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Abstract 

              This study presented a kind of characterization of multiplication group of a quasi group   𝑸, ∘  and of 

a loop (𝑸, ⋅) that are isostrophic, that is some parastrophes of quasigroup  𝑸, ∘  with loops (𝑸,⋅). In 

particular, the middle multiplication groups of a  quasi group (𝑸, ⋅) and of  loops (𝑸, ∘) that are isostrophes 

(𝑸, ∘) were studied. Relationship of middle multiplication groups of a quasi group (𝑸, ⋅) to right(left) 

multiplication group of a loop  𝑸, ∘  isostrophes were show to be coincided and their multiplication groups 

were show to be normal subgroups, using the concept of middle translation 
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I.  INTRODUCTION 

              A  non -empty set ‘𝑸’ with binary operation ′𝑨’ is  called a groupoid (𝑸, 𝑨). Let (𝑸, 𝑨) be a 

groupoid and 𝒂 be fixed element in 𝑸 then the translation maps 𝑳𝒂 and 𝑹𝒂 is defined by 𝒙𝑳𝒂 = 𝒂 ∙ 𝒙 and 

𝒙𝑹𝒂 = 𝒙 ∙ 𝒂 for all 𝒂 ∈ 𝑸. A groupoid (𝑸, 𝑨) is called quasigroup (𝑸, ∙) if the maps 𝑳 𝒂 : 𝑮 → 𝑮 and 

𝑹 𝒂 : 𝑮 → 𝑮 are bijections for all 𝒂 ∈ 𝑸 and iftheequationsa·x=band y · a = b have respectively unique 

solutions x = a\b and y = b/a for all a, b ∈Q.The equationsa·x=band y · a = b have respectively unique 

solutions x = a\b and y = b/a for all a, b ∈Q. 

Aquasigroup (𝑸, ∙)iscalledaloopifa·1=a=   1·a,forallainQ.The group generated by these mappings are 

called multiplication groups Mlp (Q, ∙) . We donate these groups generated by left, right and middle 

translations of a quasigroup (𝑸,∙) by𝑳𝑴 𝑸, ∙ , 𝑹𝑴 𝑸, ∙  and 𝑷𝑴 𝑸, ∙  respectively [4].  

Definition 1.2: A binary groupoid (𝑨, 𝑸) with a binary operation ′𝑨′ such that the equality 𝑨 𝒙𝟏, 𝒙𝟐 = 𝒙𝟑 

knowledge of any two elements of 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 uniquely specifics the remaining one is called binary quasigroup 

[4] 

II.   PRELIMINARIES 

 

Lemma 2.1:  If a quasigroup  𝑸,∙  is a group isotope, ie.  𝑸,∙ ∼  𝑸, + , where  𝑸, + is a group, then any 

parastrophe of this quasigroup also is a group isotope [5] 

Lemma 2.2: Parastrophic image of a loop is a loop, either an unipotent right loop [4]. 

Let  𝑸, ∙  guasigroup. We donate the following translations 

𝑅𝑀 Q,∙ =  𝑥Ra⎹ a ∈ Q = (𝑥. 𝑎 ⎹ x ∈ Q) 

𝐿𝑀 Q,∙ =  𝑥La⎹ a ∈ Q =  (𝑎 ∙ 𝑥 ⎹ x ∈ Q) 

𝑃𝑀 Q,∙ =  𝑥Pas⎹ a ∈ Q =  (𝑥 ∙ 𝑠 = 𝑎 ⎹ x, s ∈ Q) where 𝐿𝑎 , 𝑅𝑎  and 𝑃𝑎  are  permutations of the set 𝑄. 

Definition 2.3: Isostrophy of a quasigroup is the operation of parastrophy of the quasigroup and its isotopic 

image. 

Definition 2.4: Quasigroups 𝑸, ∙  and  𝑸, ∗ are said to isotopic if there exist triple (𝛼, 𝛽, 𝛾) such that 

𝛼𝑥. 𝛽𝑦 = 𝛾(𝑥 ∗ 𝑦) for all 𝑥, 𝑦 ∈ 𝑄. 

Definition 2.5:Let 𝑄, ∙ be a groupoid (quasigroup, loop) and 𝛼, 𝛽, and 𝛾 be three bijections that map 𝑄 onto 

𝑄. The triple 𝜎 = (𝛼, 𝛽, 𝛾) is called an antotopism of (𝑄,∙)if  and only if 𝛼𝑥 ∙ 𝛽𝑦 =  𝛾(𝑥 ∙ 𝑦) for all 𝑥, 𝑦 ∈ 𝑄. If 

𝛼 =  𝛽 =  𝛾, then 𝜎 is called the autotopism of (𝑄,∙), this triple form a group called the autotopism group of 
 𝑄, ∙ . 
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III. MAIN RESULTS 

Lemma 3.1:  Let (𝑄 ∘) be a quasigroup and the isostroph  𝑄, ∙  is a loop such that 𝑥 ⋅ 𝑦 = 𝛽 𝑦 ∘ 𝛼 𝑥 . If 𝛼 is 

antomorphism of (𝑄, ∙)  then the following equalities hold:  

(i) 𝑃𝑧
 ∘ =  𝛽−1𝑃𝑧

 ⋅ −1𝛼⎹ 𝑧 ∈ 𝑄  

(ii) 𝑃𝑀 𝑄 ∘ ⊳ 𝑃𝑀(𝑄, ∙). 

Proof: (i) Let 𝑥 ∙ 𝑦 = 𝛽 𝑦 ∘ 𝛼 𝑥 = 𝑧  for all 𝑥, 𝑦 ∈ 𝑄 and for any fixed element 𝑧 ∈ 𝑄.  

Consider 𝑥 ∙ 𝑦 = 𝑧 ⇒ 𝑥\ ⋅ 𝑧 = 𝑦 ⟹ 𝑃𝑧
 ⋅ 𝑥 = 𝑦                                                  (1) 

Consider   𝛽(𝑦) ∘ 𝛼(𝑥) = 𝑧 ⟹ 𝑧/(∘)𝛼 𝑥 = 𝛽(𝑦) ⟹ 𝛽 𝑦 =  𝑃𝑧
 ∘ −1𝛼 𝑥      (2) 

Using equalities  1  and (2) we have 𝑃𝑧
 ∘ −1𝛼 = 𝛽𝑃𝑧

 ⋅ ⟺ 𝑃𝑧
 ∘ −1 = 𝛽𝑃𝑧

 ⋅ 𝛼−1 ⟺ 𝑃𝑧
 ∘ = 𝛽−1𝑃𝑧

 ⋅ −1𝛼  (3) 

Here, setting 𝛼 = 𝛽,  3  become 𝑃𝑧
 ∘ = 𝛼−1𝑃𝑧

 ⋅ −1𝛼 ⟺ 𝛼−1𝑃𝑧
 ∘ −1𝛼 = 𝑃𝑧

 ⋅ 
     (4) 

(ii) There exist identity element 𝑒 ∈ 𝑄 such that𝑧 = 𝑒 ⋅ 𝑧 = 𝛽(𝑧) ∘ 𝛼(𝑒)  for any fixed element 𝑧 ∈ 𝑄. This 

follow the last equality 𝑅𝛼(𝑒)
(∘)

𝛽 𝑧 = 𝑧 ⟹ 𝛽 = 𝑅𝛼(𝑒)
 ∘ −1

. Hence, 𝛼 = 𝑅𝛼(𝑒)
 ∘ −1 ∈ (𝑄, ∘)  

Next, let 𝛼 be an automorphism of   𝑄, ∙ , then 𝛼(𝑥 ∙ 𝑦) = 𝛼(𝑥) ∙ 𝛼(𝑦) for all 𝑥, 𝑦 ∈ 𝑄.        

Let    𝛼 𝑥 ∙ 𝛼 𝑦 = 𝛼(𝑥 ∙ 𝑦) = 𝑧 for any fixed element 𝑧 ∈ 𝑄. 

 Consider this equality 𝛼(𝑥 ∙ 𝑦) = 𝑧 ⟹ 𝑥 ∙ 𝑦 = 𝛼−1(𝑧) ⟹ 𝑥\(∙)𝛼−1𝑧 = 𝑦 ⟹  𝑃
𝛼−1 𝑧 

 · 
𝑥 = 𝑦                (5) 

Also consider this equality𝛼 𝑥 ∙ 𝛼 𝑦 = 𝑧 ⟹     𝛼 𝑥 \𝑧 = 𝛼 𝑦 ⟹ 𝑃𝑧
 ∙ 𝛼 𝑥 = 𝛼 𝑦                  (6)                         

using  5   and  6 , we have    ⟹ 𝑃𝑧
 ∙ 𝛼 = 𝛼𝑃

𝛼−1 𝑧 

 · 
 ⟹ 𝑃𝑧

 ∙ = 𝛼𝑃
𝛼−1 𝑧 

 · 
𝛼−1 ⟺ 𝑃𝑧

 ∙ −1 = 𝛼−1𝑃
𝛼−1 𝑧 

 · −1
𝛼       (7)  

Now, for every fixed element 𝑧 ∈ 𝑄, using equalities(4) and  7 , we want to show that for every  𝑃𝑧
(∙)

∈
𝑃𝑀(𝑄, ∙) and every   

 𝑃𝑧
(∘)

∈ 𝑃𝑀(𝑄, ∘) we have 

𝑃𝑧
(∘)
𝑃𝑧

(∙)
𝑃𝑧
 ∘ −1 ∈ 𝑃𝑀 𝑄, ∙ :  that is𝑃𝑧

(∘)
𝑃𝑧

(∙)
𝑃𝑧
 ∘ −1 = 𝛼−1𝑃𝑧

 ⋅ −1𝛼𝑃𝑧
(∙)
𝛼𝑃𝑧

 ⋅ 𝛼−1 = 𝑃𝛼(𝑧)
 ∙ −1𝑃𝑧

(∙)
𝑃𝛼(𝑧)

(∙)
∈ 𝑃𝑀 𝑄, ∙ . 

 Also using (4) and (7), we want to show that for every 𝑃𝑧
(∙)

∈ 𝑃𝑀(𝑄, ∙) and every 𝑃𝑧
(∘)

∈ 𝑃𝑀(𝑄, ∘) we have 

𝑃𝑧
 ∘ −1𝑃𝑧

(∙)
𝑃𝑧
 ∘ ∈ 𝑃𝑀 𝑄, ∙  which gives 

𝑃𝑧
 ∘ −1𝑃𝑧

(∙)
𝑃𝑧
 ∘ = 𝛼𝑃𝑧

 ⋅ 𝛼−1𝑃𝑧
(∙)
𝛼−1𝑃𝑧

 ⋅ −1𝛼 = 𝑃𝛼(𝑧)
 ∙ 𝑃𝑧

(∙)
𝑃𝛼(𝑧)
 ∙ −1 ∈ 𝑃𝑀 𝑄, ∙ .  

Let also consider, 𝑃𝑧
 ∘ −1𝑃𝑧

 ∙ −1𝑃𝑧
 ∘ 

 that is 

𝑃𝑧
 ∘ −1𝑃𝑧

 ∙ −1𝑃𝑧
 ∘ 

= 𝑃𝑧
 ∘ 𝑃𝑧

 ∙ 𝑃𝑧
 ∘ −1 

−1
=  𝑃𝛼 𝑧 

 ∙ −1𝑃𝑧
 ∙ 𝑃𝛼 𝑧 

 ∙  
−1

∈ 𝑃𝑀 𝑄, ∙     

   and  

𝑃𝑧
 ∘ 𝑃𝑧

 ∙ −1𝑃𝑧
 ∘ −1 =  𝑃𝑧

 ∘ −1𝑃𝑧
 ∙ 𝑃𝑧

 ∘  
−1

=  𝑃𝛼 𝑧 
 ∙ 𝑃𝑧

 ∙ 𝑃𝛼 𝑧 
 ∙ −1 

−1
∈ 𝑃𝑀 𝑄, ∙ . Here, we have obtained that 

Φ𝑃 ∙ Φ−1, Φ−1𝑃 ∙ Φ, Φ𝑃 ∙ −1Φ−1, Φ−1𝑃 ∙ −1Φ ∈  𝑃𝑀(𝑄, ∙) for each  Φ ∈ 𝑃𝑀(𝑄, ∘). Hence,𝑃𝑀 𝑄 ∘ ⊳
𝑃𝑀(𝑄, ∙)∎ 

Corollary 3.2 Let (𝑄 ∘) be a quasigroup and (𝑄, ∙)  be a loop such that isostroph  𝑄, ∙  is given as 𝑥 ⋅ 𝑦 =
𝛽(𝑦) ∘ 𝛼(𝑥). where 𝛼, 𝛽 ∈ 𝑆𝑄 . If 𝛼 is antomorphism of (𝑄, ∙)  then𝑃𝑀 𝑄 ∘ = 𝑃𝑀(𝑄, ∙) 

Proof: using equality  3  in proposition  3.1 , 𝑃𝑧
 ∘ =  𝛽−1𝑃𝑧

 ⋅ −1𝛼⎹𝛼, 𝛽 ∈ 𝑆3 ∈ 𝑃𝑀(𝑄, ∙), for any fixed 

𝑧 ∈ 𝑄, this imply that 𝑃𝑀 𝑄 ∘ ⊇ 𝑃𝑀(𝑄, ∙) and using (4) 𝑃𝑧
 ∙ =  𝛼−1𝑃𝑧

 ∘ −1𝛼⎹𝛼, 𝛽 ∈ 𝑆𝑄 ∈ 𝑃𝑀(𝑄, ∘), this 

imply that 𝑃𝑀 𝑄 ∘ ⊆ 𝑃𝑀(𝑄, ∙). Hence 𝑃𝑀 𝑄 ∘ = 𝑃𝑀 𝑄, ∙ ∎ 

Proposition 3.3 Let  𝑄 ∘  be a quasigroup and  𝑄, ∙  be a loop such that isostroph  𝑄, ∙  is given as 𝑥 ∙ 𝑦 =
𝛼(𝑥)/𝛽(𝑦). where 𝛼, 𝛽 ∈ 𝑆𝑄 , If 𝛼 is antomorphism of (𝑄, ∙) then the following hold: 
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(i) 𝐿𝑧
 ∘ =  𝛽−1𝑃𝑧

 ⋅ −1𝛼⎹  𝑧 ∈ 𝑄   

(ii)  𝐿𝑀 𝑄 ∘ ⊳ 𝑃𝑀(𝑄, ∙) 

Proof: (i) Let 𝑥 ∙ 𝑦 = 𝛼(𝑥)/𝛽(𝑦) = 𝑧  for all 𝑥, 𝑦 ∈ 𝑄 and for any fixed element ∈ 𝑄 .    

Consider 𝑥 ∙ 𝑦 = 𝑧 ⇒ 𝑥\ ⋅ 𝑧 = 𝑦 ⟹      𝑃𝑧
 ⋅ 𝑥 = 𝑦                        (8) 

Consider the equality  𝛼(𝑥)/𝛽(𝑦) = 𝑧 ⟹ 𝛽 𝑦 = 𝑧\ ∘ 𝛼 𝑥 ⟹ 𝐿𝑧
 ∘ −1𝛼 𝑥 =     𝛽(𝑦)                 (9) 

Using equalities  8  and  9 , we have 

𝐿𝑧
 ∘ −1𝛼 𝑥 = 𝛽𝑃𝑧

 ⋅ 𝑥 ⟹ 𝐿𝑧
 ∘ −1𝛼 = 𝛽𝑃𝑧

 ⋅  ⟹  𝐿𝑧
 ∘ −1 = 𝛽𝑃𝑧

 ⋅ 𝛼−1 ⟺ 𝐿𝑧
 ∘ = 𝛽−1𝑃𝑧

 ⋅ −1𝛼  ⟺ 𝛽−1𝐿𝑧
 ∘ −1𝛼 = 𝑃𝑧

 ⋅ 
         

(10) 

(ii)  There exist identity element 𝑒 ∈ 𝑄 such that𝑧 = 𝑒 ⋅ 𝑧 = 𝛼(𝑒)/𝛽(𝑧)  for any fixed element 𝑧 ∈ 𝑄.  

This follow 𝑧 = 𝛼 𝑒 𝛽 𝑧  ⟹ 𝑃𝛼 𝑒 
 ∘ −1𝛽 𝑧 ⟹         𝛽 = 𝑃𝛼 𝑒 

 ∘  ∈ (𝑄, ∘)                 (11) 

  Here,  𝛼 = 𝛽 as we set e=1, that is 𝛽 = 𝑃𝛼 𝑒 
 ∘ 1 ⟹  𝛽 = 1\𝛼 1 ⟹ 𝛽 = 𝛼 1  . 

Using equality(11), then  10  become𝐿𝑧
 ∘ −1 = 𝑃𝛼 𝑒 

 ∘ 𝑃𝑧
 ⋅ 𝑃𝛼 𝑒 

 ∘ −1 ⟺ 𝐿𝑧
 ∘ =    𝑃𝛼 𝑒 

 ∘ −1𝑃𝑧
 ⋅ −1𝑃𝛼 𝑒 

 ∘ 
               (12) 

Next, let 𝛼 be an automorphism of   𝑄, ∙ , then𝛼 𝑥 ∙ 𝛼 𝑦 = 𝛼(𝑥 ∙ 𝑦) for all 𝑥, 𝑦 ∈ 𝑄.  

Let    𝛼 𝑥 ∙ 𝛼 𝑦 = 𝛼(𝑥 ∙ 𝑦) = 𝑧 for any fixed element 𝑧 ∈ 𝑄.     

Consider this equality 𝛼(𝑥 ∙ 𝑦) = 𝑧 ⟹ 𝑥 ∙ 𝑦 = 𝛼−1𝑧 ⟹ 𝑥\(∙)𝛼−1𝑧 = 𝑦 ⟹   𝑃
𝛼−1 𝑧 

 · 
𝑥 = 𝑦               (13) 

Also consider the equality𝛼 𝑥 ∙ 𝛼 𝑦 = 𝑧 ⟹  𝛼 𝑥 \𝑧 = 𝛼 𝑦 ⟹ 𝑃𝑧
 ∙ 𝛼 𝑥 = 𝛼 𝑦                 (14)  

using equalities 13  and (14), we have    

𝑃𝑧
 ∙ 𝛼 = 𝛼𝑃

𝛼−1 𝑧 

 · 
 ⟹ 𝑃𝑧

 ∙ = 𝛼𝑃
𝛼−1 𝑧 

 · 
𝛼−1 ⟺ 𝑃𝑧

 ∙ −1 = 𝛼−1𝑃
𝛼−1 𝑧 

 · −1
𝛼                       (15)   here, 

using (11), equality  15  become𝑃𝑧
 ∙ = 𝑃𝛼 𝑒 

 ∘ 𝑃
𝛼−1 𝑧 

 · 
𝑃𝛼 𝑒 
 ∘ −1 ⟺ 𝑃𝑧

 ∙ −1 = 𝑃𝛼 𝑒 
 ∘ −1𝑃

𝛼−1 𝑧 

 · −1
𝑃𝛼 𝑒 
 ∘ 

                 (16)                                                       

Now, for every fixed element 𝑧 ∈ 𝑄, using equalities(12) and  16 , we want to show that for every
 𝑃𝑧

(∙)

∈

𝑃𝑀(𝑄, ∙) and every    𝐿𝑧
(∘)

∈ 𝐿𝑀(𝑄, ∘) we have 𝐿𝑧
(∘)
𝑃𝑧

(∙)
𝐿𝑧
 ∘ −1 ∈ 𝑃𝑀 𝑄, ∙ , that is  

𝐿𝑧
(∘)
𝑃𝑧

(∙)
𝐿𝑧
 ∘ −1 = 𝑃𝛼 𝑒 

 ∘ −1𝑃𝑧
 ⋅ −1𝑃𝛼 𝑒 

 ∘ 𝑃𝑧
(∙)
𝑃𝛼 𝑒 
 ∘ 𝑃𝑧

 ⋅ 𝑃𝛼 𝑒 
 ∘ −1 = 𝑃𝛼(𝑧)

 ∙ −1𝑃(𝑧)
(∙)
𝑃𝛼(𝑧)

(∙)
∈ 𝑃𝑀(𝑄,∙), 

and  also using (12) and  16 , we want to show that for every   𝑃𝑧
(∙)

∈ 𝑃𝑀(𝑄, ∙) and every    𝐿𝑧
(∘)

∈ 𝐿𝑀(𝑄, ∘) 

we have𝐿𝑧
 ∘ −1𝑃𝑧

(∙)
𝐿𝑧
 ∘ ∈ 𝑃𝑀 𝑄, ∙ , that is        

 𝐿𝑧
 ∘ −1𝑃𝑧

(∙)
𝐿𝑧
 ∘ = 𝑃𝛼 𝑒 

 ∘ 𝑃𝑧
 ⋅ 𝑃𝛼 𝑒 

 ∘ −1𝑃𝑧
(∙)
𝑃𝛼 𝑒 
 ∘ −1𝑃𝑧

 ⋅ −1𝑃𝛼 𝑒 
 ∘ = 𝑃𝛼(𝑧)

 ∙ 𝑃(𝑧)
(∙)
𝑃𝛼(𝑧)
 ∙ −1 ∈ 𝑃𝑀(𝑄, ∙) 

Let also consider this 𝐿𝑧
 ∘ −1𝑃𝑧

 ∙ −1𝐿𝑧
 ∘ 

 : 

𝐿𝑧
 ∘ −1𝑃𝑧

 ∙ −1𝐿𝑧
 ∘ =  𝐿𝑧

 ∘ 𝑃𝑧
 ∙ 𝐿𝑧

 ∘ −1 
−1

=  𝑃𝛼(𝑧)
 ∙ −1𝑃(𝑧)

(∙)
𝑃𝛼(𝑧)

(∙)
 
−1

∈ 𝑃𝑀(𝑄, ∙)                  

and 

𝐿𝑧
 ∘ 𝑃𝑧

 ∙ −1𝐿𝑧
 ∘ −1 =  𝐿𝑧

 ∘ −1𝑃𝑧
 ∙ 𝐿𝑧

 ∘  
−1

=  𝑃𝛼(𝑧)
 ∙ 𝑃(𝑧)

(∙)
𝑃𝛼(𝑧)
 ∙ −1 

−1

∈ 𝑃𝑀(𝑄, ∙). We have obtained that 

Φ𝑃(∙)Φ−1, Φ−1𝑃(∙)Φ, Φ𝑃 ∙ −1Φ−1,   Φ−1𝑃 ∙ −1Φ,    ∈ 𝑃𝑀(𝑄, ∙) for each  Φ ∈  𝐿𝑀(𝑄, ∘). Hence, 𝐿𝑀 𝑄 ∘ ⊳
𝑃𝑀(𝑄, ∙)∎ 

Corollary 3.4: Let (𝑄 ∘) be a quasigroup and (𝑄, ∙)  be a loop such that isostroph  𝑄, ∙  is given as 𝑥 ∙ 𝑦 =
𝛼(𝑥)/𝛽(𝑦). where 𝛼, 𝛽 ∈ 𝑆𝑄 , If 𝛼 is antomorphism of(𝑄, ∙)  then 𝐿𝑀 𝑄 ∘ = 𝑃𝑀(𝑄, ∙) 
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Proof: using the equality  12  in proposition  3.3 , 𝐿𝑧
 ∘ = 𝑃𝛼 𝑒 

 ∘ −1𝑃𝑧
 ⋅ −1𝑃𝛼 𝑒 

 ∘ ∈ 𝐿𝑀 𝑄, ∘ , this imply that 

𝐿𝑀 𝑄 ∘ ⊆ 𝑃𝑀 𝑄, ∙   with  𝛽 = 𝑃𝛼 𝑒 
 ∘  ∈ (𝑄, ∘).   Also,  using equality (16) in proposition  3.3 , we have 

𝑃𝑧
 ⋅ = 𝑃𝛼 𝑒 

 ∘ 𝐿𝑧
 ∘ −1𝑃𝛼 𝑒 

 ∘ −1 ∈ 𝑃𝑀 𝑄, ∙ , hence  𝐿𝑀 𝑄 ∘ ⊇ 𝑃𝑀 𝑄, ∙  so, 𝐿𝑀 𝑄 ∘ = 𝑃𝑀 𝑄, ∙ ∎ 

Proposition 3.5. Let (𝑄 ∘) be a quasigroup and     (𝑄, ∙)  be a loop such that isostroph  𝑄, ∙  is given as 

𝑥 ∙ 𝑦 = 𝛽(𝑦)\𝛼(𝑥). where 𝛼, 𝛽 ∈ 𝑆𝑄 . If 𝛼 is antomorphism of(𝑄, ∙)  then the following hold:  

(i) 𝑅𝑧
 ∘ =  𝛽−1𝑃𝑧

 ⋅ −1𝛼⎹ 𝑧 ∈ 𝑄  

(ii) 𝑅𝑀 𝑄 ∘ ⊳ 𝑃𝑀(𝑄, ∙). 

 Proof: (1) Let 𝑥 ∙ 𝑦 = 𝛽(𝑦)\𝛼(𝑥) = 𝑧  for all 𝑥, 𝑦 ∈ 𝑄 and for any fixed element 𝑧 ∈ 𝑄.    

Consider 𝑥 ∙ 𝑦 = 𝑧 ⇒ 𝑥\ ⋅ 𝑧 = 𝑦 ⟹                              𝑃𝑧
 ⋅ 𝑥 = 𝑦                     17  

   Consider the equality  𝛽(𝑦)\𝛼(𝑥) = 𝑧 ⟹ 𝛽 𝑦 = 𝛼 𝑥 / ∘ 𝑧 ⟹ 𝑅𝑧
 ∘ −1𝛼 𝑥 =     𝛽(𝑦)               18  

Using equalities  17  and  18 , we have          

𝛽𝑃𝑧
 ⋅ (𝑥) = 𝑅𝑧

 ∘ −1𝛼 𝑥 ,this  

follow𝛽𝑃𝑧
 ⋅ = 𝑅𝑧

 ∘ −1𝛼 ⟹ 𝑃𝑧
 ⋅ = 𝛽−1𝑅𝑧

 ∘ −1𝛼 ⟹ 𝛽𝑃𝑧
 ⋅ 𝛼−1 = 𝑅𝑧

 ∘ −1 ⟹   𝑅𝑧
 ∘ = 𝛽−1𝑃𝑧

 ⋅ −1𝛼 ` (19)                                                                             

(ii) Since  𝑄, ∙  is loop, there exist an identity element 𝑒 ∈ 𝑄 such that 𝑧 = 𝑒 ⋅ 𝑧 = 𝛽 𝑧 \𝛼 𝑒  for any fixed 

element 𝑧 ∈ 𝑄. This follow form the last equality                            

 𝑧 = 𝛽 𝑧 \𝛼 𝑒 ⟹ 𝛼 𝑒 /∘𝑧 = 𝛽 𝑧 ⟹ 𝑃𝛼 𝑒 
 ∘ −1 𝑧 = 𝛽(𝑧) ⟹ 𝛽 = 𝑃𝛼 𝑒 

 ∘ −1  ∈ (𝑄 ∘)              (20)       

 Here,   𝛼 = 𝛽 if𝑒 = 1 as show above 

Next, let 𝛼 be an automorphism of   𝑄, ∙ , then 𝛼(𝑥 ∙ 𝑦) = 𝛼(𝑥) ∙ 𝛼(𝑦) for all 𝑥, 𝑦 ∈ 𝑄.    

Let    𝛼 𝑥 ∙ 𝛼 𝑦 = 𝛼(𝑥 ∙ 𝑦) = 𝑧 for any fixed element 𝑧 ∈ 𝑄.  

Consider 𝛼(𝑥 ∙ 𝑦) = 𝑧 ⟹ 𝑥 ∙ 𝑦 = 𝛼−1(𝑧) ⟹ 𝑥\(∙)𝛼−1(𝑧) = 𝑦 ⟹ 𝑃
𝛼−1 𝑧 

 · 
𝑥 = 𝑦               (21) 

Also consider  𝛼 𝑥 ∙ 𝛼 𝑦 = 𝑧 ⟹  𝛼 𝑥 \𝑧 = 𝛼 𝑦 ⟹ 𝑃𝑧
 ∙ 𝛼 𝑥  𝛼 𝑦                                                          (22) 

Here, using equalities  21  and (22), we have    ⟹ 𝑃𝑧
 ∙ 𝛼 = 𝛼𝑃

𝛼−1 𝑧 

 · 
 ⟹ 𝑃𝑧

 ∙ = 𝛼𝑃
𝛼−1 𝑧 

 · 
𝛼−1 ⟺ 

𝑃𝑧
 ∙ −1 = 𝛼−1𝑃

𝛼−1 𝑧 

 · −1
𝛼    = 𝑃𝛼 𝑒 

 ∘ 𝑃
𝛼−1 𝑧 

 · −1
𝑃𝛼 𝑒 
 ∘ −1  ⟺   𝑃𝑧

 ∙ = 𝑃𝛼 𝑒 
 ∘ −1𝑃

𝛼−1 𝑧 

 · 
𝑃𝛼 𝑒 
 ∘ 

                                                (23) 

Now, for every fixed element 𝑧 ∈ 𝑄. Using equalities(19) and  23 , we want to show that for every  𝑃𝑧
(∙)

∈

𝑃𝑀(𝑄, ∙) and every    𝑅𝑧
(∘)

∈ 𝑅𝑀(𝑄,∘) we have 

𝑅𝑧
(∘)
𝑃𝑧

(∙)
𝑅𝑧
 ∘ −1 ∈ 𝑃𝑀 𝑄, ∙ , that is  

𝑅𝑧
(∘)
𝑃𝑧

(∙)
𝑅𝑧
 ∘ −1 = 𝑃𝛼 𝑒 

 ∘ 𝑃𝑧
 ⋅ −1𝑃𝛼 𝑒 

 ∘ −1𝑃𝑧
(∙)
𝑃𝛼 𝑒 
 ∘ −1𝑃𝑧

 ⋅ 𝑃𝛼 𝑒 
 ∘ = 𝑃𝛼 𝑧 

 ∙ −1𝑃 𝑧 
(∙)
𝑃𝛼 𝑧 

(∙)
∈ 𝑃𝑀(𝑄, ∙) and using also(19) and 

 23 , we want to show that for every𝑃𝑧
(∙)

∈ 𝑃𝑀(𝑄, ∙) and every𝑅𝑧
(∘)

∈ 𝑅𝑀 𝑄, ∘ , we have 𝑅𝑧
 ∘ −1𝑃𝑧

(∙)
𝑅𝑧
 ∘ ∈

𝑃𝑀 𝑄, ∙ . That is  

𝑅𝑧
 ∘ −1𝑃𝑧

(∙)
𝑅𝑧
 ∘ = 𝑃𝛼 𝑒 

 ∘ −1𝑃𝑧
 ⋅ 𝑃𝛼 𝑒 

 ∘ 𝑃𝑧
(∙)
𝑃𝛼 𝑒 
 ∘ 𝑃𝑧

 ⋅ −1𝑃𝛼 𝑒 
 ∘ −1 = 𝑃𝛼 𝑧 

 ∙ 𝑃 𝑧 
(∙)
𝑃𝛼 𝑧 
 ∙ −1 ∈ 𝑃𝑀(𝑄, ∙) we also have the equality 

𝑅𝑧
 ∘ −1𝑃𝑧

 ∙ −1𝑅𝑧
 ∘ =  𝑅𝑧

 ∘ 𝑃𝑧
 ∙ 𝑅𝑧

 ∘ −1 
−1

=  𝑃𝛼(𝑧)
 ∙ −1𝑃(𝑧)

(∙)
𝑃𝛼(𝑧)

(∙)
 
−1

∈ 𝑃𝑀(𝑄, ∙) 

 and  

𝑅𝑧
(∘)
𝑃𝑧
 ∙ −1𝑅𝑧

 ∘ −1 =  𝑅𝑧
 ∘ −1𝑃𝑧

 ∙ 𝑅𝑧
 ∘  

−1
=  𝑃𝛼 𝑧 

 ∙ 𝑃 𝑧 
(∙)
𝑃𝛼 𝑧 
 ∙ −1 

−1

∈ 𝑃𝑀(𝑄, ∙).  

Here, we have obtained that Φ𝑃(∙)Φ−1, Φ−1𝑃(∙)Φ, Φ𝑃 ∙ −1Φ−1, Φ−1𝑃 ∙ −1Φ, ∈ 𝑃𝑀(𝑄, ∙) for each  Φ ∈  𝑅𝑀(𝑄,
∘), hence, we have proved that 𝑅𝑀 𝑄 ∘ ⊳ 𝑃𝑀(𝑄, ∙)∎ 
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Corollary 3.6: Let (𝑄 ∘) be a quasigroup and (𝑄, ∙)  be a loop such that isostroph  𝑄, ∙  is given as 𝑥 ∙ 𝑦 =
𝛽(𝑦)\𝛼(𝑥). where 𝛼, 𝛽 ∈ 𝑆𝑄. If 𝛼 is antomorphism of(𝑄, ∙) then𝑅𝑀 𝑄 ∘ = 𝑃𝑀(𝑄, ∙) 

Proof: using the equality  19  and  23 in proposition  5.5 , the proof is simple∎ 
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