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Abstract 

              This paper presents a new modified Grey Wolf Optimization (GWO) Algorithm inspired by the Particle 

Swarm Optimization (PSO) algorithm. The main features of the proposed algorithm called PSO Inspired Grey 

Wolf Optimization (PSOIGWO) is the integration of global best and inertia weights into the basic GWO 

algorithm that allows the better searching capability and quicker convergence. The combination of well-

established features of PSO into the newly developed GWO algorithm provides an efficient hybrid algorithm 

which comprises the best features of the both algorithms. Experiments on standard optimization problems show 

the usefulness of the combined approach and its ability to efficiently and quickly search the solution. 

 

Keywords - Global Optimization,  Particle Swarm Optimization (PSO), Grey Wolf Optimization. 

I. INTRODUCTION 

 

The optimal solution is animportant requirement for many practical problems where the exact solution 

is either not feasible or difficult to find due to its complexity.The optimization approach is used in many 

branches of mathematics and engineering such structure designing, aerospace modeling, travelling postman 

problem etc. since the computation time requiredfor the exact solution finding methods, like branch andbound, 

dynamic programming, increases exponentially with the size of the instance to solve. The meta-heuristic 

algorithms are the best alternative of the best solution algorithms as it can provide an acceptable solution with in 

the required margin without computational complexity.  

 

The meta-heuristic algorithms are not only simple but also have many interesting characteristics such 

as problem independency, adaptivenessand learning capabilities [2]. Most of the meta-heuristic algorithms uses 

natural (either physical or bio-intelligence) phenomena’s to find the solutions. Examples of the bio-intelligence 

inspired optimization algorithms are genetic algorithm, ant colony optimization, bee colony optimization, while 

the physical phenomenon inspired algorithms are water filling algorithm, particle swarm optimization, 

gravitational search algorithms etc. Although the meta-heuristic algorithms have several advantages but they 

also have some limitations as solution is not always guaranteed to be optimum the improper initialization could 

cause completely irrelative solution etc. hence for any meta-heuristic optimization algorithm these problems 

must be dealt properly. As sated above a number of meta-heuristic algorithms are already available but everyone 

has its own advantages and limitations which provide space for development of new algorithms one of such 

algorithm is Grey Wolf Optimization (GWO).  

 

Grey wolf optimizer (GWO) algorithm described by Mirjalili [1] which is modeledfrom the hunting 

strategy of grey wolves. With results comparable to particle swarm optimization (PSO) and other optimization 

algorithms with fewer adjustable parameters and low complexity the GWO can be the preferable choice for 

deployment in practical applications. However like other optimization algorithms the GWO also has some 

limitations such as it can be easily trapped in the local optima when used with high-dimensional nonlinear 

objective functions. Furthermore the higher convergence speed of GWO makes it difficult to manage the 

balance between exploitation and exploration [3].  

 

To resolve these limitations this paper presents a PSO inspired GWO optimization algorithm which 

applies the exploration and convergence techniques used with PSO. To validate the proposed algorithm it is 

tested with some well-known optimization problems and simulation results shows the superiority of the 

proposed algorithm. The rest of the paper is arranges as the second section presents a brief literature review of 

GWO and its derivatives. In third section PSO and GWO algorithms are explained, while the fourth section 

describes the proposed algorithm, followed by the simulation results and conclusion in fifth and sixth sections 

respectively. 
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II. LITERATURE REVIEW 

The GWO algorithm is firstly proposed by the Mirjalili [1] the algorithm applies the hunting strategy 

followed by the grey wolves, after that many modifications have been proposed to overcome the shortcomings 

of the algorithm some of them are discussed in this section. Wen Long et al. [3] proposed the use of a time-

varying function of decreasing linearly for changing the value of vector 𝑎  which balances the exploration and 

exploitationabilities of the GWO. Furthermore the good-point-set method is employed for generating the initial 

population which enhances the global convergence of the algorithm. Aijun Zhu et al. [7] presented a hybrid 

GWO which utilizes the DE’s strong searching abilityto update the previous best positions of Alpha, Beta 

andDelta wolves, the position updating in such way makes GWO prone to the stagnation. Another modification 

of GWO is proposed by Narinder Singh et al. [8] which modifies the position update equation of standard GWO 

algorithm. The presented modification uses the mean of wolf position vectors for the estimation of movement 

direction of wolves. The use of exponential function for the decaying the value of vector 𝑎  is presented by Nitin 

Mittal et al. [9] the use of exponential decay function improves the exploitation and exploration capability of the 

algorithm.A Genetic Algorithm (GA) based initial population generation approach for GWO is presented by 

Qiang Li et al. [10], the proper initialization leads to greater possibility in finding global optimum. As with other 

meta-heuristic algorithms the GSO also requires proper initial value settings of variables to achieve the best 

results. Since these values depends upon problem under consideration and must be estimated on the basis of 

objective function characteristics to address this problem E. Emary et al [11] presented a reinforcement learning 

and neural network based approach EGWO (Experienced GWO) which evaluates the right parameters values for 

the algorithm. In their model the exploration rate of each wolf estimated bywolf’s own experienceand the 

current environment ofthe search space. The experience is storedin the form of neural network that maps 

agentstates to corresponding actions. The Powell local optimization based GWO algorithm PGWO is presented 

by Sen Zhang et al. [12]. This proposal uses Powell’s [16] conjugate direction method, is an algorithm used for 

finding a local minimum ofafunction. The Powell’s algorithm work with non-differentiable functions, and it 

takes no derivatives, this makes it suitable choice for deciding the direction of movement of wolf. 

 

III. GREY WOLF OPTIMIZATION (GWO) 

 

The Grey Wolf Optimization (GWO) was proposed by Mirjalili et al [4]. The GWO is inspired by the social 

structure and hunting behavior of grey wolves. The experimental results demonstrated its capabilities and 

excellent performance in solving many classical engineering design problems, such as spring tension, welded 

beam etc. [7].   

The GWO technique considers the finding optimal solution problem as hunting of prey by grey wolves. The 

prey is equivalent to optimal solution. As the grey wolves hunting strategy involves three steps encircling prey, 

hunting, and attacking prey it also uses these approaches to find the optimal solution. The grey wolves strictly 

follows social hierarchy of leadership. In the hierarchy the group is led by the alpha (𝛼) wolf, which remains at 

the top of the hierarchy. After alpha the second level of wolves are called beta (𝛽) wolf similarly the third and 

fourth level wolves are called delta (𝛿) and omega (𝜔) respectively.  The alpha wolf is followed by all (beta, 

delta and omega) wolves, while the beta wolves are followed by delta and omega, and delta wolves are followed 

by only omega. Since the omega remains in the lowest level they does not have any followers. 

Now as the hunting is guided by alpha, beta and delta wolves and rest (omega) wolves just follow them. The 

movement of all the population in the optimization problem guided by the top three best solutions and these 

solutions are named as alpha, beta and delta respectively the rest of solutions are considered as omega.  

 

A.  Encircling the Prey 

                 the first step of hunting is to encircle prey. The encircling process of grey wolves is equivalent to 

encircling the optimum solution by all population and it is given by: 

 

𝐷   =  𝐶 ∙ 𝑋 𝑝𝑟𝑒𝑦  𝑖 − 𝑋 𝑤𝑜𝑙𝑓 (𝑖)  (1) 

𝑋 𝑤𝑜𝑙𝑓  𝑖 + 1 = 𝑋 𝑝𝑟𝑒𝑦  𝑡 − 𝐴 ∙ 𝐷    (2) 

Here 𝑖 represents the current iteration number, 𝐴  and 𝐶  are the coefficient vectors, 𝑋 𝑃𝑟𝑒𝑦  and 𝑋 𝑤𝑜𝑙𝑓  are the 

position vectors of prey and wolf respectively. The coefficient vectors 𝐴  and 𝐶  are calculated as follows: 

 

𝐴 = 2𝑎 ∙ 𝑟 1 − 𝑎  (3) 

𝐶 = 2𝑟 2 (4) 
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Here the values of vector 𝑎  is linearly decreased from 2 to 0 with the iterations and 𝑟 1, 𝑟 2  are random vectors 

bounded within the interval of [0, 1]. 

 

B. Hunting  
              In real hunting scenario the position of prey is known but in optimization problem the optimum 

solution is not known hence a rough estimation of optimum location is estimated by the alpha, beta and delta 

solutions knowing that they have the best knowledge of solution. The position update of wolves is done as 

follows: 

 

𝑋 𝑤𝑜𝑙𝑓  𝑖 + 1 =
𝑋 1 + 𝑋 2 + 𝑋 3

3
 

 

(5) 

where the𝑋 1,𝑋 2 𝑎𝑛𝑑 𝑋 3 are estimated as: 

 

𝑋 1 = 𝑋 𝛼 − 𝐴1 ∙  𝐷𝛼 ,

𝐷𝛼 =  𝐶1 ∙ 𝑋𝛼 − 𝑋𝑤𝑜𝑙𝑓  , 

(6) 

𝑋 2 = 𝑋 𝛽 − 𝐴2 ∙  𝐷𝛽 ,

𝐷𝛽 =  𝐶1 ∙ 𝑋𝛽 − 𝑋𝑤𝑜𝑙𝑓  , 

(7) 

𝑋 3 = 𝑋 𝛿 − 𝐴3 ∙  𝐷𝛿 ,

𝐷𝛿 =  𝐶1 ∙ 𝑋𝛿 − 𝑋𝑤𝑜𝑙𝑓  , 

(8) 

 

 

The equations 6, 7 and 8 assumes the location of prey (optimum solution) is the location of 𝛼,𝛽 and 𝛿 

respectively, then the mean location of prey is estimated by equation 5, and this is the location where the wolf 

(population) should move to get the prey (optimum).  

 

C. Attacking 

                  As the grey wolf start tightening their grip to prey the movement of prey becomes more and more 

smaller so as the movement of wolves, and at last the prey stops moving and wolf perform final attack. This 

scenario is simulated in mathematical model by decreasing the values of vector 𝑎   linearly from 2 to 0 with 

every iteration (as shown in equation 3), which limits the movements of prey (optimum location) and wolf 

(population locations) and finally it gets the prey (optimum). 

 
 

Figure 1: the position updating process in GWO as presented by Mirjalili et al [4]. 

IV. PARTICLE SWARM OPTIMIZATION (PSO) 

This algorithm is firstly proposed by the James Kennedy et al. [18]. This algorithms was based on 

collaborative social behavior observed in some of the species of animals and insects like bird flocks searching 

for corn and fish schooling. In the PSO the solutions are presented by particles these particles are the points in 
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𝑝𝑏𝑒𝑠𝑡𝑗  
 

𝑝𝑗
𝑖+1 

 

𝑔𝑏𝑒𝑠𝑡  

 

𝑣𝑗
𝑖  

the search space. The particle positions are evolved to find the optimal solutions similarly as the bird flocks 

searches for corn.  

 

Figure 2: movement of particle in PSO [19]. 

 

The important properties of particles are they all knows the best solution found by particle itself up to current 

iteration as well as the best of all particles solutions found till current iteration, these positions are known as 

𝑝𝑏𝑒𝑠𝑡 (particle’s best) and 𝑔𝑏𝑒𝑠𝑡 (global best).  The positions of particles are evolved using these two values till 

the solution found, the complete process can be described in following steps:  

 

D. Initialization 

                firstly the particles are randomly positioned all over the search space. For example let there be 𝑛 

number of total particles whose location can be defined as {𝑝1,𝑝2,𝑝3,… .𝑝𝑛}.  

 

E. Finding the fitness 

                each of the generated particles are evaluated for the provided objective function, let for the 𝑗𝑡𝑕  particle 

𝑝𝑗  the locations and fitness values till 𝑖𝑡𝑕  generation be 

𝑃𝑗
𝑖 =  𝑝𝑗

1,𝑝𝑗
2,𝑝𝑗

3,… . . ,𝑝𝑗
𝑖−1,𝑝𝑗

𝑖 , and 𝐹𝑗
𝑖 = {𝑓𝑗

1,𝑓𝑗
2,𝑓𝑗

3,… . . , 𝑓𝑗
𝑖−1,𝑓𝑗

𝑖}  respectively. So the particle 𝑝𝑗  will 

remember it location related to the best value of 𝐹𝑗
𝑖  which can be defined as 𝑝𝑏𝑒𝑠𝑡𝑗 . Similarly it will also 

remember the values of best location related to the best values of {𝑝𝑏𝑒𝑠𝑡1,𝑝𝑏𝑒𝑠𝑡2,𝑝𝑏𝑒𝑠𝑡3,…… ,𝑝𝑏𝑒𝑠𝑡𝑛} which 

is named as 𝑔𝑏𝑒𝑠𝑡. 
Location Update: now each particle updates their location using their 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 as follows: 

 

𝑝𝑗
𝑖+1 = 𝑝𝑗

𝑖 + 𝑣𝑗
𝑖+1 (9) 

𝑣𝑗
𝑖+1 = 𝜔𝑣𝑗

𝑖 + 𝑐1𝑟1 𝑝𝑏𝑒𝑠𝑡𝑗 − 𝑝𝑗
𝑖 + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡

− 𝑝𝑗
𝑖) 

(10) 

𝜔 =  𝜔𝑚𝑎𝑥 −𝜔𝑚𝑖𝑛   
𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
  (11) 

 

Where the 𝑟1 and𝑟2 are the random variable within the range [0, 1], and 𝑐1 and 𝑐2 are the trust coefficient 

which defines the weightage 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡  in the of movement ofparticle. The 𝜔 represents the inertia of 

the particle this controls the exploration capabilities of the algorithm.  

These three parameters are problem dependent and can be fine-tuned depending upon the nature of the 

problem.    

 

F. Termination 

                the process from step 2 to 4 are repeated until the specified terminating criteria found. 
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V. PARTICLE SWARM OPTIMIZATION INSPIRED GREY WOLF OPTIMIZATION (PSOIGWO) 

 

Looking into the both GWO and PSO algorithms it can be seen that GWO uses 𝛼,𝛽 and 𝛿 wolf positions to 

find the solution location (equation 5) and then it updates positions of all the wolves, while the PSO uses 

𝑔𝑏𝑒𝑠𝑡,𝑝𝑏𝑒𝑠𝑡 and inertia (𝜔)  (equation 10).  

 

The involvement of inertia in PSO increases the exploration capability, while the knowledge of 

𝑔𝑏𝑒𝑠𝑡 and  𝑝𝑏𝑒𝑠𝑡 keeps track on best locations of the particles encountered which increases its capabilities of 

both exploitation and exploration.  

 

The proposed algorithm uses equivalents of these parameters to improve the performance of GWO as follows: 

The position of the wolves in GWO modified using 

 

𝑋 𝑤𝑜𝑙𝑓  𝑡 + 1 =
𝑋 1 + 𝑋 2 + 𝑋 3

3
 (12) 

 

In proposed algorithm this is considered as the equivalent to 𝑔𝑏𝑒𝑠𝑡 as they actually represents the mean of 

best three. 

 

Next the 𝑝𝑏𝑒𝑠𝑡 and inertia (𝜔) are estimated in same way as in the standard PSO algorithm.So the position 

estimation equation for the PSO inspired GWO is defined as follows: 

 

𝑋 𝑗
𝑖+1 = 𝑓𝑑 ∙ 𝜔𝑋 𝑗

𝑖 + 𝑐1 ∙ 𝑓𝑑 ∙ 𝑟1 𝑝𝑏𝑒𝑠𝑡𝑗               + 𝑐2(1

− 𝑓𝑑 ∙ 𝑟2)(𝑔𝑏𝑒𝑠𝑡            ) 
(13) 

 

Since 𝑐1 and 𝑐2 are set to 1, the above equation can be re written as: 

 

𝑋 𝑗
𝑖+1 = 𝑓𝑑 ∙ 𝜔𝑋 𝑗

𝑖 + 𝑓𝑑 ∙ 𝑟1 𝑝𝑏𝑒𝑠𝑡𝑗               + (1 − 𝑓𝑑

∙ 𝑟2)(𝑔𝑏𝑒𝑠𝑡            ) 
(14) 

Where the 𝑓𝑑  (decay factor) and 𝑔𝑏𝑒𝑠𝑡 are given by 

 

𝑓𝑑 =  
𝑎

2
 

2

 (15) 

𝑔𝑏𝑒𝑠𝑡 =
𝑋 1 + 𝑋 2 + 𝑋 3

3
 (16) 

 

where𝑟1 and 𝑟2 are the random variables in the range [-1, 1] unlike the PSO where it remains in the range [0, 

1]. The 𝑎 is GWO linearly decreasing variable from 2 to 0.  

 

The application of 𝑓𝑑  decays the impact of inertia, 𝑝𝑏𝑒𝑠𝑡  and randomness in 𝑔𝑏𝑒𝑠𝑡  these all terms are 

adopted PSO features. Hence it can be said that the algorithm initially uses the PSO features for exploration of 

search space and then gradually shifts to GWO for convergence.    

 

The comparison of the algorithm in pseudo code is provided in table 1. 

 

 
Table 1: pseudo codes for PSO, GWO and PSOIGWO. 

PSO:  

Initialize the particle population 

positions 𝑃𝑖(𝑖 = 1,2,… ,𝑛)  and 

velocities 𝑉𝑖 𝑖 = 1,2,… ,𝑛 . 
Initialize the 𝜔, 𝑐1 and𝑐2. 

𝒘𝒉𝒊𝒍𝒆(𝑡 < Max number of iterations) 

𝒇𝒐𝒓 each particle 

Update the position of 

GWO: 

Initialize the grey wolf population𝑋𝑖(𝑖 =
1,2,… ,𝑛) . 

Initialize 𝑎, 𝐴 and 𝐶. 

Calculate the fitness of each search agent. 

𝑋𝛼=the best search agent. 

𝑋𝛽=the best search agent. 

𝑋𝛿=the best search agent. 

PSOIGWO: 

Initialize the grey wolf population𝑋𝑖(𝑖 = 1,2,… ,𝑛) . 

Initialize 𝑎,𝐴,𝐶,𝜔 and𝑓𝑑 . 

Calculate the fitness of each search agent. 

𝑋𝛼=the best search agent. 

𝑋𝛽=the best search agent. 

𝑋𝛿=the best search agent. 

𝒘𝒉𝒊𝒍𝒆 (𝑡 < Max number of iterations) 
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current search agent by 

equations: 

𝑝𝑗
𝑖+1 = 𝑝𝑗

𝑖 + 𝑣𝑗
𝑖+1 

𝑣𝑗
𝑖+1

= 𝜔𝑣𝑗
𝑖

+ 𝑐1𝑟1 𝑝𝑏𝑒𝑠𝑡𝑗 − 𝑝𝑗
𝑖 

+ 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑗
𝑖) 

𝒆𝒏𝒅 𝒇𝒐𝒓 

Update 𝜔 using equation: 

𝜔
=  𝜔𝑚𝑎𝑥

− 𝜔𝑚𝑖𝑛   
𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
  

Calculate the fitness of all 

particles. 

Calculate the   𝑝𝑏𝑒𝑠𝑡  for each 

particle. 

Calculate the 𝑔𝑏𝑒𝑠𝑡. 
𝑡 =  𝑡 +  1 

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

𝒓𝒆𝒕𝒖𝒓𝒏𝑔𝑏𝑒𝑠𝑡. 

𝒘𝒉𝒊𝒍𝒆 (𝑡 < Max number of iterations) 

𝒇𝒐𝒓each search agent 

Update the position of current 

search agent by equations: 

𝐷   =  𝐶 ∙ 𝑋 𝑝𝑟𝑒𝑦  𝑖 − 𝑋 𝑤𝑜𝑙𝑓 (𝑖)  

𝑋 𝑤𝑜𝑙𝑓  𝑖 + 1 

= 𝑋 𝑝𝑟𝑒𝑦  𝑡 − 𝐴 ∙ 𝐷    

𝑋 𝑤𝑜𝑙𝑓  𝑖 + 1 =
𝑋 1 + 𝑋 2 + 𝑋 3

3
 

𝒆𝒏𝒅 𝒇𝒐𝒓 

Update 𝑎,𝐴 and 𝐶 using equations: 

𝐴 = 2𝑎 ∙ 𝑟 1 − 𝑎  

𝐶 = 2𝑟 2 
Calculate the fitness of all search 

agents. 

Update 𝑋𝛼 ,𝑋𝛽  and 𝑋𝛿 . 

𝑡 =  𝑡 +  1 

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

𝒓𝒆𝒕𝒖𝒓𝒏𝑋𝛼 . 

𝒇𝒐𝒓each search agent 

Update the position of current search 

agent by equations: 

𝑋 𝑗
𝑖+1 = 𝑓𝑑 ∙ 𝜔𝑋 𝑗

𝑖 + 𝑓𝑑 ∙ 𝑟1 𝑝𝑏𝑒𝑠𝑡𝑗               

+  1 − 𝑓𝑑
∙ 𝑟2  𝑔𝑏𝑒𝑠𝑡              

𝐷   =  𝐶 ∙ 𝑋 𝑝𝑟𝑒𝑦  𝑖 − 𝑋 𝑤𝑜𝑙𝑓 (𝑖)  

𝑋 𝑤𝑜𝑙𝑓  𝑖 + 1 = 𝑋 𝑝𝑟𝑒𝑦  𝑡 − 𝐴 ∙ 𝐷    

𝑋 𝑤𝑜𝑙𝑓  𝑖 + 1 =
𝑋 1 + 𝑋 2 + 𝑋 3

3
 

𝒆𝒏𝒅 𝒇𝒐𝒓 

Update 𝑎,𝐴,𝐶,𝜔 and𝑑𝑓using equations: 

𝐴 = 2𝑎 ∙ 𝑟 1 − 𝑎  

𝐶 = 2𝑟 2 

𝜔 =  𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛   
𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
  

𝑓𝑑 =  
𝑎

2
 

2

 

Calculate the fitness of all search agents. 

Update 𝑋𝛼 ,𝑋𝛽  and 𝑋𝛿 . 

𝑡 =  𝑡 +  1 

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

𝒓𝒆𝒕𝒖𝒓𝒏𝑋𝛼 . 

VI. SIMULATION RESULTS 

 

To evaluate the capabilities of the proposed PSOIGWO algorithm, is tested against 23 classical and popular 

benchmark test problems listed in [7, 19]. The test functions can be divided into three different group’s 

unimodal functions, multimodal functions and fixed-dimensionmultimodal functions. The details of the 

functions and their plots are provided in table 2-4 and figure 3-5 respectively. To evaluate the performance of 

the proposed algorithm four parameters named best, worst, average and standard deviation are used. These 

performance parameters are obtained for each benchmark test function by repeatedly evaluating them for 50 

times. To evaluate the comparative performance of the proposed algorithm these results are compared with the 

GWO, PSO, GA and DE algorithms. For the comparison following configurations are used each algorithm. 

 

Table 2: Algorithm configurations used for comparison. 

Algorithm Parameter’s Name Parameter’s Value 

PSOIGWO 

𝑐1 1 

𝑐2 1 

𝜔𝑚𝑎𝑥  0.8 

𝜔𝑚𝑖𝑛  0.2 

𝑃𝑎𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 25 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 500 

GWO 
𝑃𝑎𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 25 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 500 

HGWO 

𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝐹 0.5 

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑃𝑟𝑜𝑏 𝑃𝑐  0.2 

𝑃𝑎𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 25 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 500 

PSO 

𝑐1 2 

𝑐2 2 

𝜔𝑚𝑎𝑥  0.9 

𝜔𝑚𝑖𝑛  0.1 

𝑉𝑚𝑎𝑥  6 
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Table 3: List of the Unimodal Functions. 

Function Definition Variables and Their Limits Exact Solution 

𝑓1 𝑥 =  𝑥𝑖
2

𝑛

𝑖=1

 −100 ≤ 𝑥𝑖 ≤ 100,𝑛 = 30 min⁡(𝑓1) = 0 

𝑓2 𝑥 =   𝑥𝑖 

𝑛

𝑖=1

+   𝑥𝑖 

𝑛

𝑖=1

 −10 ≤ 𝑥𝑖 ≤ 10,𝑛 = 30 min⁡(𝑓2) = 0 

𝑓3 𝑥 =    𝑥𝑗

𝑖

𝑗=1

 

2
𝑛

𝑖=1

 −100 ≤ 𝑥𝑖 ≤ 100,𝑛 = 30 min⁡(𝑓3) = 0 

𝑓4 𝑥 = max
𝑖

{ 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛}  −100 ≤ 𝑥𝑖 ≤ 100,𝑛 = 30 min⁡(𝑓4) = 0 

𝑓5 𝑥 =   100 𝑥𝑖+1 − 𝑥𝑖
2 

2
+  𝑥𝑖 − 1 2 

𝑛−1

𝑖=1

 −30 ≤ 𝑥𝑖 ≤ 30,𝑛 = 30 min⁡(𝑓5) = 0 

𝑓6 𝑥 =   𝑥𝑖 + 0.5 2

𝑛

𝑖=1

 −100 ≤ 𝑥𝑖 ≤ 100,𝑛 = 30 min⁡(𝑓6) = 0 

𝑓7 𝑥 =  𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1)

𝑛

𝑖=1

 −1.28 ≤ 𝑥𝑖 ≤ 1.28,𝑛 = 30 min⁡(𝑓7) = 0 

 

 

  
(a)𝑓1(𝑥) (b)𝑓2(𝑥) 

   

(c)𝑓3(𝑥) (d)𝑓4(𝑥) (e)𝑓5(𝑥) 
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(f)𝑓6(𝑥) (g)𝑓7(𝑥) 

Figure 3: showing the plots of unimodal functions presented in table 2. 
 

Table 4: List of the Multimodal Functions. 

Function Definition Variables and Their Limits Exact Solution 

𝑓8 𝑥 =  −𝑥𝑖sin⁡(  𝑥𝑖  )

𝑛

𝑖=1

 −500 ≤ 𝑥𝑖 ≤ 500,𝑛 = 30 
min 𝑓8 = −4189.829

× 𝑛 

𝑓9 𝑥 =   𝑥𝑖
2 − 10 cos 2𝜋𝑥𝑖 + 10 

𝑛

𝑖=1

, −5.12 ≤ 𝑥𝑖 ≤ 5.12,𝑛 = 30 min⁡(𝑓9) = 0 

𝑓10 𝑥 = −20 exp −0.2 
1

𝑛
 𝑥𝑖

2

𝑛

𝑖=1

 

− exp 
1

𝑛
 𝑐𝑜𝑠 2𝜋𝑥𝑖 

𝑛

𝑖=1

 

+ 20 + 𝑒, 

−32 ≤ 𝑥𝑖 ≤ 32,𝑛 = 30 min⁡(𝑓10) = 0 

𝑓11 𝑥 =
1

4000
 𝑥𝑖

2

𝑛

𝑖=1

− cos  
𝑥𝑖

 𝑖 
 + 1,

𝑛

𝑖=1

 −600 ≤ 𝑥𝑖 ≤ 600,𝑛 = 30 min⁡(𝑓11) = 0 

𝑓12 𝑥 =
𝜋

𝑛
{10 sin 𝜋𝑦𝑖 

+   𝑦𝑖 − 1 2[1

𝑛−1

𝑖=1

+ 10 sin2 𝜋𝑦𝑖+1 
+  𝑦𝑛 − 1 2]}

+  𝑢 𝑥𝑖 , 10,100,4 

𝑛

𝑖=1

 

𝑦𝑖 = 1 +
𝑥𝑖 + 1

4
, 

 

𝑢 𝑥𝑖 ,𝑎, 𝑘,𝑚 =  

𝑘 𝑥𝑖 − 𝑎 𝑚 , 𝑥𝑖 > 𝑎
0, −𝑎 ≤ 𝑥𝑖 ≤ 𝑥

𝑘 −𝑥𝑖 − 𝑎 𝑚 , 𝑥𝑖 < −𝑎 

  

 

−50 ≤ 𝑥𝑖 ≤ 50,𝑛 = 30 

min⁡(𝑓12) = 0 

𝑓13 𝑥 = 0.1  sin2 3𝜋𝑥𝑖 

+   𝑥𝑖 − 1 2[1

𝑛

𝑖=1

+ sin2(3𝜋𝑥𝑖)] +  𝑥𝑖 + 1 2[1

+ sin2(2𝜋𝑥𝑛)] 

+  𝑢(𝑥𝑖 , 5,100,4)

𝑛

𝑖=1

, 

−50 ≤ 𝑥𝑖 ≤ 50,𝑛 = 30 min⁡(𝑓13) = 0 
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(a)𝑓8(𝑥) (b)𝑓9(𝑥) (c)𝑓10(𝑥) 

   

(d)𝑓11(𝑥) (e)𝑓12(𝑥) (f)𝑓13(𝑥) 

Figure 4: showing the plots of multimodal functions presented in table 3. 

 

Table 5: List of the Fixed Dimension Multimodal Functions. 

Function Definition Variables and Their Limits Exact Solution 

𝑓14 𝑥 =  
1

500
+  

1

  𝑥𝑖 − 𝑎𝑗  
2𝑛

𝑖=1

25

𝑗=1

 

−1

 −65 ≤ 𝑥𝑖 ≤ 65,𝑛 = 2 min⁡(𝑓14) = 1 

𝑓15 𝑥 =   𝑎𝑖 −
𝑥1 𝑏𝑖

2 + 𝑏𝑖𝑥2 

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

 

211

𝑖=1

 −5 ≤ 𝑥𝑖 ≤  5,𝑛 = 4 min⁡(𝑓15) = 3 

𝑓16 𝑥 = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2

+ 4𝑥2
4, 

−5 ≤ 𝑥𝑖 ≤  5,𝑛 = 2 min 𝑓16 = −1.0316 

𝑓17 𝑥 =  𝑥2 −
5.1

4𝜋2
+

5

𝜋
𝑥1 − 6 

2

+ 10  1 −
1

8𝜋
 cos 𝑥1 

+ 10, 

−5 ≤ 𝑥𝑖 ≤  5,𝑛 = 2 min 𝑓17 = −0.398 
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𝑓18 𝑥 =  1 +  𝑥1 + 𝑥2 + 1 2 19 − 14𝑥1

+ 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2

+ 3𝑥2
2   30

+  2𝑥1 − 3𝑥2 
2 18

− 32𝑥1 + 12𝑥1
2 + 48𝑥2

− 36𝑥1𝑥2 + 27𝑥2
2  , 

−2 ≤ 𝑥𝑖 ≤  2,𝑛 = 2 min 𝑓18 = 3 

𝑓19 𝑥 =  𝑐𝑖 exp − 𝑎𝑖𝑗  𝑥𝑗 − 𝑝𝑖𝑗  
2

𝑛

𝑗=1

 

4

𝑖=1

 1 ≤ 𝑥𝑖 ≤  3,𝑛 = 3 min 𝑓19 = 3.86 

𝑓20 𝑥 =  𝑐𝑖 exp − 𝑎𝑖𝑗  𝑥𝑗 − 𝑝𝑖𝑗  
2

𝑛

𝑗=1

 

4

𝑖=1

 0 ≤ 𝑥𝑖 ≤  1,𝑛 = 6 min 𝑓20 = −3.32 

𝑓21 𝑥 = −   𝑥 − 𝑎𝑖  𝑥 − 𝑎𝑖 
𝑇 + 𝑐𝑖 

−1

5

𝑖=1

 0 ≤ 𝑥𝑖 ≤  10,𝑛 = 4 min 𝑓21 = −10.1532 

𝑓22 𝑥 = −   𝑥 − 𝑎𝑖  𝑥 − 𝑎𝑖 
𝑇 + 𝑐𝑖 

−1

7

𝑖=1

 0 ≤ 𝑥𝑖 ≤  10,𝑛 = 4 min 𝑓22 = −10.4028 

𝑓23 𝑥 = −   𝑥 − 𝑎𝑖  𝑥 − 𝑎𝑖 
𝑇 + 𝑐𝑖 

−1

10

𝑖=1

 0 ≤ 𝑥𝑖 ≤  10,𝑛 = 4 min 𝑓23 = −10.5363 

 

 

   

(a)𝑓14(𝑥) (b)𝑓15(𝑥) (c)𝑓16(𝑥) 

  
(d)𝑓17(𝑥) (e)𝑓18(𝑥) 
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(f)𝑓19(𝑥) (g)𝑓20(𝑥) 

   

(h)𝑓21(𝑥) (i)𝑓22(𝑥) (j)𝑓23(𝑥) 

Figure 5: showing the plots of multimodal functions presented in table 4. 
 

 

Table 6: Evaluation and Comparison of Best Results. 

Unimodal Functions 

function Exact Solution PSOIGWO GWO PSO GA DE 

𝑓1(𝑥) 0 5.73312E-81 1.19156E-27 1.15737E-03 1.08515E-01 6.41676E-02 

𝑓2(𝑥) 0 2.29022E-43 3.86384E-16 1.89361E+00 2.17493E+00 2.28411E-03 

𝑓3(𝑥) 0 1.63830E-54 1.38199E-07 6.82600E+04 4.87321E+00 2.44008E+02 

𝑓4(𝑥) 0 3.37323E-35 1.13011E-07 1.21886E+02 1.24059E+00 1.64606E+01 

𝑓5(𝑥) 0 2.58802E+01 2.59425E+01 1.31698E+03 2.10619E+00 2.73052E+02 

𝑓6(𝑥) 0 5.22899E-01 1.50290E-04 1.18912E-03 2.41504E-01 4.58609E-01 

𝑓7(𝑥) 0 8.72565E-05 4.40180E-04 5.10906E+00 7.02064E-01 8.97338E-02 

Multimodal Functions. 

  PSOIGWO GWO PSO GA DE 

𝑓8(𝑥) -12569.487 -1.02004E+04 -7.43762E+03 -5.75454E+2 -5.58382E+02 -1.04188E+04 

𝑓9(𝑥) 0 0.00000E+00 5.68434E-14 8.47039E+01 1.01643E+01 3.04228E+01 

𝑓10(𝑥) 0 4.44089E-15 1.18128E-13 2.09643E+01 1.53522E+00 1.86102E+00 

𝑓11(𝑥) 0 0.00000E+00 0.00000E+00 1.74743E-03 7.17464E-03 3.98328E-02 

𝑓12(𝑥) 0 2.45736E-02 1.33638E-02 3.22578E+00 1.05966E-02 4.17999E-01 

𝑓13(𝑥) 0 5.57171E-01 2.47707E-01 3.87094E+00 1.27219E-02 2.96557E+00 

Fixed Dimension Multimodal Functions. 

  PSOIGWO GWO PSO GA DE 

𝑓14(𝑥) 1 9.98004E-01 9.98004E-01 9.98004E-01 1.07632E+01 9.98004E-01 

𝑓15(𝑥) 0.00030 3.07611E-04 3.07601E-04 1.19064E-03 7.28637E-04 3.07486E-04 

𝑓16(𝑥) -1.0316 -1.03163E+00 -1.03163E+00 -1.03163E+00 -1.03163E+00 -1.03163E+00 
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𝑓17(𝑥) 0.398 3.97887E-01 3.97887E-01 3.97887E-01 3.97887E-01 3.97887E-01 

𝑓18(𝑥) 3 3.00000E+00 3.00000E+00 3.00000E+00 3.00000E+00 3.00000E+00 

𝑓19(𝑥) -3.86 -3.86278E+00 -3.86278E+00 0.00000E+00 -3.86278E+00 -3.86278E+00 

𝑓20(𝑥) -3.32 -3.32199E+00 -3.32199E+00 0.00000E+00 -3.32200E+00 -3.32200E+00 

𝑓21(𝑥) -10.1532 -1.01530E+01 -1.01530E+01 -1.01532E+01 -1.01532E+01 -1.01532E+01 

𝑓22(𝑥) -10.4028 -1.04028E+01 -1.04027E+01 -1.04029E+01 -1.04029E+01 -1.04029E+01 

𝑓23(𝑥) -10.5363 -1.05360E+01 -1.05360E+01 -1.05364E+01 -1.05364E+01 -1.05364E+01 

 
Table 6: Evaluation and Comparison of Worst Results. 

Unimodal Functions 

  PSOIGWO GWO PSO GA DE 

𝑓1(𝑥) 0 5.97424E-74 1.82667E-24 7.71682E+00 3.63538E+00 1.81294E+03 

𝑓2(𝑥) 0 2.94281E-38 7.64921E-15 7.75558E+40 1.00655E+01 6.19411E+00 

𝑓3(𝑥) 0 2.70203E-44 1.33103E-02 6.65502E+06 1.47210E+02 2.34668E+03 

𝑓4(𝑥) 0 4.41039E-30 1.12640E-05 8.04105E+02 2.95263E+00 5.71032E+01 

𝑓5(𝑥) 0 2.88005E+01 2.87683E+01 6.54249E+07 4.06518E+02 1.64963E+06 

𝑓6(𝑥) 0 2.53379E+00 1.76372E+00 1.61236E+02 1.76519E+01 7.47995E+02 

𝑓7(𝑥) 0 3.74774E-03 6.38262E-03 3.30940E+05 1.66857E+01 4.70505E-01 

Multimodal Functions. 

  PSOIGWO GWO PSO GA DE 

𝑓8(𝑥) -12569.487 -3.89086E+03 -3.07866E+03 -1.10083E+02 -4.12515E+02 -5.47418E+03 

𝑓9(𝑥) 0 0.00000E+00 2.44096E+01 9.97946E+02 6.32870E+01 1.92381E+02 

𝑓10(𝑥) 0 7.99361E-15 3.70370E-13 2.13342E+01 3.06378E+00 1.33922E+01 

𝑓11(𝑥) 0 0.00000E+00 3.10384E-02 7.67146E-01 2.73973E-01 9.99982E+00 

𝑓12(𝑥) 0 2.01877E-01 5.76287E-01 7.12867E+08 7.06768E-01 7.45479E+05 

𝑓13(𝑥) 0 2.41035E+00 1.47133E+00 1.41027E+05 6.88525E-01 2.87328E+06 

Fixed Dimension Multimodal Functions. 

  PSOIGWO GWO PSO GA DE 

𝑓14(𝑥) 1 1.07632E+01 1.26705E+01 1.55038E+01 1.45631E+01 1.07632E+01 

𝑓15(𝑥) 0.00030 2.03634E-02 2.03634E-02 2.18017E-03 2.30309E-02 2.03633E-02 

𝑓16(𝑥) -1.0316 -1.03163E+00 -1.03163E+00 -2.15464E-01 -2.15464E-01 -1.03163E+00 

𝑓17(𝑥) 0.398 3.97957E-01 3.97914E-01 3.97887E-01 3.97887E-01 3.97887E-01 

𝑓18(𝑥) 3 3.00080E+00 8.40001E+01 8.40000E+01 8.40000E+01 3.00000E+00 

𝑓19(𝑥) -3.86 -3.85681E+00 -3.85489E+00 0.00000E+00 -1.00082E+00 -3.86278E+00 

𝑓20(𝑥) -3.32 -3.13847E+00 -3.02235E+00 0.00000E+00 -3.20074E+00 -3.18514E+00 

𝑓21(𝑥) -10.1532 -3.41617E+00 -2.63013E+00 -2.63047E+00 -2.63047E+00 -2.63047E+00 

𝑓22(𝑥) -10.4028 -5.08760E+00 -5.08762E+00 -1.83759E+00 -1.83759E+00 -2.76590E+00 

𝑓23(𝑥) -10.5363 -3.83531E+00 -2.42160E+00 -1.67655E+00 -1.67655E+00 -2.42734E+00 

 
Table 8: Evaluation and Comparison of Average Results. 

Unimodal Functions 

function Exact Solution PSOIGWO GWO PSO GA DE 

𝑓1(𝑥) 0 3.43514E-75 1.48218E-25 7.43253E-01 9.05963E-01 1.54308E+02 

𝑓2(𝑥) 0 1.10540E-39 1.45688E-15 1.55115E+39 5.91828E+00 5.12678E-01 

𝑓3(𝑥) 0 2.11222E-45 4.84967E-04 1.24860E+06 2.21582E+01 1.12947E+03 

𝑓4(𝑥) 0 1.09587E-31 2.03761E-06 2.80495E+02 2.01666E+00 3.02199E+01 

𝑓5(𝑥) 0 2.76209E+01 2.72722E+01 1.43070E+06 9.94700E+01 1.16563E+05 

𝑓6(𝑥) 0 1.58236E+00 8.87844E-01 7.08462E+00 3.07052E+00 1.10022E+02 

𝑓7(𝑥) 0 9.33567E-04 2.43732E-03 1.05588E+04 2.20326E+00 2.35599E-01 

Multimodal Functions 

  PSOIGWO GWO PSO GA DE 

𝑓8(𝑥) -12569.487 -8.16029E+03 -5.76905E+03 -1.48439E+71 -5.17081E+02 -8.61955E+03 

𝑓9(𝑥) 0 0.00000E+00 3.11343E+00 3.10710E+02 3.16062E+01 9.94517E+01 

𝑓10(𝑥) 0 4.51195E-15 2.05027E-13 2.11487E+01 2.28089E+00 4.57833E+00 

𝑓11(𝑥) 0 0.00000E+00 5.96285E-03 6.86429E-02 6.80370E-02 1.86448E+00 

𝑓12(𝑥) 0 9.34140E-02 6.51778E-02 1.59101E+07 2.86477E-01 3.15298E+04 
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𝑓13(𝑥) 0 1.18332E+00 8.22504E-01 3.64029E+03 1.78862E-01 3.06647E+05 

Fixed Dimension Multimodal Functions 

  PSOIGWO GWO PSO GA DE 

𝑓14(𝑥) 1 2.33542E+00 5.51611E+00 2.98717E+00 1.21745E+01 1.39101E+00 

𝑓15(𝑥) 0.00030 3.66615E-03 4.06751E-03 1.79814E-03 2.56545E-03 1.87705E-03 

𝑓16(𝑥) -1.0316 -1.03163E+00 -1.03163E+00 -9.01042E-01 -1.01531E+00 -1.03163E+00 

𝑓17(𝑥) 0.398 3.97894E-01 3.97890E-01 3.97887E-01 3.97887E-01 3.97887E-01 

𝑓18(𝑥) 3 3.00009E+00 4.62007E+00 1.70400E+01 8.40000E+00 3.00000E+00 

𝑓19(𝑥) -3.86 -3.86211E+00 -3.86106E+00 0.00000E+00 -3.64008E+00 -3.86278E+00 

𝑓20(𝑥) -3.32 -3.25338E+00 -3.27757E+00 0.00000E+00 -3.25764E+00 -3.24786E+00 

𝑓21(𝑥) -10.1532 -7.92965E+00 -9.51189E+00 -5.32892E+00 -5.54997E+00 -8.13711E+00 

𝑓22(𝑥) -10.4028 -9.23216E+00 -1.00818E+01 -5.48814E+00 -4.96282E+00 -8.66517E+00 

𝑓23(𝑥) -10.5363 -9.31027E+00 -1.03718E+01 -4.14082E+00 -4.19933E+00 -9.66556E+00 

 

Table 9: Evaluation and Comparison of Standard DeviationResults. 

Unimodal Functions 

 PSOIGWO GWO PSO GA DE 

𝑓1(𝑥) 1.13396E-74 2.69266E-25 1.66374E+00 8.13535E-01 2.95330E+02 

𝑓2(𝑥) 4.36546E-39 1.32875E-15 1.09680E+40 2.04803E+00 1.02999E+00 

𝑓3(𝑥) 5.96944E-45 1.92228E-03 1.86078E+06 2.87813E+01 5.42933E+02 

𝑓4(𝑥) 6.27561E-31 1.80660E-06 1.03376E+02 5.03672E-01 8.22575E+00 

𝑓5(𝑥) 8.21158E-01 7.93564E-01 9.23711E+06 8.13696E+01 2.67122E+05 

𝑓6(𝑥) 4.74129E-01 4.26683E-01 3.17071E+01 3.20128E+00 1.78668E+02 

𝑓7(𝑥) 7.54238E-04 1.38837E-03 4.98531E+04 2.49356E+00 8.34265E-02 

Multimodal Functions 

 PSOIGWO GWO PSO GA DE 

𝑓8(𝑥) 1.51016E+03 9.35468E+02 8.14214E+71 4.23001E+01 1.12532E+03 

𝑓9(𝑥) 0.00000E+00 6.06477E+00 1.96301E+02 9.65077E+00 3.90375E+01 

𝑓10(𝑥) 5.02430E-16 6.45630E-14 9.33279E-02 3.32551E-01 2.18245E+00 

𝑓11(𝑥) 0.00000E+00 9.33413E-03 1.32577E-01 5.48832E-02 2.25803E+00 

𝑓12(𝑥) 4.02251E-02 7.88044E-02 1.01249E+08 1.71622E-01 1.09763E+05 

𝑓13(𝑥) 3.37832E-01 2.52039E-01 1.99611E+04 1.61148E-01 6.02454E+05 

Fixed Dimension Multimodal Functions 

 PSOIGWO GWO PSO GA DE 

𝑓14(𝑥) 2.66955E+00 4.55991E+00 2.94990E+00 8.86815E-01 1.59533E+00 

𝑓15(𝑥) 7.36411E-03 7.71527E-03 1.19158E-04 4.07410E-03 4.11825E-03 

𝑓16(𝑥) 3.44073E-08 3.47382E-08 3.02249E-01 1.15423E-01 2.37376E-16 

𝑓17(𝑥) 1.34584E-05 5.19163E-06 4.06345E-09 3.15912E-09 3.36448E-16 

𝑓18(𝑥) 1.55692E-04 1.14551E+01 2.99966E+01 1.44321E+01 2.87453E-15 

𝑓19(𝑥) 1.30359E-03 2.71072E-03 0.00000E+00 6.07517E-01 3.14018E-15 

𝑓20(𝑥) 6.84498E-02 8.09129E-02 0.00000E+00 6.00007E-02 5.86834E-02 

𝑓21(𝑥) 2.59848E+00 1.97063E+00 2.80483E+00 2.36077E+00 2.78313E+00 

𝑓22(𝑥) 2.22344E+00 1.27457E+00 3.13909E+00 2.45880E+00 2.98448E+00 

𝑓23(𝑥) 2.33557E+00 1.14728E+00 2.77786E+00 2.41495E+00 2.39071E+00 
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(a)𝑓1(𝑥) (b)𝑓3(𝑥) (c)𝑓7(𝑥) 

   
(d)𝑓8(𝑥) (e)𝑓10(𝑥) (f)𝑓12(𝑥) 

   
(g)𝑓13(𝑥) (h)𝑓18(𝑥) (i)𝑓23(𝑥) 

Figure 6: Convergence curve for different functions. 
 

 

From Table VI it can be seen that the PSOIGWO, compared to standard GWO, PSO,GA and DE 

algorithms, provide best values for five Unimodal functions𝑓1 𝑥 ,𝑓2 𝑥 ,𝑓3 𝑥 ,𝑓4 𝑥 , 𝑓7 𝑥 , one Multimodal 

function 𝑓10(𝑥)  it outperforms all other algorithms by large margin, while for Fixed Dimension 

MultimodalFunctions it provides the same best results obtained by other algorithm. Even for the remaining functions in 

Unimodal and Multimodal group it remains competitive.    

 

Comparing for worst results from Table VII the PSOIGWOprovide best values for six Unimodal 

functions 𝑓1 𝑥 , 𝑓2 𝑥 ,𝑓3 𝑥 ,𝑓4 𝑥 ,𝑓5(𝑥), 𝑓7 𝑥 , four Multimodal function 𝑓9 𝑥 ,𝑓10 𝑥 ,𝑓11 𝑥 , 𝑓12(𝑥)  it 

outperforms all other algorithms by large margin, while for Fixed Dimension MultimodalFunctions it provides the 

same best results obtained by other algorithm. For the remaining functions in all groups it remains competitive.    
Comparing for average results from Table VIII the PSOIGWOprovide best values for five Unimodal 

functions 𝑓1 𝑥 , 𝑓2 𝑥 ,𝑓3 𝑥 ,𝑓4 𝑥 ,𝑓7 𝑥 , four Multimodal function 𝑓8 𝑥 ,𝑓9 𝑥 ,𝑓10 𝑥 ,𝑓11 𝑥  and six 

FixedDimension MultimodalFunctions𝑓16 𝑥 , 𝑓17 𝑥 ,𝑓18 𝑥 ,𝑓19 𝑥 ,𝑓22 𝑥 ,𝑓23 𝑥 ,   it outperforms all other algorithms 

by large margin, while for remainingfunctions either it provides the same best results obtained by other algorithm or at 

least remains competitive.    

  

Comparing for standard deviation results from Table IX the PSOIGWOprovide the lowest deviation for 

five Unimodal functions𝑓1 𝑥 , 𝑓2 𝑥 ,𝑓3 𝑥 ,𝑓4 𝑥 ,𝑓7 𝑥 , four Multimodal function 𝑓8 𝑥 ,𝑓9 𝑥 ,𝑓10 𝑥 ,𝑓11 𝑥  it 
outperforms all other algorithms by large margin, while for six Fixed Dimension 

MultimodalFunctions 𝑓14 𝑥 , 𝑓15 𝑥 , 𝑓16 𝑥 , 𝑓18 𝑥 ,𝑓19 𝑥 ,𝑓20 𝑥  it provides the second lowest deviation. For 

remainingfunctions either it provides the same best results obtained by other algorithm or at least remains competitive.    
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VII. CONCLUSION 

 

The proposed PSOIGWO algorithm utilizes the exploration capabilities of PSO and convergence capability 

GWO to achieve the best of both. The comparative analysis of the algorithm for the 23 standard test benchmark 

function shows that for most of Unimodal functions and Multimodal functions it outperforms the other 

algorithms with large margin, while for Fixed Dimension Multimodalfunctions it provides the same best results 

obtained by other algorithm. The analysis also shows that for most cases the PSOIGWO remains first or second best. The 

algorithm also shows best stability as for five Unimodal functions, four Multimodal functions and six Fixed Dimension 

Multimodalfunctions it gives the lowest deviation. The algorithm also shows quick convergence than the standard GWO 

algorithm as shown in figure 6.  
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