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Abstract

This study presented a kind of characterization of multiplication group of a quasi group (Q, o) and of
a loop (@, -) that are isostrophic, that is some parastrophes of quasigroup (@Q, o) with loops (Q,"). In
particular, the middle multiplication groups of a quasi group (@, -) and of loops (Q, ) that are isostrophes
(Q, °) were studied. Relationship of middle multiplication groups of a quasi group (Q, -) to right(left)
multiplication group of a loop (Q, °) isostrophes were show to be coincided and their multiplication groups
were show to be normal subgroups, using the concept of middle translation
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I. INTRODUCTION

A non -empty set ‘Q’ with binary operation ‘A’ is called a groupoid (Q, A). Let (Q, A) be a
groupoid and a be fixed element in @ then the translation maps L, and R, is defined by xL, = a-x and
xR, =x-a for all a € Q. A groupoid (Q, A) is called quasigroup (Q, -) if the maps L(a): G — G and
R(a): G — G are bijections for all a € Q and iftheequationsax=band y - a = b have respectively unique
solutions x = a\b and y = b/a for all a, b €Q.The equationsax=band y - a = b have respectively unique
solutions x = a\b and y = b/a for all a, b €Q.

Aquasigroup (Q, -)iscalledaloopifal=a=  1a,forallainQ.The group generated by these mappings are
called multiplication groups Mlp (Q,-) . We donate these groups generated by left, right and middle
translations of a quasigroup (Q,") byLM(Q, -), RM(Q, -) and PM(Q, -) respectively [4].

Definition 1.2: A binary groupoid (4, Q) with a binary operation ‘A’ such that the equality A(xq,x;) = x3
knowledge of any two elements of x4, x5, x3 uniquely specifics the remaining one is called binary quasigroup

[4]
Il. PRELIMINARIES

Lemma 2.1: If a quasigroup (Q,") is a group isotope, ie. (Q,") ~ (@,+), where (Q,+)is a group, then any
parastrophe of this quasigroup also is a group isotope [5]

Lemma 2.2: Parastrophic image of a loop is a loop, either an unipotent right loop [4].

Let (Q, -) guasigroup. We donate the following translations

RM(Q) = (xR, [a€ Q= (x.a [x€Q)

LM(Q) =(xL, |[a€Q)= (a-x |[x€EQ)

PM(Q-) =(xP;s|la€eQ)= (x-s=a |x5s € Q)where L,, R, and P, are permutations of the set Q.

Definition 2.3: Isostrophy of a quasigroup is the operation of parastrophy of the quasigroup and its isotopic
image.

Definition 2.4: Quasigroups(Q, -) and (Q, =)are said to isotopic if there exist triple (a,B,y) such that
ax.fy =y(x+y) forallx,y € Q.

Definition 2.5:Let(Q, -)be a groupoid (quasigroup, loop) and «, 8, and y be three bijections that map Q onto
Q. The triple ¢ = (a, B8, y) is called an antotopism of (Q,")if and only if ax - By = y(x-y) forall x,y € Q. If
a = B = v, then g is called the autotopism of (Q,), this triple form a group called the autotopism group of

(Q’ .)'
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Il. MAIN RESULTS

Lemma 3.1: Let (Q o) be a quasigroup and the isostroph (Q, -) isaloop such that x - y = B(¥) o a(x). If a is
antomorphism of (Q, -) then the following equalities hold:

M) P7 =R a|z€Q)
(ii) PM(Q ) = PM(Q, *).
Proof: (i) Letx -y = B(y) o a(x) = z forall x,y € Q and for any fixed element z € Q.

Considerx-y=z=x\Oz=y = pOx =y 1
Consider B(y) e a(x) = z = z/Pa(x) = BO) = B() = P77 a(x) @
Using equalities (1) and (2) we have B 'q = BP0 = P! = ppPq~1 = p = p-1p071¢ ®)
Here, setting a = B, (3) become P = ¢ 1PO g & ¢ 1P g = O (4)

(i) There exist identity element e € Q such thatz = e -z = $(z) o a(e) for any fixed element z € Q. This
follow the last equality R?, f(2) = z = f = RS}, Hence, @ = R € (Q, ©)
Next, let a be an automorphism of (Q, -), then a(x-y) = a(x) - a(y) forall x,y € Q.

Let a(x)-a(y) = a(x-y) = z for any fixed element z € Q.

Consider thisequality a(x-y) =z=x-y=a 1(z2) 2 x\Oalz=y = Pos'zl(z)x =y (5)
Also consider this equalitya(x) - a(y) =z = a(x)\z = a(y) = P a(x) = a(y) (6)
using (5) and (6), we have = P = aP, o = PO =aP®, L e pO! = a—lpoﬁ'il‘(lz @ ()

Now, for every fixed element z € Q, using equalities(4) and (7), we want to show that for every PZ(') €
PM(Q, ) and every

P®) € PM(Q, o) we have

PZ(O)PZ(.)PZ(O)_l c PM(Q, ) that iSPZ(O)PZ(')PZ(C)_l — a—lpz(')_lapz(')apz(')a,—l — Pa(()z_lpz()P() € PM(Q, )

) a(z)
Also using (4) and (7), we want to show that for every PZ(') € PM(Q, -) and every PZ(°) € PM(Q, o) we have
PO ROP) € PM(Q, -) which gives

POTRORY = abPa 1 POa PO a = B, PORO € PM(Q, .

Let also consider, BP0 p™ that is

0)—1 ()—1 p(o ° . 0)-1y"1 )-1p( . -1
PZ( ) PZ() PZ( ):(PZ( )PZ()PZ( ) ) — (ng()z) PZ()PaE()z)) € PM(Q, )
and

31 (o) D=1 () ()1 Y (O n-11"1 .
PR ROT = (BOTRORY) = (PO BUPSSY) T € PM(Q, ). Here, we have obtained that

OoPOO™, @71 PO, PO 1™ @ 1PO-1d € PM(Q, ©) for each ® € PM(Q, o). Hence,PM(Q o) >
PM(Q, )m

Corollary 3.2 Let (Q ) be a quasigroup and (Q, -) be a loop such that isostroph (Q, -) is givenas x -y =
B () o a(x). where a, B € Sy. If a is antomorphism of (Q, -) thenPM(Q o) = PM(Q, )

Proof: using equality (3) in proposition (3.1),PZ(°) = (ﬁ‘lPZ(')_la lr, B € S3) € PM(Q, ), for any fixed
z € Q, this imply that PM(Q ) 2 PM(Q, -) and using (4) PO’ = (a 'R a |a, B € Sy) € PM(Q, o), this
imply that PM(Q o) € PM(Q, -). Hence PM(Q °) = PM(Q, )m

Proposition 3.3 Let (Q °) be a quasigroup and (Q, -) be a loop such that isostroph (Q, *) is givenas x -y =
a(x)/B(y). where a, B € Sy, If a is antomorphism of (Q, -) then the following hold:
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)L =B a|z€qQ )

(i) LM(Q °) = PM(Q, )

Proof: (i) Letx -y = a(x)/B(y) = z forall x,y € Q and for any fixed element € Q .
Considerx-y=z=x\Oz=y = BPOx=y (8)
Consider the equality a(x)/B(y) =z = B(y) = 2\Pa(x) = L a(x) = B() 9)
Using equalities (8) and (9), we have

1 a() =ppPx = 1 a =P = 197 =pPVa & 1Y =10 e = Y e = B0
(10)

(if) There exist identity element e € Q such thatz = e - z = a(e)/B(z) for any fixed element z € Q.
This follow z = a(e)/f(z) = Py (@) = B =Pl €(Q, ©) (11)

Here, a = 8 as we sete=1, thatis § = P;zl)l = f=1N\a(l) = p=a(l).

Using equality(11), then (10) becomeLy ™! = PO VPO < 19 = POSTROTRE) (12)
Next, let a be an automorphism of (Q, ), thena(x) - a(y) = a(x - y) forall x,y € Q.
Let a(x)-a(y) = a(x-y) = z forany fixed element z € Q.
Consider thisequality a(x-y) =z=x-y=a lz=x\Oa"lz=y = ng?l(z)x =y (13)
Also consider the equalitya(x) - a(y) =z = a(x)\z = a(y) = PZ(')a(x) =a(y) (14)
using equalities(13) and (14), we have
POa = aPDE'zl(Z) =pV = aPOE'zl(Z)a‘l o pOt = a_lPOE'zl_(lz)a (15)  here,
using (11), equality (15) becomep,” = PSP, Pt < pO71 = PITIPOTE P (16)

Q]

Now, for every fixed element z € Q, using equalities(12) and (16), we want to show that for everyP €

V4

PM(Q, )and every L) € LM(Q, o) we have LSV POLY™ € PM(Q, ), that is

@ pOy@-1 _ p)-15O-1pC) pOpl) pOpt)-1 _ pO-1pO)pO)
LB Ly =Py B Py Palofe "Paiey = Faiy FoyFacny € PM(Q)),
and also using (12) and (16), we want to show that for every PZ(') € PM(Q, -) and every L(Z°) € LM(Q, o)
we haveLl 7 PO L) € pM(Q, -), that is
©-1p070C) _ p pOpE)-1p0)p)-1pO)-1pC) _ pO) pOpO-1 .
Ly B Ly =Py ety B Paey B Pty = Fao Py Fuiy € PM(Q, )

Let also consider this LS~ pO~1L¢)

0)=1 n(-)=1, (o 0) () 5 (0)—=1 1 =1 () (- -1
LR = (0RO = (R RGRY) € PHca, 9
and

N—1 . (o)— o) — Y (o) 1 8 3 ()—1\"1 .
1RO = (197 p0LY) (P;()Z)P((ZﬁP;()Z)l) €PM(Q, ). We have  obtained that
oPOO™, PO, oPO 107!, & 1PO-1®, € PM(Q, -) for each ® € LM(Q, ). Hence, LM(Q o) >
PM(Q, )m

Corollary 3.4: Let (Q o) be a quasigroup and (@, -) be a loop such that isostroph (Q, -) is given as x -y =
a(x)/B(y). where a, § € Sy, If a is antomorphism of(Q, -) then LM(Q o) = PM(Q, *)
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Proof: using the equality (12) in proposition (3.3),L = Pé?e;lPZ(')_lPOEZ) € LM(Q, o), this imply that
LM(Q o) € PM(Q, -) with g = Pof?e) € (Q, ). Also, using equality (16) in proposition (3.3), we have

PO = P LIPS € PM(Q, ©), hence LM(Q ©) 2 PM(Q, ) s0, LM(Q ©) = PM(Q, -)m

Proposition 3.5. Let (Q ) be a quasigroup and (Q, ) be a loop such that isostroph (Q, -) is given as
xy = B)\a(x). where a, B € Sy. If a is antomorphism of(Q, -) then the following hold:

)RS = (g R a |z € Q)

(i) RM(Q o) = PM(Q, ).

Proof: (1) Letx -y = B(¥)\a(x) = z forall x,y € Q and for any fixed element z € Q.
Considerx-y=z=x\Uz=y = POx =y a”n

Consider the equality S(»)\a(x) =z = () = a(x)/¥z = RO a(x) = L) (18)
Using equalities (17) and (18), we have

BPY (x) = R a(x) this
followgp’ = RV a = PO = p 1RV ¢ = ppVa 1 = R = R =p-1pP g (19)

(ii) Since (Q, ) is loop, there exist an identity element e € Q such that z = e - z = B(z)\a(e) for any fixed
element z € Q. This follow form the last equality

z=p@\ale) = a(e)/’z=p(z) = P @) = f(z) = f =P €(Qo) (20)
Here, a = B ife = 1 as show above
Next, let a be an automorphism of (Q, -), then a(x-y) = a(x) - a(y) forall x,y € Q.

Let a(x)-a(y) = a(x-y) = z for any fixed element z € Q.
Considera(x-y)=z=x-y=a'(2) = x\Oal(2) =y = P;'zl(z)x =y 21
Also consider a(x) - a(y) =z = a(x)\z = a(y) = P a(x) a(y) (22)

= p0 = aPOE'El als

Here, using equalities (21) and (22), we have = P{a = aP"’, .

(@)

Pz(.)_l — a—lp(‘)_l a — P(°) P(‘)_l P(")_l =Y Pz() — P(Q)_lp() P(°)

e 1(2) () Pa 1y Pae) w(@) Par1ioPace) (23)

Now, for every fixed element z € Q. Using equalities(19) and (23), we want to show that for every PZ(') €
PM(Q, -) and every R € RM(Q,°) we have

ROPORD e pM(Q, ), that is

0) () (0)—1 o =1 10)=1 ) n(e)=1 () (o V=1 () (- .
ROBORI™ = O PO P ROP BOPS = POSIROPY € PM(Q, ) and using also(19) and
. o 0)—1 . o
(23), we want to show that for everyP” € PM(Q, -) and everyR’ € RM(Q, o), we have R 'R €
PM(Q, -). Thatis

o)—1 . o 0)—1 . o . ) J)—1 0)—1 A . -1 )
ROTBORY = PSR PY POPS) PO RS = PO POPOST € PM(Q, -) we also have the equality

o)=1 5 ()=1 1 (o ) () p(o)=13 1 =1, ) Y1
ROTBOTRY = (ROBORYT) T = (RO RORS,) e PM(@, )

and
) p()=1 p(o)=1 D=1 () pe)y L ) 5O pO-1\"1
ROPORET = (R OROY = (P00 € e, .

Here, we have obtained that ®PO®™, @~ 1PO®, oPO-10™!, @71 PO-1d, € PM(Q, -) for each ® € RM(Q,
o), hence, we have proved that RM(Q ) = PM(Q, )m
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Corollary 3.6: Let (Q ) be a quasigroup and (Q, -) be a loop such that isostroph (Q, -) isgivenas x -y =
B)\a(x). where a, B € S,. If a is antomorphism of (Q, -) thenRM(Q ©) = PM(Q, -)

Proof: using the equality (19) and (23)in proposition (5.5), the proof is simplem
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