On Pre Generalized ωα-Closed Sets in Topological Spaces

G. B.Navalagi^{#1}, Tippeshi. V.Marigoudar^{*2}

^{#1}Department of Mathematics, K.L.E Society's G. H College, karnatak University,Haveri-581110, Karnataka,India ^{#2}Department of Mathematics, Research Scholar, (PPMAT0168), Rayalseema University,Kurnool 518007.(A.P),India.

Abstract

The aim of this paper is to introduce the new class of closed sets called pre generalized $\omega\alpha$ -closed (briefly pg $\omega\alpha$ -closed) sets in topological spaces which is properly placed between the class of pre-closed sets and the class of gp-closed sets and obtained some of their properties Also we define the pg $\omega\alpha$ -open sets and studied some of their characterizations.

Keywords - Topological spaces, g-closed sets, $\omega\alpha$ - open sets, $pg\omega\alpha$ --closed sets, $pg\omega\alpha$ -open sets.

AMS Subject Classifications: 54A05, 54A10

I. INTRODUCTION

Njastad [16] and Mashhour et al [14] introduced and studied the concept of α -open (originally called α - sets) and α -closed sets respectively in topological spaces. Levine [9] introduced and investigated the weaker forms of open sets called semi-open sets in 1963. Andrijevic [2] introduced the notion of semi pre-closed set. The concept of generalized closed (briefly g-closed) sets as a generalization of closed set is defined by Levine [10] in 1970. Later on many researchers like Dontchev [7], Sundaram and Sheik John [19] and others introduced and studied the notion of generalized semi pre-closed sets in topological spaces respectively. Recently Benchalli et. al. [4] defined and studied the concept of $\omega\alpha$ -closed sets in topological spaces.

The aim of this paper is to introduce the new weaker forms of closed sets called $pg\omega\alpha$ -closed sets and studied the some of their characterizations and also we define the $pg\omega\alpha$ -open sets and studied some of their properties.

II. PRELIMINARIES

Throughout this paper, the space (X, τ) (or simply X) always means a topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space (X, τ) , then cl(A), int(A)

and A^{C} denote the closure of A, the interior of A and the compliment of A in X respectively.

Definition 2.1: A subset A of a topological space X is called

regular open [18] if A = int(cl(A)) and regular closed if A = cl(int(A)).

semi-open set [9] if $A \subseteq cl(int(A))$ and semi-closed set if $int(cl(A)) \subseteq A$.

pre-open set [14] if $A \subseteq int(cl(A))$ and pre-closed set if $cl(int(A)) \subseteq A$.

 α -open set [16] if A \subseteq int(cl(int(A))) and α -closed set if cl(int(cl(A))) \subseteq A.

semi-preopen set [2] (= β -open [1]) if A \subseteq cl(int(cl(A))) and semi-pre closed set [2] (= β -closed [1]) if int(cl(int(A))) \subseteq A.

The intersection of all semi-closed (resp. semi-open) subsets of (X, τ) containing A is called the semiclosure (resp. semi-kernel) of A and by scl(A) (resp. sker(A)). Also the intersection of all pre-closed (resp. semi-pre-closed and α -closed) subsets of (X, τ) containing A is called the pre-closure (resp. semipreclosure and α -closure) of A and is denoted by pcl(A) (resp. spcl(A) and α -cl(A)).

Definition 2.2: A subset A of a topological space X is called a generalized closed (briefly g-closed) set [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

generalized semi-closed (briefly gs-closed) set[3] if scl(A) \subseteq U whenever A \subseteq U and U is open in X. α -generalized closed (briefly α g-closed) set [12] if α cl(A) \subseteq U whenever A \subseteq U and U is open in X. generalized α -closed (briefly g α -closed) set[11] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in X. generalized pre-closed (briefly gp-closed) set [13] if pcl(A) \subseteq U whenever A \subseteq U and U is open in X. generalized semi-preclosed (briefly gp-closed) set[7] if spcl(A) \subseteq U whenever A \subseteq U and U is open in X. generalized pre-regular-closed (briefly gp-closed) set[8] if pcl(A) \subseteq U whenever A \subseteq U and U is open in X. generalized pre-regular-closed (briefly gp-closed) set[8] if pcl(A) \subseteq U whenever A \subseteq U and U is regular-open inX. ω -closed [19] if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in X.

 g^* -closed set [20] if cl(A) \subseteq U whenever A \subseteq U and U is g-open set in X.

g^{*}-pre closed (briefly g^{*}p-closed) set[21] if pcl(A) \subseteq U whenever A \subseteq U and U is g-open set in X. $\omega\alpha$ -closed [4] if α cl(A) \subseteq U whenever A \subseteq U and U is ω -open in X.

generalized $\omega\alpha$ -closed (briefly g $\omega\alpha$ -closed) set[5] if α cl(A) \subseteq U whenever A \subseteq U and U is $\omega\alpha$ -open set in X. semi pre generalized $\omega\alpha$ -closed (briefly spg $\omega\alpha$ -closed) set[17] if spcl(A) \subseteq U whenever A \subseteq U and U is $\omega\alpha$ -open set in X.

III. PRE GENERALIZED $\omega\alpha$ - CLOSED SETS IN TOPOLOGICAL SPACES

In this section, we introduce pre generalized $\omega\alpha$ -closed (briefly pg $\omega\alpha$ -closed) sets in topological spaces and obtained some of their properties.

Definition 3.1: A subset A of a topological space (X, τ) is called pre generalized $\omega\alpha$ - closed (briefly pg $\omega\alpha$ -closed) set if pcl(A) \subseteq U whenever A \subseteq U and U is $\omega\alpha$ -open in X.

We denote the set of all $pg\omega\alpha$ -closed sets in (X, τ) by $PG\omega\alpha(X, \tau)$.

Theorem 3.2: Every closed set in X is $pg\omega\alpha$ -closed set.

Proof: Let A be a closed set in X and G be an $\omega\alpha$ -open set in X such that $A \subseteq G$. Since A is closed, cl(A) = A. but $pcl(A) \subseteq cl(A)$ is always true. So $pcl(A) \subseteq G$. Thus A is $pg\omega\alpha$ -closed set.

The converse of the above theorem need not be true as seen from the following example.

Example 3.3: Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. Then the set $\{a, b\}$ is pg $\omega\alpha$ -closed but not a closed set in X.

Theorem 3.4: Every preclosed set is $pg\omega\alpha$ -closed set but not conversely.

Proof: Let A be a pre-closed and G be an $\omega\alpha$ -open set in X such that $A \subseteq G$. Since A is pre-closed, we have pcl(A) = A. So that $pcl(A) \subseteq A \subseteq G$. Therefore $pcl(A) \subseteq G$. Hence A is $pg\omega\alpha$ -closed set.

Example 3.5: Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then the set $A = \{b\}$ is $pg\omega\alpha$ -closed but not preclosed set in X.

Theorem 3.6: Every α -closed set is pg $\omega\alpha$ -closed but not conversely.

Proof: Since every α -closed set is pre-closed and Theorem 3.4, the proof follows.

Example 3.7: In Example 3.3, the subset $A = \{a, b\}$ is $pg\omega\alpha$ -closed but not α -closed set in (X, τ) .

Theorem 3.8: Every pgωα-closed set is spgωα-closed set but not conversely.

Proof: Let A be a pg $\omega\alpha$ -closed and G be an $\omega\alpha$ -open set in X such that $A \subseteq G$. As A is pg $\omega\alpha$ -closed, we have pcl(A) \subseteq G. But spcl(A) \subseteq pcl(A) is always true. So that spcl(A) \subseteq pcl(A) \subseteq G. Therefore spcl(A) \subseteq G. Hence A is spg $\omega\alpha$ -closed set.

Example 3.9: Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then the set $A = \{a\}$ is spg ωa -closed but not pg ωa -closed set in X.

Theorem 3.10: Every $g\omega\alpha$ -closed set is $pg\omega\alpha$ -closed.

Proof: Let A be $g\omega\alpha$ -closed set and G be an $\omega\alpha$ -open set in X such that $A \subseteq G$. since A is $g\omega\alpha$ -closed. We have $\alpha cl(A) \subseteq G$. But $pcl(A) \subseteq \alpha cl(A)$ is always true. So that $pcl(A) \subseteq \alpha cl(A) \subseteq G$. Therefore $pcl(A) \subseteq G$. Hence A is $pg\omega\alpha$ -closed set.

The converse of the above theorem need not be true as seen from the following example.

Example 3.11: In the Example 3.3, the subset $A = \{a, b\}$ is pg ωa -closed set but not g ωa -closed set in X.

Theorem 3.12: Every pgωα-closed set is gp-closed but not conversely.

Proof: Let A be a pg ω -closed set in X. Let G be an open set, so that G is $\omega\alpha$ -open such that $A \subseteq G$. Since A is pg $\omega\alpha$ -closed, pcl(A) \subseteq G. Hence A is gp-closed set.

Example 3.13: Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$. Then the set $A = \{a, b\}$ is gp-closed but not $pg\omega\alpha$ -closed set in X.

Theorem 3.14: Every pgωα-closed set is gsp-closed but not conversely.

Proof: Since every gp-closed set is gsp-closed and Theorem 3.14, the proof follows.

Example 3.15: In Example 3.13, the subset $A = \{a, b\}$ is gsp-closed but not $pg\omega\alpha$ -closed set in X.

Remark 3.16: The concept of $pg\omega\alpha$ -closed set is independent of the concept of sets namely g-closed, α g-closed, α gr-closed gpr-closed, g^* -closed, g^* -closed, $\omega\alpha$ -closed sets as seen from the following examples.

Example 3.17: In Example 3.13, the subset $A = \{a, b\}$ is g-closed, α g-closed, α g-closed but not pg $\omega\alpha$ -closed set in (X, τ) .

Example 3.18: Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, c\}\}$. Then the subset $A = \{a, b\}$ is g*-closed, g*p-closed, g*p-closed but not pg $\omega\alpha$ -closed set in X.

Example 3.19: Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a, b\}\}$. Then the subset $A = \{b\}$ is pg $\omega\alpha$ -closed set but not α gr-closed, g*-closed, α g-closed, gp-closed, gp-closed, $\omega\alpha$ -closed in (X, τ) .

Remark 3.20: Union of two pg $\omega\alpha$ -closed sets need not be a pg $\omega\alpha$ -closed set as seen from the following example.

Example 3.21: In Example 3.19, the subsets $\{a\}$ and $\{b\}$ are $pg\omega\alpha$ -closed sets but their union $\{a\} \cup \{b\} = \{a, b\}$ is not a $pg\omega\alpha$ -closed set in (X, τ) .

Theorem 3.22: If a subset A of X is $pg\omega\alpha$ -closed, then pcl(A) - A does not contain any non-empty $\omega\alpha$ -closed set in (X, τ) .

Proof: Suppose that A is $pg\omega\alpha$ -closed set and F be a non-empty $\omega\alpha$ -closed subset of pcl(A) - A. Then $F \subseteq pcl(A) \cap (X - F)$. Since (X - F) is $\omega\alpha$ -open and A is $pg\omega\alpha$ -closed, $pcl(A) \subseteq (X - F)$. Since (X - F) is $\omega\alpha$ -open and A is $pg\omega\alpha$ -closed, Then $pcl(A) \subseteq (X - F)$. Therefore $F \subseteq (X - pcl(A))$. Then $F \subseteq pcl(A) \cap (X - pcl(A)) = \phi$. That is $F = \phi$. Thus pcl(A) - A does not contain any non-empty $\omega\alpha$ -closed set in (X, τ) .

Theorem 3.23: For an element $x \in X$, the set $X - \{x\}$ is $pg\omega\alpha$ -closed or $\omega\alpha$ -open.

Proof: Suppose $X - \{x\}$ is not $\omega\alpha$ -open set. Then X is only $\omega\alpha$ -open set containing $X - \{x\}$ and also $(X - \{x\}) \subseteq X$. Hence $X - \{x\}$ is pg $\omega\alpha$ -closed set in X.

Theorem 3.24: If a subset of a topological space X is $pg\omega\alpha$ -closed such that $A \subseteq B \subseteq pcl(A)$, then B is also $pg\omega\alpha$ -closed.

Proof: Let G be an $\omega\alpha$ -open set in X such that $B \subseteq G$, then $A \subseteq G$. Since A is $pg\omega\alpha$ -closed, $pcl(A) \subseteq G$. By hypothesis, $pcl(B) \subseteq pcl(pcl(A)) = pcl(A) \subseteq G$. Consequently, $pcl(B) \subseteq G$. Therefore B is also $pg\omega\alpha$ -closed set in (X, τ) .

The converse of the above theorem need not be true as seen from the following example.

Example 3.25: In Example 3.3, the set $A = \{a\}$ and $B = \{a, b\}$ such that A and B are $pg\omega\alpha$ -closed sets but $A \subseteq B \not\subset pcl(A)$.

Theorem 3.25: If A is open and gsp-closed set, then A is $pg\omega\alpha$ -closed set in X.

Proof: Let A be an open and gsp-closed set in X, Let $A \subseteq U$ and U be a $\omega\alpha$ -open in X. Now $A \subseteq A$. By hypothesis, $pcl(A) \subseteq A$. That is $pcl(A) \subseteq U$. Hence A is $pg\omega\alpha$ -closed in X.

Theorem 3.26: If A is $\omega\alpha$ -open and $pg\omega\alpha$ -closed then A is preclosed in X.

Proof: Let $A \subseteq A$, where A is $\omega\alpha$ -open, Then $pcl(A) \subseteq A$ as A is $pg\omega\alpha$ -closed in X, But $A \subseteq pcl(A)$ is always true. Therefore A = pcl(A). Hence A is preclosed in X.

Theorem 3.27: If A is a pg $\omega\alpha$ -closed set in X and A \subseteq Y \subseteq X, then A is a pg $\omega\alpha$ -closed set relative to Y.

Proof: Let $A \subseteq Y \cap G$, where G is an $\omega\alpha$ -open set in X. Then $A \subseteq Y$ and $A \subseteq G$. Since A is $pg\omega\alpha$ -closed set in X, so $pcl(A) \subseteq G$ which implies that $Y \cap plc(A) \subseteq Y \cap G$. Hence A is $spg\omega\alpha$ -closed relative to Y.

Theorem 3.28: If A is both open and g-closed in X, then it is $pg\omega\alpha$ -closed in X.

Proof: Let A be an open and g-closed set in X. Let $A \subseteq U$ and U be a $\omega\alpha$ -open set in X. Now $A \subseteq A$, By hypothesis, $cl(A) \subseteq A$, so that $pcl(A) \subseteq cl(A) \subseteq A$, that is $pcl(A) \subseteq A$. Thus $pcl(A) \subseteq U$, Hence A is $pg\omega\alpha$ -closed in X.

Remark 3.29: If A is both pre-open and $pg\omega\alpha$ -closed in X, then A need not be g-closed in general as seen from the following example.

Example 3.30: Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a, bc\}\}$. Then the subset $\{b\}$ is pre-open and $pg\omega\alpha$ -closed, but not g-closed.

Definition 3.31[4]: The intersection of all $\omega\alpha$ -open subsets of (X, τ) containing A is called the $\omega\alpha$ -kernel of A and is denoted by $\omega\alpha$ -ker(A).

Theorem 3.32: A subset A of X is $pg\omega\alpha$ -closed if and only if $pcl(A) \subseteq \omega\alpha$ -ker(A).

Proof: Suppose that A is $pg\omega\alpha$ -closed, $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\omega\alpha$ -open. Let $x \in pcl(A)$ and suppose $x \notin \omega\alpha$ -ker(A), then there is a $\omega\alpha$ -open set U containing A such that x is not in U. Since A is $pg\omega\alpha$ -closed, $pcl(A) \subset U$. We have x is not in pcl(A), which is contradiction. Hence $x \in \omega\alpha$ -ker(A) and so $pcl(A) \subset \omega\alpha$ -ker(A).

Conversely, let $pcl(A) \subseteq \omega\alpha$ -ker(A). If U is any $\omega\alpha$ -open set containing A, then $\omega\alpha$ -ker(A) \subseteq U. That is $pcl(A) \subseteq \omega\alpha$ -ker(A) \subset U. Therefore A is $pg\omega\alpha$ -closed in X.

Now we introduce the following.

Definition 3.33: A subset A of a topological space (X, τ) is called pre generalized $\omega\alpha$ -open (briefly pg $\omega\alpha$ -open) set in X if A^c is pg $\omega\alpha$ -closed in (X, τ) .

Theorem 3.34: Every singleton point set in a space is either $pg\omega\alpha$ -open or $\omega\alpha$ -open in X.

Proof: Let X be a topological space. Let $x \in X$. We prove $\{x\}$ is either $pg\omega\alpha$ -open or $\omega\alpha$ -open, i.e. $X \setminus \{x\}$ is either $pg\omega\alpha$ -closed or $\omega\alpha$ -open. From Theorem 3.23, we have $X \setminus \{x\}$ is $pg\omega\alpha$ -closed or $\omega\alpha$ -open. Thus $\{x\}$ is either $pg\omega\alpha$ -open or $\omega\alpha$ -open in X.

Theorem 3.35: A subset A of a topological space X is $pg\omega\alpha$ -open, then $F \subseteq pint(A)$ whenever $F \subseteq A$ and F is $\omega\alpha$ -closed in (X, τ) .

Proof: Assume that A is $pg\omega\alpha$ -open. Then A^c is $pg\omega\alpha$ -closed. Let F be a $\omega\alpha$ -closed set in X contained in A. Then F^c is $\omega\alpha$ -open set containing A^c in (X, τ) . Since A^c is $pg\omega\alpha$ -closed, this implies that $pcl(A) \subseteq F^c$. Taking complements on both sides, we have $F \subseteq pint(A)$.

Theorem 3.36: If $pg\omega\alpha \operatorname{spint}(A) \subseteq B \subseteq A$ and if A is a $pg\omega\alpha$ -open, then B is a αg^*s -open in (X, τ) .

Proof: We have $pint(A) \subseteq B \subseteq A$. Then $A^c \subseteq B^c \subseteq pcl(A^c)$ and since A^c is $pg\omega\alpha$ -closed set. By the Theorem 3.24, B^c is $pg\omega\alpha$ -c osed. Hence B is a $pg\omega\alpha$ -open.

IV. CONCLUSIONS

In this paper, we have introduced the new class of generalized form of closed sets namely $\omega\alpha$ - closed established their relationships with some generalized sets in topological space.

ACKNOWLEDGMENT

The authors express sincere thanks to the referees of the paper. The suggestions are most welcome by the readers. This work is a part of a research work.

REFERENCES

- M.E. Abd El- Monsef, S.N.El-Deeb and R.A.Mahamoud, 1983, β-Open Sets and β- Continuous Mappings, Bull. Fac. Sci. Assint. Unie., 12,77-90.
- [2] D.Andrijivic,1986, Semi preopen sets, Mat. Vesnic, , pp. 24-32.
- [3] S.P.Arya and T. M. Nour, 1990, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21, pp. 717-719.
- [4] S.S. Benchalli, P. G. Patil and T. D. Rayanagoudar, 2009, ωα-Closed Sets is Topological Spaces, The Global JI. Appl. Math. and Math. Sci., 2, pp. 53-63.
- [5] S.S. Benchalli, P. G. Patil and P. M. Nalwad, 2014, Generalized ωα-Closed Sets in Topological Spaces, Jl. New Results in Science, 7, pp. 7-19.
- [6] N.Biswas,1970, On Characterization of semi-continuous functions, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fsi. Mat. Natur., 48, pp. 399-402.
- [7] J.Dontchev 1995, On Generalizing Semi-Preopen Sets, Mem. Fac. Sci. Kochi Univ. Ser.A.Math., 16, pp. 35-48.
- [8] Y.Gnanambal, 1997, On Generalized Pre Regular Closed Sets in Topological Spaces, Indian Jl. of Pure Appl. Math, 28 (3), pp. 351-360.
- [9] N.Levine, 1963, Semi-open sets and Semi-continuity in Topological Spaces, Amer. Math. Monthly, 70, pp. 36-41.
- [10] N.Levine, 1970, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2), pp. 89-96.
- [11] H.Maki, R. Devi and K. Balachandran, 1993, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42, pp. 13-21.
- [12] H.Maki, R. Devi and K. Balachandran, 1994, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15, pp. 51-63.
- [13] H.Maki, J. Umehara and T. Noiri, 1996, Every topological space is pre-T1/2, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 17, pp. 33-42.
- [14] A.S. Mash hour, M. E. Abd El-Monsef and S. N. EL-Deeb, 1982, On pre-continuous and weak pre-continuous mappings, Proc. Math and Phys. Soc. Egypt, 53, pp. 47-53.
- [15] N.Nagaveni, 1999, Studies on generalizations of homeomorphisms in topological spaces, Ph.D thesis, Bharathiar University, Coimbatore.
- [16] O.Njastad, 1965, On Some Classes of Nearly Open Sets, Pacific Jl. Math., 15, pp. 961-970.
- [17] Rajeshwari K., T. D. Rayanagoudar and Sarika M. Patil, 2017, On semi generalized ωα-closed sets in Topological Spaces, Global Journal of Pure and Applied Mathematics, Vol. 13, No. 9, pp. 5491-5503.
- [18] M.Stone, 1937, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41, pp. 374-481.
- [19] P.Sundaram and M. Sheik John, 2000, On ω-closed Sets in Topology, Acta ciencia Indica, 4, pp. 389-392.
- [20] M.K. R. S. Veera Kumar, 2000, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. (Math), 21, pp. 1-19.
- [21] M.K. R. S. Veera Kumar, 2002, g*-pre closed Sets, Acta Ciencia Indica Vol.28, No 1, pp. 51-60.
- [22] M.K. R. S. Veera Kumar, 2002, On α-generalized-regular closed sets, Indian Journal of Mathematics Vol.44, No.2, pp. 165-181.