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Abstract
The purpose of this paper is to initiate and study some of the different types of connected spaces in

neutrosophic vague topological space such as neutrosophic vague C. -connected space, neutrosophic vague

generalized connected space and neutrosophic vague generalized pre connected space. Spaces such as
neutrosophic vague generalized pre super connected space and neutrosophic vague generalized pre extremally
disconnected space are also introduced. We also obtain several properties and characterizations concerning
connectedness in these spaces.

Keywords: NV C, -connected space, NVG-connected space and NVGP-connected space, NVGP super
connected space and NVGP extremally disconnected space.

I. INTRODUCTION

The fuzzy concept has invaded almost all branches of mathematics, this fuzzy sets was introduced by
Zadeh[9] in 1965. The concept of fuzzy topology was introduced by C.L.Chang[2] in 1967. In 1970, Levine [4]
initiated the study of generalized closed sets. Atanassov[1] in 1986 introduced another type of fuzzy sets that is
called intuitionistic fuzzy set (IFS) which is more practical in real life situations. Gau and Buehrer[3] in 1993
defined the vague sets as an extension of fuzzy sets. Then Smarandache[8] in1995 introduced the neutrosophic
sets. Each element of a neutrosophic set has three membership degrees including a truth membership degree, an
indeterminacy membership degree, and a falsity membership degree which are within the real standard or non
standard unit interval ]-0, 14[. As a combination of neutrosophic set and vague set Shawkat Alkhazaleh[7] in

2015 initiated the concept of neutrosophic vague set. In this paper neutrosophic vague C -connected space,

neutrosophic vague generalized connected space and neutrosophic vague generalized pre connected space,
neutrosophic vague generalized pre super connected space and neutrosophic vague generalized pre extremally
disconnected space are introduced and their properties and characterizations are studied.

Il. PRELIMINARIES

Definition 2.1:[7] A neutrosophic vague set A, (NVS in short) on the universe of discourse X written as

Ay = {<X;fANV (X); fANV (X); IfANv (X)> ;Xe X } whose truth membership, indeterminacy membership and
false membership functions is defined as:
To =T b0, (=[] B =[P

where,

1) T'=1-F

2) F"=1-T and

3) 0T +I"+F <2".
Definition 2.2:[7] Let A, and By, be two NVSs of the universe U . If YU, €U, fAW (ui)S'fBW (ui);

IAANV ()= rBw (u); IfANV (u)= IfBNV (u,) then the NVS A, is included by B,,, denoted by

A, < By, where 1<i<n.

Definition 2.3:[7] The complement of NVS A, is denoted by A,ZV and is defined by
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Te ()=p-T71-T |0 ()=f-171-1"],Fs (x)=fp-F 1-F]
Definition 2.4:[7] Let A, be NVS of the universe U where VU, eU 'fANv (x)=[L1] fANV (x)=[0,0];
lfANv (x)=[0,0]. Then A, is called unit NVS(1,,, in short), where 1<i<n.
Definition 2.5:[7] Let A, be NVS of the universe U where VU, €U fANv (x)=[0,0]; IAANV (x)=[L1];
IfANV (X): [1, 1]. Then A, is called zero NVS(0,,, in short), where 1<i<n.

Definition 2.6:[7] The union of two NVSs A, and By, is NVS C,, , written as Cy,, = A, U B,y .
whose truth-membership, indeterminacy-membership and false-membership functions are related to those of
A,y and By, givenby,

A

T (x :[max( s ’TB_vi)max( v, ' VB )J
R el
F. (x :[min(FA‘WX,FB‘NVX)min(FAfWX1FB+NVX )J

Definition 2.7:[7] The intersection of two NVSs A, and B, isNVS C,,, , writtenas Cy,, = Ay, N Byy .
whose truth-membership, indeterminacy-membership and false-membership functions are related to those of

A,y and By, given by,

A

TCW :[min(‘l',;W TB’NV )min( ,jWX,TB+ )J

[max(l L )max(l+ X,Igw )J

[max Faw, ' Fou, ) max(F,jvi , FB*vi )J
Definition 2.8:[7] Let ANV and B,, be two NVSs of the universe U. If Vu, eU,
'fANV (Ui):fs,w (ui); IAANV (ui): fBNV (ui); IfANV (ui): IfBNV (ui), then the NVS A, and By, , are called
equal, where 1<i<n.
Definition 2.9:[5] A neutrosophic vague topology (NVT in short) on X is a family 7 of neutrosophic vague

sets (NVS in short) in X satisfying the following axioms:
o Oy lwer

e G NG,er forany G,G, er

¢ UG er,V{Giellcr
In this case the pair (X,T) is called a neutrosophic vague topological space (NVTS in short) and any NVS in
T is known as a neutrosophic vague open set (NVOS in short) in X . The complement A° of NVOS in a
NVTS (X . z‘) is called neutrosophic vague closed set (NVCS in short) in X .
Definition 2.10:[5] ANVS A= {<x, [fA, e lfA]>} in NVTS (X, 7) is said to be

i)  Neutrosophic Vague pre- closed set (NVPCS in short) if NVcl (NV int(A))g A
i) Neutrosophic VVague pre-open set (NVPOS in short) if Ac NV int(NVCI (A ),

Definition 2.11:[5] Let A be NVS of a NVTS (X,T). Then the neutrosophic vague pre interior of A
(NVp int(A) in short) and neutrosophic vague pre closure of A ( NVpcl (A)in short) are defined by

« NVpint(A)=U{G/GisaNVPOS in X and G c A},

« NVpcl(A)=n{K/KisaNVPCS in X and Ac K}.
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Definition 2.12:[5] A NVS Aof a NVTS (X,r) is said to be neutrosophic vague generalized closed set

(NVGCS in short) if NVCl(A)c U whenever AcU and U is NVOS in X .
Definition 2.13:[5] A NVS A is said to be neutrosophic vague generalized pre-closed set (NVGPCS in short)
in(X,7) if NVpcl(A)cU whenever AcU and U is NVOS in X .

Definition 2.14:[6] Let (X : r) be a NVTS. The neutrosophic vague generalized pre closure ( NVgpcl (A) in

short) for any NVS A is defined as follows,
« NvVgocl(A)= ~{K/KisaNVGPCSin X and Ac K},

« Nvgpint(A)=U{G/Gisa NVGPOSin X and G c A}.

Definition 2.15:[5] A NVTS (X ) T) is said to be neutrosophic vague ng1/2 space (NVngl,2 in short) if every
NVGPCSin X isNVCSin X .

Definition 2.16:[6] A map f :(X , r)—) (Y,O') is said to be neutrosophic vague generalized pre-continuous
(NVGP continuous in short) mapping if f ’l(A) is NVGPCS in (X , z’) for every NVGPCS A of (Y ) 0').
Definition 2.17:[6] A map f :(X,r)—)(Y,O') is said to be neutrosophic vague generalized pre irresolute
(NVGP irresolute in short) mapping if f _l(A) is NVGPCS in (X ) 2') for every NVGPCS Ain (Y ) O').

111. NEUTROSOPHIC VAGUE GENERALIZED PRE-CONNECTED SPACES

Definition 3.1: A NVTS (X , r) is said to be neutrosophic vague C,-connected (NV C; -connected for short)
space if the only NVSs which are both neutrosophic vague open and neutrosophic vague closed are O, and
1.

Definition 3.2: A NVTS (X ) r) is said to be neutrosophic vague generalized connected (NVG-connected for

short) space if the only NVSs which are both neutrosophic vague generalized open and neutrosophic vague
generalized closed are Oy, and 1, .

Definition 3.3: A NVTS (X , T) is said to be neutrosophic vague generalized pre-connected (NVGP-connected
for short) space if the only NVSs which are both neutrosophic vague generalized pre-open and neutrosophic
vague generalized pre-closed are 0,,, and 1, .

Example 3.4: Let X={a,b,c} and let 7=10,,,G,,G,,1,,} be NVT on X, where

a b C
6= {X’ ([0.4,0.7];[0.4,0.5];[0.3,0.6])) " ([0.6,0.8];[0.2,0.5];[0.2,0.4]) ' ([0.5,0.7];[0.2,0.6]; [o.3,0.5]>}

a b C
G, = {X’ ([0.2,0.5];[0.6,0.8];[0.5,0.8]) " ([0.1,0.4];[0.7,0.9];[0.6,0.9]) " ([0,0.2];[0.7,0.9]; [0.8,1]}}'
Then (X , z') is NVGP-connected space.
Theorem 3.5: Every NVGP-connected space is NV C. -connected.
Proof: Let (X ) Z') be NVGP-connected space. Suppose (X : T)is not NV C, -connected space, then there exists
a proper NVS A which is both neutrosophic vague open and neutrosophic vague closed in (X , 2'). That is A
is both neutrosophic vague generalized pre open and neutrosophic vague generalized pre closed in (X , r). This
implies that (X : z') is not NVGP-connected space which is a contradiction to the fact that (X , T)is NVGP-

connected space. Therefore (X : z‘)is NV C; -connected space.
Theorem 3.6: Every NVGP-connected space is NVG-connected.

ISSN: 2231-5373 http://www.ijmttjournal.org Page 87




International Journal of Mathematics Trends and Technology (IJIMTT) — Volume 58 Issue 2 — June 2018

Proof: Let (X , T) be NVGP-connected space. Suppose (X , z‘)is not NVG-connected space, then there exists a
proper NVS A which is both neutrosophic vague generalized open and neutrosophic vague generalized closed
in (X,r). This implies that A is both neutrosophic vague generalized pre open and neutrosophic vague

generalized pre closed in (X,r). This implies that (X,r) is not NVGP-connected space which is a
contradiction to the fact that (X , z') is NVGP-connected space. Therefore (X : T) is NV C, -connected space.
Theorem 3.7: A NVTS (X , r) is NVGP-connected space if and only if there exists no non-zero NVGPOSs
Aand B in (X,7) such that A=B°.
Proof: Necessity: Let A and B be two NVGPOSs in (X, 7) such that A= 0,, # B and A=B°. Since
A=B°, B is NVGPOS which implies that B® = A is NVGPCS. Since B # 0 this implies that
B® #1,, (ie.,) A#1,,. Hence there exists a proper NVS A (A=0,,,A#=1,,) which is both
NVGPOS and NVGPCS in (X : 2'). Hence (X ) z') is not NVGP-connected space. But it is contradiction to our
hypothesis. Thus there exists no non-zero NVGPOSs A and B in (X, 7) such that A= B°.
Sufficiency: Let (X, 7) be NVTSand A is both NVGPO and NVGPC in (X, 7) such that 0, = A =1, .
Now let B =A°. In this case, B is NVGPOS and A =1y, this implies that B = A® 0, . Hence
B = 0,, which is a contradiction to our hypothesis. Therefore there is a proper NVS of (X , r) which is both
NVGPO and NVGPC in (X, 7). Hence (X, 7) is NVGP-connected space.
Theorem 3.8: A NVTS (X : z') is NVGP-connected space if and only if there exists no non-zero NVGPOSs
Aand B in (X,7)suchthat A=B°, B=(NVgpcl(A))and A=(NVgpcl(B)).
Proof: Necessity: Assume that there exists NVSs A and B in(X,7) such that A= 0, =B, B=A°,
B = (NVgpcl(A))and A= (NVgpcl(B))°. since (NVgpcl(A))°and (NVgpcl (B))° are NVGPOSs in
(X,7), Aand B are NVGPOSs in (X, 7). This implies (X, ) is not NVGP-connected space, which is a
contradiction to the statement that (X,T) is NVGP-connected space. Therefore there exists no non-zero
NVGPOSs A and B in (X,7) suchthat A=B°, B =(NVgpcl(A))’and A=(NVgpcl(B)) .
Sufficiency: Let A be both NVGPO and NVGPC in (X,7) such that 1,,, # A#0,, . Now by taking
B = A° we obtain a contradictory to our hypothesis. Hence (X , 1') is NVGP-connected space.
Theorem 3.9: Let (X , r) be NV,,T,,, space. Then the following statements are equivalent.

i) (X ) z') is NVGP-connected space.

i) (X , z') is NVG-connected space.

iii) (X ) z‘)is NV C -connected space.
Proof: (i)=> (ii) It is obvious from the Theorem 3.6.
(i) = (iii)) 1t is obvious.
(iii )= (i) Let (X, 7) be NV C, -connected space. Suppose (X, 7) is not NVGP-connected space, then there
exists a proper NVS A in (X,r)which is both NVGPO and NVGPC in(X,z‘). But since (X,z‘) is
NV, T;,, space, A is both NVO and NVC in (X,r). This implies that (X,T) is not NV C; -connected
space, which is a contradiction to our hypothesis. Therefore (X ) T) must be NVVGP-connected space.
Theorem 3.10: If f: (X , r) — (Y,O') is NVGP continuous mapping and (X , 2') is NVGP-connected space,
then (Y, &) be NV C, -connected space.
Proof: Let(X , T) be NVGP-connected space. Suppose (Y , 0') is not NV C, -connected space, then there exists
a proper NVS A which is both NVO and NVC in (Y,O'). Since f is NVGP continuous mapping, f’l(A) is
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a proper NVS of (X : T) which is both NVGPO and NVGPC in (X , z‘). But this is a contradiction to our
hypothesis. Hence (Y : 0) is NV C, -connected space.

Theorem 3.11: If f : (X ,T)— (Y, 0') is NVGP irresolute mapping and (X , r) is NVGP-connected space,
then (Y,O') be NVGP-connected space.

Proof: Let(X . z‘) be NVGP-connected space. Suppose (Y ) G) is not NVGP-connected space, then there exists
a proper NVS A which is both NVGPO and NVGPC in(Y,O'). Since f is NVGP irresolute mapping,
f (A) is a proper NVS of (X, 7) which is both NVGPO and NVGPC in (X, 7). But this is a contradiction
to our hypothesis. Hence (Y , 0') is NVGP-connected space.

Definition 3.12: Two NVSs A and B in (X , 2') are said to be g-coincident ( AQB for short) if and only if
there exists an element X € X such that -i-ANv (x)> 'i'éNv (x), iANV (x)< i‘;NV (x) and IA:ANV (x)< IA:BCNV (x).
Definition 3.13: Two NVSs A and B in (X ) z’) are said to be not g-coincident ( Aq°B for short) if and only
if Ac B°.

Definition 3.14: A NVTS (X,T) is called NV C; -connected between two NVSs A and B if there is no
neutrosophic vague open set D in (X,z‘) suchthat Ac D and Dg°B.

Definition 3.15: A NVTS (X,Z’) is called NVGP-connected between two NVSs A and B if there is no
neutrosophic vague generalized pre open set D in (X , z') suchthat Ac D and DQ°B.

Example 3.16: Let X = {a,b,c} and let 7= {ONV,G,lNV} be NVT on X, where

a b c
G= {X’ ([0.3,0.5];[0.8.1];[0.5,0.7]) " ([0.2,0.6];[0.5,0.7];[0.4,0.8]) " ([0.1,0.4];[0.3,0.8]; [0.6,0.9])}
Then (X : T) is NVGP-connected between two NVSs

a b c
A= {x' ([0.6,0.9];[0.2,0.4];[0.1,0.4]) " ([0.5,0.6];[0.1,0.3];[0.4,0.5))  ([0.3,0.8];[0.4,0.9]; [0.210.7]>}&

a b c
5= {X’ ([0.7,0.8];[0.1,0.4];0.2,0.3]) " ([0.6,0.9];[0.2,0.5];[0.1,0.4)) ' ([0.4,0.7];[0.3,0.8]; [0.3,0.6]}}'
Theorem 3.17: If a NVTS (X,T) is NVGP connected between two NVSs A and B, then it is NVC, -
connected between two NVSs A and B but the converse may not be true in general.
Proof: Suppose (X , T) is not NV C, -connected between two NVSs A and B, then there exists a NVOS D
in (X,7) such that Ac D and DQ°B. Since every NVOS is NVGPOS, there exists a NVGPOS D in
(X,z‘) such that Ac D and DQ°B. This implies(X,T) is not NVGP connected between A and B,
which is a contradiction to our hypothesis. Therefore (X,r) is NV C,-connected between two NVSs
Aand B.
Example 3.18: Let X = {a, b} and let 7= {ONV,G,lNV} be NVT on X, where

B a b
G= {X’ ([0.6,0.8];[0.3,0.5];[0.2,0.4]) " ([0.2,0.7];[0.1,0.4];[0.3,0.8
connected between two NVSs
A=1X a b and
{ '([0.3,0.5];[0.8,0.9];[0.5,0.7]) ' ([0.2,0.4];[0.6,0.7]; [o.a,o.s])}

]>}.Then (X,7) is NVC,-
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a b
B=<x, , . B X, i NVGP
{X ([02.0.4];[0.5,0.8]:[0.6,0.8) <[0,0.2];[O.G,O.?];[O.S,l])} ot (Xoz) s
connected between A and B, since the NVS

a b
b= {X’ ([0.4,0.7];[0.3,0.8];[0.3,0.6]) " ([0.5,0.8];[0.4,0.6];[0.2,0.5])
Ac D and D c B°.
Theorem 3.19: A NVTS (X ) r) is NVGP connected between two NVSs A and B if and only if there is no
NVGP open and NVGP closed set D in (X, 7) suchthat A< D < B°.
Proof: Necessity: Let (X , T) be NVGP connected between two NVSs A and B . Suppose that there exists
NVGP open and NVGP closed set D in (X,T) such that Ac D < B, then Dg°Band A< D. This
implies (X : Z') is not NVGP connected between two NVSs A and B, by Definition 3.15. It is a contradiction
to our hypothesis. Therefore there is no NVGPO and NVGPC set D in (X, 7) such that Ac D < B®.
Sufficiency: Suppose that (X , T) is not NVGP connected between two NVSs A and B . Then there exists a
NVGPOS D in (X,7) such that A< D and DQ°B. This implies that there is NVGPOS D in (X,7)
such that A< D < B®. But this is a contradiction to our hypothesis. Hence (X,7) is NVGP connected
between two NVSs A and B.
Theorem 3.20: If a NVTS (X, z') is NVGP connected between two NVSs A and B, Ac A and B B,
then (X, 7) is NVGP connected between A and B, .
Proof: Suppose that (X : T) is not NVGP connected between A and B, , then by Definition 3.15, there exists
a NVGPOSD in (X,7) such that A = D and Dq°B,. This implies D < Bf and A < D implies
Ac A cD.Thatis Ac D. Now let us prove that D < B, that is, to prove that Dq°B . Suppose that

} is NVGPOS such that

DgB, then by Definition 3.12, there exists an element X & X such that -i_DNV (X) > 'i';NV (X),
iDNv (X) < i%Nv (X) and IA:DNV (X) < IEQNV (X) . Therefore 'T'DNV (x) > 'i';NV (X) > 'i'él " (X),

A

iDNv (X)< iENV (X) < i°B1 " (X) and F (X)< IE,;NV (X) < Ieél " (X) since B< B,. Thus DQB,. But
D < B, . Thatis DQ°B,, which is a contradiction. Therefore DQ°B . Thatis D < B°. Hence (X , 2') is
not NVGP connected between A and B, which is a contradiction to our hypothesis. Thus (X ) T) is NVGP
connected between A and B, .

Theorem 3.21: Let(X,T) be a NVTS and A and B be NVSs in (X,Z’). If AQB then (X,r) is NVGP
connected between A and B.

Proof: Suppose (X,T) is not NVGP connected between A and B. Then there exists a NVGPOS D in
(X,'r) suchthat A< D and D < B°. This implies that A < B°. Thatis Aq°B . But this is a contradiction

to our hypothesis. Therefore (X , T) is NVGP connected between A and B.
Remark 3.22: The converse of the above theorem may not be true in general.
Example 323: Let X ={a,b} and let z={0,G1,} be NVT on X, where

a b
G = ) b
{X ([0.2,0.5];[0.1,0.4];[0.5,0.8)) " ([0.7,0.9];[0.3,0.6];[0.1,0.3])
connected between two NVSs

}.Then (X,7) is NVGP-
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. b
" {X' (0307]:[0.7,08]:[0.30.7]) " ([0.3,0.6]:[0.3,0.5] [0'4’0'7]>} ™

a b o .
B {X’ ([0.1,0.8];[0.6,0.7];[0.2,0.9]) " ([0.8,0.9];[0.5,0.7]; [0.1,0.2])}’ but ot -coincident with 5.

Definition 3.24: A NVGP open set A is called neutrosophic vague regular generalized pre open set
(NVRGPOS in short) if A= NVgp int(NVgpcI (A)) The complement of a NVRGPOS is called NVRGPCS.

Definition 3.25: A NVTS (X , Z') is called neutrosophic vague generalized pre super connected space (NVGP
super connected space) if there exists no NVRGPOS in (X ) r).
Theorem 3.26: Let(X : z') be NVTS, then the following are equivalent.
i) (X T) is NVGP super connected space.
if)  For every non-zero NVRGPOS A, NVngl( ) NVE
iii) For every NVRGPCS A with A=1, NVgpint(A)=0,, .
iv) There exists no NVRGPOS A and B in (X,7) suchthat A=0,, =B, Ac B°.
v) There existt no NVRGPOSs Aand B in (X,z) such that A=#=0,, #B,
= (Nvgpcl (A))°, A=(Nvgpcl(B)) .
vi) There exists no NVRGPCSs Aand B in (X : r) such that A=#1,, #B,
= (Nvgpint(A))°, A=(Nvgpint(B)) .
Proof: (i) = (ii) Assume that there exists a NVRGPOS A in (X , 2') such that A=0,, and
NVgpcl (A);t 1, - Now let B = NVgp int(NVgpcI (B)) then B is a proper NVRGPOS in (X , T). But
this is a contradiction to the fact that (X , r) is NVGP super connected space. Therefore NVgpcl (A) =1 -
(i) = (iii) Let A=1,, be NVRGPCS in (X,7). If B=A° then B is a NVRGPOS in (X,7) with
B =0,,. Hence NVgpcl(B)=1,, . This implies (NVgpcl(B))* =0,,, . That is NVgp int(Bc): Opy -
Hence NVgpint(A)=0,, .
(iii) = (iv) Let A and B be two NVRGPOSs in (X,7) such that A= 0,,, # B, A< B®. Since B is
NVRGPCS in(X,z) andB = 0,, implies B #1,,, B°=NVgpcl (NVgpint(B°)) and we have
NVgp int( ) But Ac B®.  Therefore 0, # A= Nvgpint(NVgpcl(A)) c
NVgp mt(NVgpcI ( )) NVgp int(NVgpcI (NVgpcI (NVgp int(B° )))):
NVgp Int((NVngI (NVgp |nt(B° )))): O,y Which is a contradiction. Therefore (iv) is true.
(iv) = (i) Let O, # A=1,, be a NVRGPOS in (X,7). If we take B =(NVgpcl(A)), since
NVgp int(NVgpcl (B)) = NVgp int(NVgpcI (Nvgpel (A))°)= NVgp int(NVgp int(NVgpel (A))) =
NVgp int(A°)= (NVgpcl (A))° = B. Also we get B #0,,,, since otherwise, we have B =0,,, and this
implies (NVgpcl(A))f® =0,,. That is NVgpcl(A)=1,,. Hence A=NVgpint(NVgpcl(A))=
NVgp Int() 1,, - Thatis A =1, , which is a contradiction. Therefore B = 0, and A < B®. Butthis is
a contradiction to (iv). Therefore (X ) T) is NVGP super connected space.
(i) = (v) Let Aand B be two NVRGPOSs in (X,7) such that A= 0,, = B, B=(NVgpcl(A)),
= (NVgpcl (B)f'. Now we have NVgpint(NVgpel(A))= Nvgpint(B®)=(Nvgpel (B)) = A
A=0,, and A=l since if A=1,, thenly, =(NVgpcl(B)) = Nvgpcl(B)=0,, =
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B=0,,. But B#0,,. Therefore A=1,, implies that A is proper NVRGPOS in (X,r), which is a
contradiction to (i). Hence (v) is true.
(v) = (i) Let A be NVRGPOS in (X,7) such that A= NVgpint(NVgpcl(A)) and 0, = A=1,, .

Now take B =(NVgpcl(A))F. In this case we get B=0,, and B is a NVRGPOS in (X,7),

B =(Nvgpcl (A)Y  and  (NVgpel (B)) =(Nvgpel (Nvgpel (A)) f = Nvgp int(Nvgpel (AY f
= NVgp int(NVgpcI (A)):A. But this is a contradiction to (v). Therefore (X,T) is NVGP super
connected space.

(V) = (vi) Let A and B be two NVRGPCSs in (X,Z’) such that A=1,,, =B, B= (NVgp int(A))C,
A=(NVgp int(B))°. Taking C=A° and D=B®, C and D becomes NVRGPOSs in (X,z‘) with

C+#0, =#D,D= (NVgp int(C))°, C= (NVgp int(D))°, Which is a contradiction to (v). Hence (vi) is
true.

(Vi) = (V) Can be easily proved by the similar way as in (V) = (Vi) .

Definition 3.27: A NVTS (X ) r) is said to be a neutrosophic vague generalized pre extremally disconnected

space (NVGP extremally disconnected space in short) if the neutrosophic vague generalized pre-closure of
every NVGPOS in (X, 7) is NVGPOS.

Theorem 3.28: Let (X ) z') be NVTS, then the following are equivalent:
)} (X , z') is a NVGP extremally disconnected space.
i) Foreach NVGPCS A, NVgpint(A) is NVGPCS.

iy Foreach NVGPOS A, NVgpcl (A):(NVgpcI(NVgpcI (A))C)E

iv)  Foreach NVGPOSs A and B with NVgpcl(A)=B®, Nvgpcl(A)=(NVgpcl(B))°.
Proof: (i):>(ii) Let A be any NVGPCS. Then A° is NVGPOS. So (i) implies that
NVgpel (A° )= (NVgp int(A))° is NVGPOS. Thus NVgpint(A) is NVGPCS in (X, 7).
(ii)=> (iii) LetAbe NVGPOS. Then we have NVgpcl(NVgpel (A)) = Nvgpel (NVgpint(A©))
Therefore (NVngI(NVngI (A))C)C =(NVngI (NVgpint(AC)))C. Since Ais NVGPOS. Then A°is
NVGPCS. So by (ii) NVgpint(AC) is NVGPCS. That is NVgpcl (NVgpint(A")): NVgpint(AC). Hence
(Nvgpel (Nvgpint(A°))f = (Nvgpint(A°)f = Nvgpel (A).
(iii)= (iv) Let A and B be any two NVGPOS in (X,7) such that NVgpcl(A)=B°. (iii) implies
NVgpcl (A) = (NVgpcI (NVgpcl (A))* )C = (NVgpcI (B°f )C = (Nvgpcl (B))".
(iv)= () Let Aand B be any two NVGPOS in (X,z) with NVgpcl(A)=BCand
NVgpcl (A) = (NVgpel (B))°. From NvVgpcl(A)= B = B = (NVgpcl (A))°. since NVgpcl(B) is

NVGPCS, this implies that NVgpcl(A) is NVGPOS. This implies that (X,7) is NVGP extremally

disconnected space.
IV. CONCLUSION

We have discussed about the NV C, -connected space, NVG-connected space and NVGP-connected space,

NVGP super connected space and NVGP extremally disconnected space and their characterizations concerning
connectedness in these spaces.
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