n+4}{2}\right\} \\
& =5 n+1=\mu_{r m g c}- \tag{1}\\
f^{*}\left(P_{2}\right) & =f\left(u w_{n}\right)+f\left(w_{n} v_{n}\right)-\left\{f(u)+f\left(v_{n}\right)\right\} \\
& =3 n+2+4 n+1-\{1+2 n+1\} \\
& =5 n+1=\mu_{\text {rmgc }}
\end{align*}
$$

From (1) \& (2); we conclude that G admits ψ-reverse magic graphoidal labeling. When n is odd the reverse magic graphoidal constant $\mu_{r m g c}$ of $\left\langle K_{1, n}: n>\right.$ is $5 n+1$. Hence $\left.<K_{1, n}: n\right\rangle$ is reverse magic graphoidal graph.

When n is even

$$
\begin{align*}
& f\left(v_{2 i-1}\right)=i ; \quad 1 \leq i \leq \frac{n}{2} \\
& f\left(v_{2 i}\right) \quad=4 n+2-i ; \quad 1 \leq i \leq \frac{n}{2} \\
& f\left(v_{2 i-1} w_{2 i-1}\right)=\frac{n-2}{2}+2 i ; \quad 1 \leq i \leq \frac{n}{2} \\
& f\left(w_{2 i-1} u\right)=\frac{7 n+6}{2}-2 i ; \quad 1 \leq i \leq \frac{n}{2} \\
& f\left(u w_{2 i}\right) \quad=\frac{7 n+4}{2}-2 i ; \quad 1 \leq i \leq \frac{n}{2} \\
& f\left(w_{2 i} v_{2 i}\right) \quad=\frac{n}{2}+2 i ; \quad 1 \leq i \leq \frac{n}{2} \\
& \text { Let } \psi=\left\{P=\left(v_{2 i-1} w_{2 i-1} u w_{2 i} v_{2 i}\right) ; \quad 1 \leq i \leq \frac{n}{2}\right\} \\
& f^{*}(P)=f\left(v_{2 i-1} w_{2 i}\right)+f\left(w_{2 i-1} u\right)+f\left(u w_{2 i}\right)+f\left(w_{2 i} v_{2 i}\right)-\left\{f\left(v_{2 i-1}\right)+f\left(v_{2 i}\right)\right\} \\
& =\frac{n-2}{2}+2 i+\frac{7 n+6}{2}-2 i+\frac{7 n+4}{2}-2 i+\frac{n}{2}+2 i-[i+4 n+2-i] \\
& =\frac{16 n+8}{2}-(4 n+2) \\
& =8 n+4-(4 n+2) \\
& =4 n+2 \\
& =2(n+1)=\mu_{r m g c} \tag{1}
\end{align*}
$$

From equation (1), we conclude that G admits ψ - reverse magic graphoidal labeling. When n is even, the reverse magic graphoidal constant $\mu_{r m g c}$ of $\left\langle K_{1, n}: n\right\rangle$ is $2(n+1)$. Hence $\left.<K_{1, n}: n\right\rangle$ is reverse magic graphoidal.

Theorem 2.4

The graph $K_{2}+m K_{1}$ is reverse magic graphoidal; for $m \geq 2$

Proof

Let G be the graph $K_{2}+m K_{1}$.
Let $\quad V(G)=\left\{v, u, w_{i} ; \quad 1 \leq i \leq m\right\}$
And $E(G)=\left\{v u, v w_{i}, u w_{i} ; \quad 1 \leq i \leq m\right\}$
Define $f: V \cup E \rightarrow\{1,2,3, \ldots \ldots \ldots, m+n\}$ by
Here, $m+n=3 m+3$

$$
f(v)=1
$$

$$
\begin{array}{ll}
f(u)=3 m+2 & \\
f(v u)=3 m+3 & \\
f\left(v w_{i}\right)=1+i ; & 1 \leq i \leq m \\
f\left(u w_{i}\right)=3 m+2-i ; & 1 \leq i \leq m
\end{array}
$$

Let $\psi=\left\{P_{1}=(u v)\right.$,

$$
\left.P_{2}=\left(v w_{i} u\right) ; \quad 1 \leq i \leq m\right\}
$$

So,

$$
\begin{align*}
f^{*}\left(P_{1}\right) & =f(u v)-\{f(u)+f(v)\} \\
& =3 m+3-\{3 m+2+1\} \\
& =0=\mu_{r m g c} \tag{1}\\
f^{*}\left(P_{2}\right) & =f\left(v w_{i}\right)+f\left(w_{i} u\right)-\{f(v)+f(u)\} \\
& =1+i+3 m+2-i-\{1+3 m+2\} \\
& =3 m+3-\{3 m+3\} \\
& =0=\mu_{r m g c} \tag{2}
\end{align*}
$$

From (1) and (2) we conclude that G admits ψ - reverse magic graphoidal labeling. The reverse magic graphoidal constant $\mu_{r m g c}$ of $K_{2}+m K_{1}$ is ' 0 '. Hence $K_{2}+m K_{1}$ is reverse magic graphoidal.

REFERENCES

[1] B.D.Acharya and E.Sampathkumar, Graphoidal covers and Graphoidal covering number of a graph, Indian J. pure appl.Math.,18(10):882890,October 1987.
[2] Frank Harary, Graph Theory, Narosa Publishing House, New Delhi, 2001
[3] J.A . Gallian, A dynamic survey of graph labeling, The Electronic journal of Combinatrorics,16(2013), \# D Jonathan L Gross, Jay Yellen, Hand book of Graph Theory CRC Press, Washington(2003).
[4] Ismail Sahul Hamid and Maya Joseph, Induced label graphoidals graphs, ACTA UNIV. SAPIENTIAE, INFORMATICA, 6, 2(2014), 178189.
[5] S.Subhashini, K. Nagarajan, Cycle related Magic graphoidal graphs, International Journal of Mathematical Archive(IJMA), Volume 7, Issue 4, May (2016)
[6] K. Nagarajan, A. Najarajan, S. Somasundran, m- graphoidal Path Covers of a graph, Proceedings of the Fifth International Conference on Number Theory and Samarandache Notations, (2009) 58-67.
[7] Purnima Guptha, Rajesh Singh and S . Arumugam, Graphoidal Lenghth and Graphoidal Covering Number of a Graph, In ICTCSDM 2016, S. Arumugam, Jay Bagga, L. W. Beineke and B. S. Panda(Eds). Lecture Notes in Compt. Sci,. 10398(2017), 305-311.
[8] S.Arumugam, Purnima Guptha AND Rajesh Singh, Bounds on Graphoidal Length of a graph, Electronic Notes in Discrete Mathematics, 53(2016),113-122.
[9] S. Sharief Basha, Reverse Super Edge- Magic Labeling on W-trees. International Journal of Computer Engineering In Research Trends, Vol 2, Issue 11, November 2015.
[10] I.Sahul Hamid and A. Anitha, On Label Graphoidal Covering Number-1, Transactions on Combinatorics, Vol.1, No.4,(2012), 25-33.
[11] S. Sharief Basha and K. Madhusudhan Reddy, Reverse magic strength of Festoon Trees, Italian Journal of Pure and Applied Mathematics-N 33-2014,191-200.
[12] Md. Shakeel, Shaik Sharief Basha, K.J.Sarmasmieee, Reverse vertex magic labeling of Complete graphs.Research Journal of Pharmacy and Technology, Volume 9, Issue No.10,(2016).
[13] Basha, S.Sharief, Reddy, K.Madhusudhan, Shakeel M.D, Reverse Super Edge- Magic Labeling in Extended Duplicate Graph of Path, Global Journal of Pure and Applied Mathematics, Vol.9, Issue 6, p 585, November 2013.

