Signed domination in Rooted product of a Path with a Cycle graph

Rashmi S $B^{\# 1}$, Indrani Pramod Kelkar*2, Rajanna K $R^{\# 3}$
\# Asst.Professor, Department of Mathematics, Shridevi institute of Engg \& Technology, Tumkur , India
* Department of Mathematics, Acharya Institute of Technology, Bangalore

Abstract

A two valued function f defined on the vertices of a graph $G=(V, E), \quad f: V \rightarrow\{-1,1\}$ is a signed dominating function if the sum of its function values over any closed neighborhood of every vertex is at least 1, i.e. $\forall v \in V, f(N[v]) \geq 1$. The weight of a signed dominating function is $w(f)=\sum f(v)$ over all vertices $v \in$ V. The signed domination number of a graph $G \gamma_{s}(G)$ is the minimum weight of a signed dominating function f on G. In this paper we present some results on signed dominating function of rooted product graph of a path with a cycle graph.

Keywords

Rooted product graph, Dominating function , Signed dominating function

I. INTRODUCTION

We use [1] for terminology and notation which are not defined here. For any vertex $\mathrm{v} \in \mathrm{V}$, the open neighborhood of v in G is $\mathrm{N}(\mathrm{v})=\{\mathrm{u} \in \mathrm{G} \mid \mathrm{uv} \in \mathrm{E}(\mathrm{G})\}$, and $\mathrm{N}[\mathrm{v}]=\mathrm{N}(\mathrm{v}) \cup\{\mathrm{v}\}$ denotes its closed neighborhood. Domination theory plays a very important role in graph theory. It has a wide range of applications to various fields like communication, social science, Engineering and others. In recent years attention is given to another more interesting topic, dominating functions. Dunbar[9] and others [5,7,12,20] introduced the concept of signed dominating function, where the vertices of a graph are assigned the values +1 or -1 . This variation of dominating function has applications in networks of positive and negative spins of electrons, social networks of people or organizations etc. A two valued function f defined on the vertices of a graph $G=(V, E), f: V \rightarrow\{-1,1\}$ is a signed dominating function if the sum of its function values over any closed neighborhood of every vertex is at least 1, i.e. $\forall v \in V, s f(N[v]) \geq 1$. The signed domination number $\gamma_{S}(G)$ of a graph G is defined to be the minimum weight of signed dominating function of G .

In 1978, Godsil and Mckay [8] introduced a new product on two graphs G_{1} and G_{2}, called rooted product denoted by $G_{1} \odot G_{2}$. The rooted product graphs are used in internet systems for connecting internet from one system to other. The Rooted product of a path P_{m} with a cycle C_{n} is a graph obtained by taking one copy of a mvertex graph P_{m} and m-copies of C_{n} and then joining the ith vertex of P_{m} to all verticies of ith copy of C_{n}. This graph is denoted by $P_{m} \odot C_{n}$. Rashmi S B [15, 16] has studied dominating function and total dominating function of rooted product graph $P_{m} \odot C_{n}$. In this paper we present some results on signed dominating function of rooted product graph of a path with a cycle graph $P_{m} \odot C_{n}$.

II. MAIN RESULTS

Lemma 2.1: Signed domination number of cycle graph is

$$
\gamma_{s}\left(C_{n}\right)=k+r \text { for } n=3 k+r, 0 \leq r \leq 2
$$

Proof : Consider cycle graph C_{n} where every vertex is of degree 2 . In the cycle graph if vertex v is such that $f(v)=1$ then one of its adjacent vertex can be assigned -1 and the other should be +1 . So that $f[N(v)] \geq 1$. Next, if a vertex v is such that $f(v)=-1$ then it is necessary that both of its adjacent vertices are assigned with +1 . So that $f(N[v]) \geq 1$. Hence, it is clear that for a dominating function in a cycle graph the assignment for vertices should follow the sequence $1,1,-1,1,1,-1, \ldots \ldots \ldots .$.
From this it is clear that weight of the cycle is $1+1-1+1+1-1, \ldots \ldots \ldots \ldots\left(C_{n}\right)=k+r$ if $n=3 k+r$.

Case(i): If $n=3 k$ then from each of consecutive three vertex set $1+1-1=1$ will be contributed to the total weight of C_{n} As there are k such three vertex sets for $n=3 k$ total weight is $1+1+1+\cdots \ldots \ldots .+k$ times $=k$ As there can't be more -1 assigned than a sequence specified above this is the minimum weight giving $\gamma_{s}\left(\boldsymbol{C}_{3 \boldsymbol{k}}\right)=\boldsymbol{k}$

Case(ii) If $n=3 k+1$ then for the first 3 k vertices from case (i) assignment will be $1,1,-1,1,1,-1, \ldots \ldots \ldots \ldots$, As the 3 k th vertex is assigned -1 , its neighbor, the last vertex $3 k+1$ th vertex, should be assigned +1 . The total weight will be $\mathrm{k}+1$ giving $\gamma_{s}\left(C_{3 k+1}\right)=k+1$

Case (iii): If $n=3 k+2$ then as in case (ii), the $3 k$ th vertex is assigned to -1 , the last two vertices assigning 1 and -1 it does not satisfy the condition $f(N[v]) \geq 1$ for the $(3 \mathrm{k}+1)$ th vertex v. So that last two vertices should be assigned to +1 only, giving $\gamma_{s}\left(C_{3 k+2}\right)=k+2$

Combining these three cases we get the signed domination number,

$$
\gamma_{s}\left(C_{3 k+r}\right)=k+r, \quad \text { for } n=3 k+r, \quad 0 \leq r \leq 2
$$

Theorem 2.2: The Signed domination number of rooted product graph $P_{m} \odot C_{n}$ is

$$
\gamma_{s}\left(P_{m} \odot C_{n}\right)=\left\{\begin{array}{cc}
m(k+r) & \text { for } n=3 k+r, r=0,1 \\
m k+4 & \text { for } n=3 k+2
\end{array}\right.
$$

Proof : Consider the rooted product graph $P_{m} \odot C_{n}$. Let us define a two valued function on the vertex set of $P_{m} \odot C_{n} \quad f: V \rightarrow\{-1,1\}$, first considering possible choices for the assignment of +1 or -1 to root vertices on the path.

Choice (i): All the path vertices are assigned to -1 i.e., $f_{1}(v)=-1 \forall v \in V\left(P_{m}\right)$
In the rooted product graph $P_{m} \odot C_{n}$, first choose the root vertex of C_{n} with P_{m} and assign -1 to each root vertex. From Lemma 1, in the cycle graph C_{n}, no two adjacent vertices can have value assigned -1 because it does not satisfy the condition $f_{1}(N[u]) \geq 1$, so assign adjacent vertices of root vertex to +1 . Now for the root vertex v, $f_{1}(N[v])=-3+2=-1 \nsupseteq 1$
Hence such assignment of -1 to all the root vertices on path is not valid for f_{1} to be a dominating function.

Figure 1 : Assignment of +1, -1 in cycle graph with all root vertices assigned -1

Choice (ii) : All the Path vertices are assigned to +1 , so $f_{2}(v)=+1 \forall v \in V\left(P_{m}\right)$
In the rooted product graph $P_{m} \odot C_{n}$, first choose the root vertex of C_{n} with P_{m} and assign +1 to each root vertex. In the cycle graph C_{n} adjacent verticies of root vertex can be assigned +1 or -1 , so that from lemma 1 , for dominating function in rooted product graph the assignment for vertices should follow the sequence $1,1,-1,1,1,-1, \ldots \ldots \ldots$. in cycle graph part.
As each of these m cycles attached at the root vertex are independent and each path vertex is a vertex of cycle graph as a root, so, total weight of $P_{m} \odot C_{n}=$ Sum of weights of m cycles C_{n}

Case (a) $n=3 k+r, r=0,1$
From lemma 1, Weight of each cycle $C_{n}=\mathrm{k}+\mathrm{r}$, total weight of $P_{m} \odot C_{n}$

$$
\boldsymbol{w}\left(f_{2}\right)=(\boldsymbol{k}+\boldsymbol{r})+(\boldsymbol{k}+\boldsymbol{r})+-----\boldsymbol{m} \text { times }=m(k+r)
$$

Figure 2 : Signed domination function for $\boldsymbol{P}_{\mathbf{4}} \odot \boldsymbol{C}_{6}$
Case (b) $n=3 k+2$
As for the cycle C_{n} attached to the first and last vertex in the path graph as root, the weight of the cycle is $(\boldsymbol{k}+\boldsymbol{r})$ for $f_{2}(N[v]) \geq 1$, but for internal path vertex as root, the weight of the cycle can reduce because adjacent path vertices are mapped to +1 , so cycle vertices can be mapped to $-1 \&-1$. Therefore for internal root vertex cycle $C_{3 k+2}$ there will be one extra -1 assigned than the end vertex rooted cycle. Weight of internal ($\mathrm{m}-2$) root vertices cycle is k where as for the two end vertices of path as root vertex of cycle $C_{3 k+2}$ weight is $k+2$.

$$
\begin{aligned}
\boldsymbol{w}\left(f_{2}\right) \quad & =(k+2)+(m-2) k+(k+2) \\
& =(m-2) k+2(k+2) \\
& =m k-2 k+2 k+4 \\
& =m k+4
\end{aligned}
$$

Figure 3 : Signed domination function for $\boldsymbol{P}_{\mathbf{4}} \odot \boldsymbol{C}_{\mathbf{5}}$

Choice (iii): If all the path vertices are assigned alternately to +1 and -1
In the rooted product graph $P_{m} \odot C_{n}$, choose the root vertex of C_{n} with P_{m}. In the path P_{m} all the root vertices are assigned alternately +1 and -1 . If the first vertex of path P_{m} is +1 the adjacency of two vertices in cycle is +1 because the adjacency of path vertex is -1 for $f_{3}(N[v]) \geq 1$. Again the assignment of vertices in cycle it follows sequence $+1,+1,-1,+1,+1,-1, \ldots \ldots \ldots$.

Total weight of each of the m cycles is $k+r$.

$$
w\left(f_{3}\right)=m(k+r) \quad n=3 k+r, 0 \leq r \leq 2
$$

Choice (iv): If all the path vertices are assigned to $+1+1-1 \ldots$.
In the rooted product graph $P_{m} \odot C_{n}$, choose the root vertex of C_{n} with P_{m}. In the path P_{m} all the root vertices are assigned sequence $+1+1-1$. If the first vertex of path P_{m} is +1 the adjacency of two vertices in cycle is +1 because one of the adjacency of path vertex is -1 for $f_{4}(N[v]) \geq 1$. Again the assignment of vertices in cycle follows
sequence $+1,+1,-1,+1,+1,-1, \ldots \ldots \ldots$. . with properly following the root vertex value in the cycle. Total weight of each of the m cycles is $k+r$, giving

$$
w\left(f_{3}\right)=m(k+r) \quad n=3 k+r, 0 \leq r \leq 2
$$

Any other choice of assignment of $+1,-1$ to root vertices will follow similar argument. All the three possible choices of signed dominating functions f_{2}, f_{3}, f_{4} have same weight for $\mathrm{n}=3 \mathrm{k}$ and $3 \mathrm{k}+1$, but f_{2} has minimum weight for $\mathrm{n}=3 \mathrm{k}+2$. Hence the function with minimum weight is f_{2}. Therefore the signed domination number of rooted product graph $P_{m} \odot C_{n} \quad$ is $\mathrm{w}\left(f_{2}\right)$, giving

$$
\begin{aligned}
\gamma_{S}\left(P_{m} \odot C_{n}\right) & =m k & & \text { if } n=3 k, \\
& =m k+m & & \text { if } n=3 k+1 \\
& =m k+4 & & \text { if } n=3 k+2
\end{aligned}
$$

REFERENCES

[1] Berge C. Graphs and Inner graphs. North -Holland, Amsterdam 1973
[2] Bresar B, Klavzar. S ,Rall D.F., Dominating direct product graphs.
[3] Chang T.Y. , Domination number of grid graphs , Ph.D. thesis , Dept of Mathematics , university of south Florida, 1992.
[4] Chang T.Y., Clark W.E. , and Hare E.O. , Domination numbers of Complete grid graphs, Ars combin, 2001) 307-311.
[5] Chang G.J., S. -C . Liaw, H-G. Yeh K-subdomination in graphs. Discrete Appl.Math., 120(2002), PP . 44-60
[6] Cherifi R., Gravier S, and Zighem I, Bounds on domination number of complete grid graphs , Congr. Number . 47 (1985), 217 - 228.
[7] Cockayne E.J., Hare E.O., Hedeteniemi S.T, and Wimer T.V, Bounds for the domination number of grid graphs, Congr, Number. 47 (1985), 217 - 228.
[8] Dorota kuziak, Magdalena lemanska\& Ismael G. Yero Domination related parameters in rooted product graphs.
[9] Dunbar J.E., Hedetniemi S.T.,Henning M.A., Slater P.J., Signed domination in graphs in: Graph theory, combinatorics, and applications wiley, New York ,1995, PP.311-322.
[10] Godsil C.D., Mckay B.D., a new graph product and its spectrum, Bulletin of the Australlian mathematical society 18(1) (1978) 21-28.
[11] Guichard D.R, A lower bound for the domination number of complete grid graphs , J. Combin . Math. Combin ,comput . 49 (2004) 215 - 220.
[12] Haas R., Wexley T.B., Bounds on the signed domination number of a graph , to appear.
[13] Haynes T.W, Hedetniemi S.T, Slater P.J, Fundementals of domination in graphs , Marcel Dekker , Inc. New York , 1998.
[14] KlavzerS, Zamzek B, on a vizing - Like conjecture for a direct product graphs , Discrete Mathematics 156 (1996) 243-246.
[15] Makke Siva Parvathi \&Bommireddy Maheshwari Independent functions of corona product graph of a cycle with a complete graph.
[16] Makke Siva Parvathi \&Bommireddy Maheshwari Signed dominating and Signed total dominating function of root Product of a path with a star graph .
[17] Ore O , Theory of graphs , Amer . Math .Soc. Collaq. Pub., 38 (1962)
[18] Rashmi S.B. and Indrani Pramod Kelkar Domination number of rooted product $P_{m} \odot C_{n}$, Journal of computer and Mathematical sciences, vol. 7 (9) ,469-471, Sept . 2016
[19] Rashmi S.B. and Indrani Pramod Kelkar, Total Domination number of rooted product $P_{m} \odot \quad C_{n}$, IJSTE - International Journal of Science Technology \& Engineering, Volume 8, No. 6, July 2017 (special issue III) .
[20] Zhang z., B,Xu, Y.Li, L.Liu A note on the lower bounds of signed domination number of graphs . Discrete math,. 195(1999), PP.295-298.

