On Relationship of Multiplication Groups and Isostrophic Quasigroups

Benard osoba ${ }^{\# 1}$, oyebo t. $\mathrm{Y}^{* 2}$
${ }^{1}$ Lecturer, Department of Physical science, Bells university of Technology, Ota. Nigeria. Senior Lecturer, Department of Mathematics, Lagos State University, Ojo. Nigeria

Abstract

This study presented a kind of characterization of multiplication group of a quasi group (\boldsymbol{Q}, \circ) and of a loop (\boldsymbol{Q}, \cdot) that are isostrophic, that is some parastrophes of quasigroup $(\boldsymbol{Q}, \circ$) with loops (\boldsymbol{Q}, \cdot). In particular, the middle multiplication groups of a quasi group (\mathbf{Q}, \cdot) and of loops (\boldsymbol{Q}, \circ) that are isostrophes (\boldsymbol{Q}, \circ) were studied. Relationship of middle multiplication groups of a quasi group (\boldsymbol{Q}, \cdot) to right (left) multiplication group of a loop (\mathbf{Q}, \circ) isostrophes were show to be coincided and their multiplication groups were show to be normal subgroups, using the concept of middle translation

Keywords- Quasi group, loop, Isostrophes, Multiplication groups, right (left, middle translation)

I. INTRODUCTION

A non -empty set ' \boldsymbol{Q} ' with binary operation ' \boldsymbol{A} ' is called a $\operatorname{groupoid}(\boldsymbol{Q}, \boldsymbol{A})$. Let $(\boldsymbol{Q}, \boldsymbol{A})$ be a groupoid and \boldsymbol{a} be fixed element in \boldsymbol{Q} then the translation maps $\boldsymbol{L}_{\boldsymbol{a}}$ and $\boldsymbol{R}_{\boldsymbol{a}}$ is defined by $\boldsymbol{x} \boldsymbol{L}_{\boldsymbol{a}}=\boldsymbol{a} \cdot \boldsymbol{x}$ and $\boldsymbol{x} \boldsymbol{R}_{\boldsymbol{a}}=\boldsymbol{x} \cdot \boldsymbol{a}$ for all $\boldsymbol{a} \in \boldsymbol{Q}$. A groupoid $(\boldsymbol{Q}, \boldsymbol{A})$ is called quasigroup (\boldsymbol{Q}, \cdot) if the maps $\boldsymbol{L}(\boldsymbol{a}): \boldsymbol{G} \rightarrow \boldsymbol{G}$ and $\boldsymbol{R}(\boldsymbol{a}): \boldsymbol{G} \rightarrow \boldsymbol{G}$ are bijections for all $\boldsymbol{a} \in \boldsymbol{Q}$ and iftheequations $a \cdot x=b$ and $y \cdot a=b$ have respectively unique solutions $x=a \backslash b$ and $y=b / a$ for all $a, b \in Q$.The equations $a x=b$ and $y \cdot a=b$ have respectively unique solutions $x=a \backslash b$ and $y=b / a$ for all $a, b \in Q$.

Aquasigroup (\boldsymbol{Q}, \cdot) iscalledaloopif $a \cdot 1=a=1 \cdot a$,forallain Q. The group generated by these mappings are called multiplication groups Mlp (Q, \cdot) . We donate these groups generated by left, right and middle translations of a quasigroup $(\boldsymbol{Q} \cdot \cdot) \operatorname{by} \boldsymbol{L} \boldsymbol{M}(\boldsymbol{Q}, \cdot), \boldsymbol{R M}(\boldsymbol{Q}, \cdot)$ and $\boldsymbol{P} \boldsymbol{M}(\boldsymbol{Q}, \cdot)$ respectively [4].

Definition 1.2: A binary groupoid $(\boldsymbol{A}, \boldsymbol{Q})$ with a binary operation ' \boldsymbol{A} ' such that the equality $\boldsymbol{A}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\boldsymbol{x}_{3}$ knowledge of any two elements of $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}$ uniquely specifics the remaining one is called binary quasigroup [4]

II. PRELIMINARIES

Lemma 2.1: If a quasigroup ($\boldsymbol{Q}, \cdot)$ is a group isotope, ie. $(\boldsymbol{Q}, \cdot) \sim(\boldsymbol{Q},+)$, where $(\boldsymbol{Q},+)$ is a group, then any parastrophe of this quasigroup also is a group isotope [5]

Lemma 2.2: Parastrophic image of a loop is a loop, either an unipotent right loop [4].
Let (\boldsymbol{Q}, \cdot) guasigroup. We donate the following translations
$R M(\mathrm{Q}, \cdot)=\left\langle x \mathrm{R}_{\mathrm{a}} \mid \mathrm{a} \in \mathrm{Q}\right\rangle=(x \cdot a \mid \mathrm{x} \in \mathrm{Q})$
$L M(\mathrm{Q}, \cdot)=\left\langle x \mathrm{~L}_{\mathrm{a}} \mid \mathrm{a} \in \mathrm{Q}\right\rangle=(a \cdot x \mid \mathrm{x} \in \mathrm{Q})$
$P M(\mathrm{Q}, \cdot)=\left\langle x \mathrm{P}_{\mathrm{a}} \mathrm{s} \mid \mathrm{a} \in \mathrm{Q}\right\rangle=(x \cdot s=a \mid \mathrm{x}, \mathrm{s} \in \mathrm{Q})$ where L_{a}, R_{a} and P_{a} are permutations of the set Q.
Definition 2.3: Isostrophy of a quasigroup is the operation of parastrophy of the quasigroup and its isotopic image.

Definition 2.4: Quasigroups (\boldsymbol{Q}, \cdot) and $(\boldsymbol{Q}, *)$ are said to isotopic if there exist triple (α, β, γ) such that $\alpha x . \beta y=\gamma(x * y)$ for all $x, y \in Q$.

Definition 2.5:Let (Q, \cdot) be a groupoid (quasigroup, loop) and α, β, and γ be three bijections that map Q onto Q. The triple $\sigma=(\alpha, \beta, \gamma)$ is called an antotopism of (Q, \cdot) if and only if $\alpha x \cdot \beta y=\gamma(x \cdot y)$ for all $x, y \in Q$. If $\alpha=\beta=\gamma$, then σ is called the autotopism of (Q, \cdot), this triple form a group called the autotopism group of (Q, \cdot).

III. MAIN RESULTS

Lemma 3.1: Let $(Q \circ)$ be a quasigroup and the isostroph (Q, \cdot) is a loop such that $x \cdot y=\beta(y) \circ \alpha(x)$. If α is antomorphism of (Q, \cdot) then the following equalities hold:
(i) $P_{z}^{(\circ)}=\left\langle\beta^{-1} P_{z}^{(\cdot)-1} \alpha \mid z \in Q\right\rangle$
(ii) $P M(Q \circ) \triangleright P M(Q, \cdot)$.

Proof: (i) Let $x \cdot y=\beta(y) \circ \alpha(x)=z$ for all $x, y \in Q$ and for any fixed element $z \in Q$.
Consider $x \cdot y=z \Rightarrow x \backslash^{(\cdot)} z=y \Rightarrow P_{z}^{(\cdot)} x=y$
Consider $\beta(y) \circ \alpha(x)=z \Rightarrow z /^{(\circ)} \alpha(x)=\beta(y) \Rightarrow \beta(y)=P_{z}^{(\circ)-1} \alpha(x)$
Using equalities (1) and (2) we have $P_{z}^{(\circ)-1} \alpha=\beta P_{z}^{(\cdot)} \Leftrightarrow P_{z}^{(\circ)-1}=\beta P_{z}^{(\cdot)} \alpha^{-1} \Leftrightarrow P_{z}^{(\circ)}=\beta^{-1} P_{z}^{(\cdot)-1} \alpha$
Here, setting $\alpha=\beta$, (3) become $P_{z}^{(\circ)}=\alpha^{-1} P_{z}^{(\cdot)-1} \alpha \Leftrightarrow \alpha^{-1} P_{z}^{(\circ)-1} \alpha=P_{z}^{(\cdot)}$
(ii) There exist identity element $e \in Q$ such thatz $=e \cdot z=\beta(z) \circ \alpha(e)$ for any fixed element $z \in Q$. This follow the last equality $R_{\alpha(e)}^{(\circ)} \beta(z)=z \Rightarrow \beta=R_{\alpha(e)}^{(\circ)-1}$. Hence, $\alpha=R_{\alpha(e)}^{(\circ)-1} \in(Q, \circ)$

Next, let α be an automorphism of (Q, \cdot), then $\alpha(x \cdot y)=\alpha(x) \cdot \alpha(y)$ for all $x, y \in Q$.
Let $\alpha(x) \cdot \alpha(y)=\alpha(x \cdot y)=z$ for any fixed element $z \in Q$.
Consider this equality $\alpha(x \cdot y)=z \Rightarrow x \cdot y=\alpha^{-1}(z) \Rightarrow x \backslash^{(\cdot)} \alpha^{-1} z=y \Rightarrow P_{\alpha^{-1}(z)}^{(\cdot)} x=y$
Also consider this equality $\alpha(x) \cdot \alpha(y)=z \Rightarrow \quad \alpha(x) \backslash z=\alpha(y) \Rightarrow P_{z}^{(\cdot)} \alpha(x)=\alpha(y)$
using (5) and (6), we have $\Rightarrow P_{z}^{(\cdot)} \alpha=\alpha P_{\alpha^{-1}(z)}^{(\cdot)} \Rightarrow P_{z}^{(\cdot)}=\alpha P_{\alpha^{-1}(z)}^{(\cdot)} \alpha^{-1} \Leftrightarrow P_{z}^{(\cdot)-1}=\alpha^{-1} P_{\alpha^{-1}(z)}^{(\cdot)-1} \alpha$
Now, for every fixed element $z \in Q$, using equalities(4) and (7), we want to show that for every $P_{z}^{(\cdot)} \in$ $P M(Q, \cdot)$ and every
$P_{z}^{(\circ)} \in P M(Q, \circ)$ we have
$P_{z}^{(\circ)} P_{z}^{(\cdot)} P_{z}^{(\circ)-1} \in P M(Q, \cdot):$ that is $P_{z}^{(\circ)} P_{z}^{(\cdot)} P_{z}^{(\circ)-1}=\alpha^{-1} P_{z}^{(\cdot)-1} \alpha P_{z}^{(\cdot)} \alpha P_{z}^{(\cdot)} \alpha^{-1}=P_{\alpha(z)}^{(\cdot)-1} P_{z}^{(\cdot)} P_{\alpha(z)}^{(\cdot)} \in P M(Q, \cdot)$.
Also using (4) and (7), we want to show that for every $P_{z}^{(\cdot)} \in P M(Q, \cdot)$ and every $P_{z}^{(\circ)} \in P M(Q$, o) we have $P_{z}^{(\circ)-1} P_{z}^{(\cdot)} P_{z}^{(\circ)} \in P M(Q, \cdot)$ which gives
$P_{z}^{(\cdot)-1} P_{z}^{(\cdot)} P_{z}^{(\cdot)}=\alpha P_{z}^{(\cdot)} \alpha^{-1} P_{z}^{(\cdot)} \alpha^{-1} P_{z}^{(\cdot)-1} \alpha=P_{\alpha(z)}^{(\cdot)} P_{z}^{(\cdot)} P_{\alpha(z)}^{(\cdot)-1} \in P M(Q, \cdot)$.
Let also consider, $P_{z}^{(\circ)-1} P_{Z}^{(\cdot)-1} P_{Z}^{(\circ)}$ that is
$P_{z}^{(\circ)-1} P_{z}^{(\cdot)-1} P_{z}^{(\circ)}=\left(P_{z}^{(\circ)} P_{z}^{(\cdot)} P_{z}^{(\circ)-1}\right)^{-1}=\left(P_{\alpha(z)}^{(\cdot)-1} P_{z}^{(\cdot)} P_{\alpha(z)}^{(\cdot)}\right)^{-1} \in P M(Q, \cdot)$
and
$P_{z}^{(\circ)} P_{z}^{(\cdot)-1} P_{z}^{(\circ)-1}=\left(P_{z}^{(\circ)-1} P_{z}^{(\cdot)} P_{z}^{(\circ)}\right)^{-1}=\left(P_{\alpha(z)}^{(\cdot)} P_{z}^{(\cdot)} P_{\alpha(z)}^{(\cdot)-1}\right)^{-1} \in P M(Q, \cdot)$. Here, we have obtained that $\Phi P^{(\cdot)} \Phi^{-1}, \Phi^{-1} P^{(\cdot)} \Phi, \Phi P^{(\cdot)-1} \Phi^{-1}, \Phi^{-1} P^{(\cdot)-1} \Phi \in P M(Q, \cdot)$ for each $\Phi \in P M(Q, \circ)$. Hence, $P M(Q \circ) \triangleright$ $P M(Q, \cdot)$

Corollary 3.2 Let $(Q \circ$) be a quasigroup and (Q, \cdot) be a loop such that isostroph (Q, \cdot) is given as $x \cdot y=$ $\beta(y) \circ \alpha(x)$. where $\alpha, \beta \in S_{Q}$. If α is antomorphism of (Q, \cdot) then $P M(Q \circ)=P M(Q, \cdot)$

Proof: using equality (3) in proposition (3.1), $P_{z}^{\left({ }^{\circ}\right)}=\left\langle\beta^{-1} P_{z}^{(\cdot)-1} \alpha \mid \alpha, \beta \in S_{3}\right\rangle \in P M(Q, \cdot)$, for any fixed $z \in Q$, this imply that $P M(Q \circ) \supseteq P M(Q, \cdot)$ and using (4) $P_{z}^{(\cdot)}=\left\langle\alpha^{-1} P_{z}^{(\circ)-1} \alpha \mid \alpha, \beta \in S_{Q}\right\rangle \in P M(Q$, ॰), this imply that $P M(Q \circ) \subseteq P M(Q, \cdot)$. Hence $P M(Q \circ)=P M(Q, \cdot)$

Proposition 3.3 Let $(Q \circ$) be a quasigroup and (Q, \cdot) be a loop such that isostroph (Q, \cdot) is given as $x \cdot y=$ $\alpha(x) / \beta(y)$. where $\alpha, \beta \in S_{Q}$, If α is antomorphism of (Q, \cdot) then the following hold:
(i) $L_{z}^{(\circ)}=\left\langle\beta^{-1} P_{z}^{(\cdot)-1} \alpha \mid z \in Q\right\rangle$
(ii) $L M(Q \circ) \triangleright P M(Q, \cdot)$

Proof: (i) Let $x \cdot y=\alpha(x) / \beta(y)=z$ for all $x, y \in Q$ and for any fixed element $\in Q$.
Consider $x \cdot y=z \Rightarrow x \backslash^{(\cdot)} z=y \Rightarrow \quad P_{z}^{(\cdot)} x=y$
Consider the equality $\alpha(x) / \beta(y)=z \Rightarrow \beta(y)=z \backslash^{(\circ)} \alpha(x) \Rightarrow L_{z}^{(\circ)-1} \alpha(x)=\beta(y)$
Using equalities (8) and (9), we have
$L_{z}^{(\circ)-1} \alpha(x)=\beta P_{z}^{(\cdot)} x \Rightarrow L_{z}^{(\circ)-1} \alpha=\beta P_{z}^{(\cdot)} \Rightarrow L_{z}^{(\circ)-1}=\beta P_{z}^{(\cdot)} \alpha^{-1} \Leftrightarrow L_{z}^{(\circ)}=\beta^{-1} P_{z}^{(\cdot)-1} \alpha \Leftrightarrow \beta^{-1} L_{z}^{(\circ)-1} \alpha=P_{z}^{(\cdot)}$
(10)
(ii) There exist identity element $e \in Q$ such that $z=e \cdot z=\alpha(e) / \beta(z)$ for any fixed element $z \in Q$.

This follow $z=\alpha(e) / \beta(z) \Rightarrow P_{\alpha(e)}^{(\circ)-1} \beta(z) \Rightarrow \quad \beta=P_{\alpha(e)}^{(\circ)} \in(Q, \circ)$
Here, $\alpha=\beta$ as we set $\mathrm{e}=1$, that is $\beta=P_{\alpha(e)}^{(\circ)} 1 \Rightarrow \beta=1 \backslash \alpha(1) \Rightarrow \beta=\alpha(1)$.
Using equality(11), then (10) become $L_{z}^{(\circ)-1}=P_{\alpha(e)}^{(\circ)} P_{z}^{(\cdot)} P_{\alpha(e)}^{(\circ)-1} \Leftrightarrow L_{z}^{(\circ)}=P_{\alpha(e)}^{(\circ)-1} P_{z}^{(\cdot)-1} P_{\alpha(e)}^{(\circ)}$
Next, let α be an automorphism of (Q, \cdot), then $\alpha(x) \cdot \alpha(y)=\alpha(x \cdot y)$ for all $x, y \in Q$.
Let $\quad \alpha(x) \cdot \alpha(y)=\alpha(x \cdot y)=z$ for any fixed element $z \in Q$.
Consider this equality $\alpha(x \cdot y)=z \Rightarrow x \cdot y=\alpha^{-1} z \Rightarrow x \backslash^{(\cdot)} \alpha^{-1} z=y \Rightarrow P_{\alpha^{-1}(z)}^{(\cdot)} x=y$
Also consider the equality $\alpha(x) \cdot \alpha(y)=z \Rightarrow \alpha(x) \backslash z=\alpha(y) \Rightarrow P_{z}^{(\cdot)} \alpha(x)=\alpha(y)$
using equalities(13) and (14), we have
$P_{z}^{(\cdot)} \alpha=\alpha P_{\alpha^{-1}(z)}^{(\cdot)} \Rightarrow P_{z}^{(\cdot)}=\alpha P_{\alpha^{-1}(z)}^{(\cdot)} \alpha^{-1} \Leftrightarrow P_{z}^{(\cdot)-1}=\alpha^{-1} P_{\alpha^{-1}(z)}^{(\cdot)-1} \alpha$
using (11), equality (15) become $P_{z}^{(\cdot)}=P_{\alpha(e)}^{(\circ)} P_{\alpha^{-1}(z)}^{(\cdot)} P_{\alpha(e)}^{(\rho)-1} \Leftrightarrow P_{z}^{(\cdot)-1}=P_{\alpha(e)}^{(\rho)-1} P_{\alpha^{-1}(z)}^{(\cdot)-1} P_{\alpha(e)}^{(\circ)}$
Now, for every fixed element $z \in Q$, using equalities(12) and (16), we want to show that for every ${ }_{P_{z}} \in$ $P M(Q, \cdot)$ and every $L_{z}^{(\circ)} \in L M(Q, \circ)$ we have $L_{z}^{(\circ)} P_{z}^{(\cdot)} L_{z}^{(\circ)-1} \in P M(Q, \cdot)$, that is
$L_{z}^{(\circ)} P_{z}^{(\cdot)} L_{z}^{(\rho)-1}=P_{\alpha(e)}^{(\rho)-1} P_{z}^{(\cdot)-1} P_{\alpha(e)}^{(\circ)} P_{z}^{(\cdot)} P_{\alpha(e)}^{(\rho)} P_{z}^{(\cdot)} P_{\alpha(e)}^{(\rho)-1}=P_{\alpha(z)}^{(\cdot)-1} P_{(z)}^{(\cdot)} P_{\alpha(z)}^{(\cdot)} \in P M(Q, \cdot)$,
and also using (12) and (16), we want to show that for every $P_{z}^{(\cdot)} \in P M(Q, \cdot)$ and every $L_{z}^{(\circ)} \in L M(Q, \circ)$ we have $L_{z}^{(\cdot)-1} P_{z}^{(\cdot)} L_{z}^{(\cdot)} \in P M(Q, \cdot)$, that is

$$
L_{z}^{(\circ)-1} P_{z}^{(\cdot)} L_{z}^{(\circ)}=P_{\alpha(e)}^{(\circ)} P_{z}^{(\cdot)} P_{\alpha(e)}^{(\circ)-1} P_{z}^{(\cdot)} P_{\alpha(e)}^{(\circ)-1} P_{z}^{(\cdot)-1} P_{\alpha(e)}^{(\circ)}=P_{\alpha(z)}^{(\cdot)} P_{(z)}^{(\cdot)} P_{\alpha(z)}^{(\cdot)-1} \in P M(Q, \cdot)
$$

Let also consider this $L_{z}^{(\circ)-1} P_{z}^{(\cdot)-1} L_{z}^{(\circ)}$:
$L_{z}^{(\circ)-1} P_{z}^{(\cdot)-1} L_{z}^{(\circ)}=\left(L_{z}^{(\circ)} P_{z}^{(\cdot)} L_{z}^{(\circ)-1}\right)^{-1}=\left(P_{\alpha(z)}^{(\cdot)-1} P_{(z)}^{(\cdot)} P_{\alpha(z)}^{(\cdot)}\right)^{-1} \in P M(Q, \cdot)$
and
$L_{z}^{(\circ)} P_{z}^{(\cdot)-1} L_{z}^{(\circ)-1}=\left(L_{z}^{(\circ)-1} P_{z}^{(\cdot)} L_{z}^{(\circ)}\right)^{-1}=\left(P_{\alpha(z)}^{(\cdot)} P_{(z)}^{(\cdot)} P_{\alpha(z)}^{(\cdot)-1}\right)^{-1} \in P M(Q, \cdot)$. We have obtained that $\Phi P^{(\cdot)} \Phi^{-1}, \Phi^{-1} P^{(\cdot)} \Phi, \Phi P^{(\cdot)-1} \Phi^{-1}, \Phi^{-1} P^{(\cdot)-1} \Phi, \quad \in P M(Q, \cdot)$ for each $\Phi \in L M(Q, \circ)$. Hence, $L M(Q \circ) \triangleright$ $P M(Q, \cdot)$

Corollary 3.4: Let $(Q \circ$) be a quasigroup and (Q, \cdot) be a loop such that isostroph (Q, \cdot) is given as $x \cdot y=$ $\alpha(x) / \beta(y)$. where $\alpha, \beta \in S_{Q}$, If α is antomorphism of (Q, \cdot) then $\operatorname{LM}(Q \circ)=P M(Q, \cdot)$

Proof: using the equality (12) in proposition (3.3), $L_{z}^{(\circ)}=P_{\alpha(e)}^{(\circ)-1} P_{z}^{(\cdot)-1} P_{\alpha(e)}^{(\circ)} \in L M(Q$, o), this imply that $L M(Q \circ) \subseteq P M(Q, \cdot)$ with $\beta=P_{\alpha(e)}^{(\circ)} \in(Q, \circ)$. Also, using equality (16) in proposition (3.3), we have $P_{z}^{(\cdot)}=P_{\alpha(e)}^{(\circ)} L_{z}^{(\circ)-1} P_{\alpha(e)}^{(\circ)-1} \in P M(Q, \cdot)$, hence $L M(Q \circ) \supseteq P M(Q, \cdot)$ so, $L M(Q \circ)=P M(Q, \cdot)$

Proposition 3.5. Let $(Q \circ)$ be a quasigroup and (Q, \cdot) be a loop such that isostroph (Q, \cdot) is given as $x \cdot y=\beta(y) \backslash \alpha(x)$. where $\alpha, \beta \in S_{Q}$. If α is antomorphism of (Q, \cdot) then the following hold:
(i) $R_{z}^{(\circ)}=\left\langle\beta^{-1} P_{z}^{(\cdot)-1} \alpha \mid z \in Q\right\rangle$
(ii) $R M(Q \circ) \triangleright P M(Q, \cdot)$.

Proof: (1) Let $x \cdot y=\beta(y) \backslash \alpha(x)=z$ for all $x, y \in Q$ and for any fixed element $z \in Q$.
Consider $x \cdot y=z \Rightarrow x \backslash^{(\cdot)} z=y \Rightarrow \quad P_{z}^{(\cdot)} x=y$
Consider the equality $\beta(y) \backslash \alpha(x)=z \Rightarrow \beta(y)=\alpha(x) /{ }^{(\circ)} z \Rightarrow R_{z}^{(\circ)-1} \alpha(x)=\beta(y)$
Using equalities (17) and (18), we have
$\beta P_{z}^{(\cdot)}(x)=R_{z}^{(\circ)-1} \alpha(x)$,this
follow $\beta P_{z}^{(\cdot)}=R_{z}^{(\circ)-1} \alpha \Rightarrow P_{z}^{(\cdot)}=\beta^{-1} R_{z}^{(\circ)-1} \alpha \Rightarrow \beta P_{z}^{(\cdot)} \alpha^{-1}=R_{z}^{(\circ)-1} \Rightarrow R_{z}^{(\circ)}=\beta^{-1} P_{z}^{(\cdot)-1} \alpha$
(ii) Since (Q, \cdot) is loop, there exist an identity element $e \in Q$ such that $z=e \cdot z=\beta(z) \backslash \alpha(e)$ for any fixed element $z \in Q$. This follow form the last equality

$$
\begin{equation*}
z=\beta(z) \backslash \alpha(e) \Rightarrow \alpha(e) /{ }^{\circ} z=\beta(z) \Rightarrow P_{\alpha(e)}^{(o)-1}(z)=\beta(z) \Rightarrow \beta=P_{\alpha(e)}^{(\circ)-1} \in(Q \circ) \tag{20}
\end{equation*}
$$

Here, $\alpha=\beta$ ife $=1$ as show above
Next, let α be an automorphism of (Q, \cdot), then $\alpha(x \cdot y)=\alpha(x) \cdot \alpha(y)$ for all $x, y \in Q$.
Let $\alpha(x) \cdot \alpha(y)=\alpha(x \cdot y)=z$ for any fixed element $z \in Q$.
Consider $\alpha(x \cdot y)=z \Rightarrow x \cdot y=\alpha^{-1}(z) \Rightarrow x \backslash^{(\cdot)} \alpha^{-1}(z)=y \Rightarrow P_{\alpha^{-1}(z)}^{(\cdot)} x=y$
Also consider $\alpha(x) \cdot \alpha(y)=z \Rightarrow \alpha(x) \backslash z=\alpha(y) \Rightarrow P_{z}^{(\cdot)} \alpha(x) \alpha(y)$
Here, using equalities (21) and (22), we have $\Rightarrow P_{z}^{(\cdot)} \alpha=\alpha P_{\alpha^{-1}(z)}^{(\cdot)} \Rightarrow P_{z}^{(\cdot)}=\alpha P_{\alpha^{-1}(z)}^{(\cdot)} \alpha^{-1} \Leftrightarrow$
$P_{z}^{(\cdot)-1}=\alpha^{-1} P_{\alpha^{-1}(z)}^{(\cdot)-1} \alpha \quad=P_{\alpha(e)}^{(\circ)} P_{\alpha^{-1}(z)}^{(\cdot)-1} P_{\alpha(e)}^{(\circ)-1} \Leftrightarrow \quad P_{z}^{(\cdot)}=P_{\alpha(e)}^{(\circ)-1} P_{\alpha^{-1}(z)}^{(\cdot)} P_{\alpha(e)}^{(\circ)}$
Now, for every fixed element $z \in Q$. Using equalities(19) and (23), we want to show that for every $P_{z}^{(\cdot)} \in$ $P M(Q, \cdot)$ and every $R_{z}^{(\circ)} \in R M(Q, \circ)$ we have
$R_{z}^{(\circ)} P_{Z}^{(\cdot)} R_{Z}^{(\circ)-1} \in P M(Q, \cdot)$, that is
$R_{z}^{(\circ)} P_{z}^{(\cdot)} R_{z}^{(\circ)-1}=P_{\alpha(e)}^{(\circ)} P_{z}^{(\cdot)-1} P_{\alpha(e)}^{(\circ)-1} P_{z}^{(\cdot)} P_{\alpha(e)}^{(\circ)-1} P_{Z}^{(\cdot)} P_{\alpha(e)}^{(\circ)}=P_{\alpha(z)}^{(\cdot)-1} P_{(z)}^{(\cdot)} P_{\alpha(z)}^{(\cdot)} \in P M(Q, \cdot)$ and using also(19) and (23), we want to show that for every $P_{z}^{(\cdot)} \in P M(Q, \cdot)$ and every $R_{z}^{(\circ)} \in R M\left(Q\right.$, \circ, we have $R_{z}^{(\circ)-1} P_{z}^{(\cdot)} R_{z}^{(\circ)} \in$ $P M(Q, \cdot)$. That is
$R_{z}^{(\circ)-1} P_{z}^{(\cdot)} R_{z}^{(\circ)}=P_{\alpha(e)}^{(\circ)-1} P_{z}^{(\cdot)} P_{\alpha(e)}^{(\circ)} P_{z}^{(\cdot)} P_{\alpha(e)}^{(\circ)} P_{z}^{(\cdot)-1} P_{\alpha(e)}^{(\circ)-1}=P_{\alpha(z)}^{(\cdot)} P_{(z)}^{(\cdot)} P_{\alpha(z)}^{(\cdot)-1} \in P M(Q, \cdot)$ we also have the equality $R_{z}^{(\circ)-1} P_{z}^{(\cdot)-1} R_{z}^{(\circ)}=\left(R_{z}^{(\circ)} P_{z}^{(\cdot)} R_{z}^{(\circ)-1}\right)^{-1}=\left(P_{\alpha(z)}^{(\cdot)-1} P_{(z)}^{(\cdot)} P_{\alpha(z)}^{(\cdot)}\right)^{-1} \in P M(Q, \cdot)$
and
$R_{z}^{(\circ)} P_{z}^{(\cdot)-1} R_{z}^{(\circ)-1}=\left(R_{z}^{(\circ)-1} P_{z}^{(\cdot)} R_{z}^{(\circ)}\right)^{-1}=\left(P_{\alpha(z)}^{(\cdot)} P_{(z)}^{(\cdot)} P_{\alpha(z)}^{(\cdot)-1}\right)^{-1} \in P M(Q, \cdot)$.
Here, we have obtained that $\Phi P^{(\cdot)} \Phi^{-1}, \Phi^{-1} P^{(\cdot)} \Phi, \Phi P^{(\cdot)-1} \Phi^{-1}, \Phi^{-1} P^{(\cdot)-1} \Phi, \in P M(Q, \cdot)$ for each $\Phi \in R M(Q$, \circ), hence, we have proved that $R M(Q \circ) \triangleright P M(Q, \cdot)$

Corollary 3.6: Let $(Q \circ)$ be a quasigroup and (Q, \cdot) be a loop such that isostroph (Q, \cdot) is given as $x \cdot y=$ $\beta(y) \backslash \alpha(x)$. where $\alpha, \beta \in S_{Q}$. If α is antomorphism of (Q, \cdot) then $R M(Q \circ)=P M(Q, \cdot)$

Proof: using the equality (19) and (23)in proposition (5.5), the proof is simple

REFERENCES

[1] I. Grecu, (2014), On multiplication groups of isostrophic Quasigroup, Revista Stiintifica a UniversitatiideStatainMoldova, nr. 7(77)
[2] H. O. Pflugfelder,(1990)Quasigroupsandloops:Introduction.,SigmaSeriesinPureMath.7Heldermann Verlag,Berlin
[3] P. Syrbu, and I. Grecu, (2013), On some groups related to middle Bol loops, Revist? a Stiintica a UniversitatiideStatdinMoldova,7(67),1018.
[4] V. A. Shcherbacov, (2011), A-nuclei and A-centers of quasigroup, Institute of mathematics and computer Science Academiy of Science of Moldova Academiei str. 5, Chisinau, MD -2028, Moldova.
[5] F. N. Sokhatskii. On isotopes of groups, I Ukrain. Mat. Zh., 49(10): 1387-1398, 1995. (in Ukrainian)
[6] R. H .Bruck, A Survey of Binary Systems, 1958, Springer-Verlag, Berlin-G"ottinge-Heidelberg.
[7] R. Capodaglio Di Cocco, On the Isotopism and the Pseudo-Automorphisms of the Loops, Bollettino U.M.I. 7(1993), 199-205.

