On $Z_{2} \times Z_{2}-$ Cordial Graphs

S. Beena
Associate Professor, Department of Mathematics, NSS College, Nilamel, Kollam, Kerala, India

Abstract

For any abelian group A, a graph G is said to be A-cordial if there is a labeling f of $V(G)$ with elements of A so that for all $a, b \in A$, the edge ab is labeled with $f(a)+f(b)$ then the number of vertices labeled with a and the vertices labeled with b differ by at most land the number of edges labeled with a and edges labeled with b differ by at most 1 . In this paper we determine some classes of $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ cordial graphs, a necessary condition for the sum of two $Z_{2} \times \mathrm{Z}_{2}$-cordial graphs to be $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$-cordial and we prove that every graph is an induced sub graph of $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ - cordial graph.

Key words - A-Cordial labeling, Abelian group.

I. INTRODUCTION

Mark Hovey [1] has introduced A - cordial labeling as a generalization of harmonious and cordial labeling. It is well known that $Z_{2}=\{0,1\}$ is the residue classes modulo 2, where 0 denote the set of all even integers and 1 denote the set of all odd integers and consequently $Z_{2} \times Z_{2}=\{(0,0),(1,0),(0,1),(1,1)\}$ is an abelian group. Without loss of generality, we may assume that $e=(0,0), \quad a=(1,0), b=(0,1), c=(1,1)$. Then $a+b=c, a+c=b$ and $b+c=a$. In this paper we determine some classes of $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ cordial graphs and a necessary condition for sum of two $Z_{2} \times Z_{2}$ - cordial graphs to be $Z_{2} \times Z_{2}$ - cordial. Also we prove that every graph is an induced subgraph of $Z_{2} \times Z_{2}$ - cordial graph.

Definition 1. For any abelian group A, a graph $G=(V, E)$ is said to be A - cordial, if there is a labeling f of V with elements of A so that for all $a, b \in A$, the edge $a b$ is labeled with $f(a)+f(b)$ then $v_{f}(a)$ and $v_{f}(b)$ differ by at most 1 and $e_{f}(a)$ and $e_{f}(b)$ differ by at most 1 , where $v_{f}(a)$ and $e_{f}(b)$ are respectively the number of vertices labeled with a and the number of edges labeled with b.

II. MAIN RESULTS

Theorem 2: The cycle C_{n} is $Z_{2} \times Z_{2}$-cordial for all n except $n=4,5$ and $n \equiv 2(\bmod 4)$.
Proof: Let $V\left(C_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\}$ be the set of all vertices of C_{n}, and $E\left(C_{n}\right)=\left\{e_{i}=v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$ be the set of all edges
of C_{n}. Define $f: V\left(C_{n}\right) \rightarrow \mathrm{Z}_{2} \times \mathrm{Z}_{2}$ as follows: Case(i) If $n \equiv 0,1,3,7(\bmod 8)$: Label the vertices of C_{n} as $f\left(v_{i}\right)=e$, if $i=4 k, 4 k+1$ where k is odd, $f\left(v_{i}\right)=a$, if $i=1,8 k, 8 k+1$ where k is an integer, $f\left(v_{i}\right)=b$, if $i \equiv 2(\bmod 4)$ and $f\left(v_{i}\right)=c, \quad$ if $i \equiv 3(\bmod 4)$.
Case(ii) If $n \equiv 4$ or $5(\bmod 8)$ where $n \neq 4,5:$ Label the vertices of C_{n} as $f\left(v_{i}\right)=e$ if $i=4,5,8,8 k, 8 k+1$ where $k>1$ is an integer, $f\left(v_{i}\right)=a$, if $i=1,7,4 k, 4 k+1$ where $k>1$ is odd, $f\left(v_{i}\right)=b$ if $i=2,9,2 k$ where $k>3$ is odd, $f\left(v_{i}\right)=c$, if $i=3,6,4 k+3$ where $k>1$ is an integer. Table 1 shows the values of $v_{f}(x)$ for all $x \in \mathrm{Z}_{2} \times \mathrm{Z}_{2}$ and Table 2 shows the values of $e_{f}(x)$ for all $x \in \mathrm{Z}_{2} \times \mathrm{Z}_{2}$. Also $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in \mathrm{Z}_{2} \times \mathrm{Z}_{2}$. Hence C_{n} is $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ - cordial for all n except $n=4,5$ and $n \equiv 2(\bmod 4)$.

$n=8 r+i$	$v_{f}(e)$	$v_{f}(a)$	$v_{f}(b)$	$v_{f}(c)$
$i=0$	$2 r$	$2 r$	$2 r$	$2 r$
$i=1$	$2 r$	$2 r+1$	$2 r$	$2 r$
$i=3$	$2 r$	$2 r+1$	$2 r+1$	$2 r+1$
$i=4$	$2 r+1$	$2 r+1$	$2 r+1$	$2 r+1$
$i=5$	$2 r+1$	$2 r+2$	$2 r+1$	$2 r+1$
$i=7$	$2 r+2$	$2 r+1$	$2 r+2$	$2 r+2$

Table 1. Labelings of the vertices of C_{n}

$n=8 r+i$	$e_{f}(e)$	$e_{f}(a)$	$e_{f}(b)$	$e_{f}(c)$
$i=0$	$2 r$	$2 r$	$2 r$	$2 r$
$i=1$	$2 \mathrm{r}+1$	$2 r$	$2 r$	$2 r$
$i=3$	$2 r$	$2 r+1$	$2 r+1$	$2 r+1$
$i=4$	$2 r+1$	$2 r+1$	$2 r+1$	$2 r+1$
$i=5$	$2 r+2$	$2 r+1$	$2 r+1$	$2 r+1$
$i=7$	$2 r+1$	$2 r+2$	$2 r+2$	$2 r+2$

Table 2. Labelings of the edges of C_{n}
Theorem3. The complete bipartite graph $K_{m, n}$ where $m \leq n$ is $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ - cordial for all m and n except $m \& n \equiv 2(\bmod 4)$.
Proof: Let $V_{1}=\left\{u_{i}: 1 \leq i \leq m\right\}$ and $V_{2}=\left\{v_{j}: 1 \leq j \leq n\right\}$ be the set vertices of $K_{m, n}$ and $E\left(K_{m, n}\right)=\left\{e_{i}=u_{i} v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ be the set of all edges of $K_{m, n}$. Define $f: V\left(K_{m, n}\right) \rightarrow \mathrm{Z}_{2} \times \mathrm{Z}_{2}$ as follows: $f\left(u_{i}\right)=e$ if $i \equiv 1(\bmod 4), \quad f\left(u_{i}\right)=a$ if $i \equiv 2(\bmod 4), \quad f\left(u_{i}\right)=b$ if $i \equiv 3(\bmod 4), f\left(u_{i}\right)=c$ if $i \equiv 0(\bmod 4)$.
Case(i) If $m \equiv 0,1,2(\bmod 4)($ Note that if $m \equiv 2(\bmod 4)$, choose n such that $n \not \equiv 2(\bmod 4))$, define $f\left(v_{i}\right)=e$ if
$i \equiv 0(\bmod 4), f\left(v_{i}\right)=a$ if $i \equiv 3(\bmod 4), f\left(v_{i}\right)=b$ if $i \equiv 1(\bmod 4), f\left(v_{i}\right)=c$ if $i \equiv 2(\bmod 4)$.
If $m=4 r$, Table 3 and 4 shows the values of $v_{f}(x)$ and $e_{f}(x)$ for all $x \in \mathrm{Z}_{2} \times \mathrm{Z}_{2}$.

$n=4 k+i$	$v_{f}(e)$	$v_{f}(a)$	$v_{f}(b)$	$v_{f}(c)$
$i=0$	$r+k+1$	$r+k$	$r+k$	$r+k$
$i=1$	$r+k$	$r+k$	$r+k+1$	$r+k$
$i=2$	$r+k$	$r+k$	$r+k+1$	$r+k+1$
$i=3$	$r+k$	$r+k+1$	$r+k+1$	$r+k+1$

Table 3. Labelings of the vertices of $K_{m, n}$

$n=4 k+i$	$e_{f}(e)$	$e_{f}(a)$	$e_{f}(b)$	$e_{f}(c)$
$i=0$	$n r$	$n r$	$n r$	$n r$
$i=1$	$n r$	$n r$	$n r$	$n r$
$i=2$	$n r$	$n r$	$n r$	$n r$
$i=3$	$n r$	$n r$	$n r$	$n r$

Table 4. Labelings of the edges of $K_{m, n}$
If $m=4 r+1$ Table 5 and 6 shows the values of $v_{f}(x)$ and $e_{f}(x)$ for all $x \in \mathrm{Z}_{2} \times \mathrm{Z}_{2}$.

$n=4 k+i$	$v_{f}(e)$	$v_{f}(a)$	$v_{f}(b)$	$v_{f}(c)$
$i=0$	$r+k+1$	$r+k$	$r+k$	$r+k$
$i=1$	$r+k+1$	$r+k$	$r+k+1$	$r+k$

$i=2$	$r+k+1$	$r+k$	$r+k+1$	$r+k+1$
$i=3$	$r+k+1$	$r+k+1$	$r+k+1$	$r+k+1$

Table5. Labelings of the vertices of $K_{m, n}$

$n=4 k+i$	$e_{f}(e)$	$e_{f}(a)$	$e_{f}(b)$	$e_{f}(c)$
$i=0$	$m k$	$m k$	$m k$	$m k$
$i=1$	$m k+r$	$m k+r$	$m k+r+1$	$m k+r$
$i=2$	$m k+2 r$	$m k+2 r$	$m k+2 r+1$	$m k+2 r+1$
$i=3$	$m k+3 r$	$m k+3 r+1$	$m k+3 r+1$	$m k+3 r+1$

Table 6. Labelings of the edges of $K_{m, n}$

If $m=4 r+2$ Table 7 and 8 shows the values of $v_{f}(x)$ and $e_{f}(x)$ for all $x \in \mathrm{Z}_{2} \times \mathrm{Z}_{2}$.

$n=4 k+i$	$v_{f}(e)$	$v_{f}(a)$	$v_{f}(b)$	$v_{f}(c)$
$i=0$	$r+k+1$	$r+k+1$	$r+k$	$r+k$
$i=1$	$r+k+1$	$r+k+1$	$r+k+1$	$r+k$
$i=3$	$r+k$	$r+k+1$	$r+k$	$r+k+1$

Table7. Labelings of the vertices of $K_{m, n}$

$n=4 k+i$	$e_{f}(e)$	$e_{f}(a)$	$e_{f}(b)$	$e_{f}(c)$
$i=0$	$m k$	$m k$	$m k$	$m k$
$i=1$	$m k+r$	$m k+r$	$m k+r+1$	$m k+r+1$
$i=3$	$m k+3 r+1$	$m k+3 r+1$	$m k+3 r+2$	$m k+3 r+2$

Table8. Labelings of the edges of $K_{m, n}$
If $m=4 r+3$ Table 9 and 10 shows the values of $v_{f}(x)$ and $e_{f}(x)$ for all $x \in \mathrm{Z}_{2} \times \mathrm{Z}_{2}$.

$n=4 k+i$	$v_{f}(e)$	$v_{f}(a)$	$v_{f}(b)$	$v_{f}(c)$
$i=0$	$r+k+1$	$r+k+1$	$r+k+1$	$r+k$
$i=1$	$r+k+1$	$r+k+1$	$r+k+1$	$r+k+1$
$i=2$	$r+k+2$	$r+k+1$	$r+k+1$	$r+k+1$
$i=3$	$r+k+2$	$r+k+2$	$r+k+1$	$r+k+1$

Table 9. Labelings of the vertices of $K_{m, n}$

$n=4 k+i$	$e_{f}(e)$	$e_{f}(a)$	$e_{f}(b)$	$e_{f}(c)$
$i=0$	$m k$	$m k$	$m k$	$m k$
$i=1$	$m k+r$	$m k+r+1$	$m k+r+1$	$m k+r+1$
$i=2$	$m k+2 r+1$	$m k+2 r+2$	$m k+2 r+2$	$m k+2 r+1$
$i=3$	$m k+3 r+2$	$m k+3 r+3$	$m k+3 r+2$	$m k+3 r+2$

Table 10. Labelings of the edges of $K_{m, n}$

Case(ii) If $m \equiv 3(\bmod 4)$, define $f\left(v_{i}\right)=e$ if $i \equiv 2(\bmod 4), f\left(v_{i}\right)=a$ if $i \equiv 3(\bmod 4), f\left(v_{i}\right)=b$ if $i \equiv 0(\bmod 4)$,
$f\left(v_{i}\right)=c$ if $i \equiv 1(\bmod 4)$.
If $m=4 r+3$ Table 11 and 12 shows the values of $v_{f}(x)$ and $e_{f}(x)$ for all $x \in \mathrm{Z}_{2} \times \mathrm{Z}_{2}$

$n=4 k+i$	$v_{f}(e)$	$v_{f}(a)$	$v_{f}(b)$	$v_{f}(c)$
$i=0$	$r+k+1$	$r+k+1$	$r+k+1$	$r+k$
$i=1$	$r+k+1$	$r+k+1$	$r+k+1$	$r+k+1$

$i=2$	$r+k+2$	$r+k+1$	$r+k+1$	$r+k+1$
$i=3$	$r+k+2$	$r+k+2$	$r+k+1$	$r+k+1$

Table 11. Labelings of the vertices of $K_{m, n}$

$n=4 k+i$	$e_{f}(e)$	$e_{f}(a)$	$e_{f}(b)$	$e_{f}(c)$
$i=0$	$m k$	$m k$	$m k$	$m k$
$i=1$	$m k+r$	$m k+r+1$	$m k+r+1$	$m k+r+1$
$i=2$	$m k+2 r+1$	$m k+2 r+2$	$m k+2 r+2$	$m k+2 r+1$
$i=3$	$m k+3 r+2$	$m k+3 r+3$	$m k+3 r+2$	$m k+3 r+2$

Table 12. Labelings of the edges of $K_{m, n}$

In all cases, $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in \mathrm{Z}_{2} \times \mathrm{Z}_{2}$. Hence the complete bipartite graph $K_{m, n}$ where $m \leq n$ is $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ - cordial for all m and n except $m \& n \equiv 2(\bmod 4)$.
Remark: $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ - cordiality of $K_{m, n}$ IS found in [2]. However, the proof is different from ours.
Theorem 4. Let G_{i} are $\left(p_{i}, q_{i}\right) \mathrm{Z}_{2} \times \mathrm{Z}_{2}$ - cordial labeled graph under f_{i} for $i=1,2$ respectively. Then $G_{1}+G_{2}$ is $Z_{2} \times Z_{2}$ - cordial if (i) either p_{1} or $p_{2} \equiv 0(\bmod 4)$ and (ii) either q_{1} or $q_{2} \equiv 0(\bmod 4)$.
Proof: Case (i) Let $p_{1} \equiv 0(\bmod 4)$ and $q_{1} \equiv 0(\bmod 4)$. Then $v_{f_{1}}(i)=\frac{p_{1}}{4}, e_{f_{1}}(i)=\frac{q_{1}}{4} \forall i=e, a, b, c$. Also, $\left|v_{f_{2}}(i)-v_{f_{2}}(j)\right| \leq 1$ and $\left|e_{f_{2}}(i)-e_{f_{2}}(j)\right| \leq 1 \quad \forall i, j=e, a, b, c$. Let $\quad v_{f_{2}}(e)=m_{1}, \quad v_{f_{2}}(a)=m_{2}, \quad v_{f_{2}}(b)=m_{3}$, $v_{f_{2}}(c)=m_{4}, e_{f_{2}}(e)=n_{1}, e_{f_{2}}(a)=n_{2}, e_{f_{2}}(b)=n_{3}$, and $v_{f_{2}}(c)=m_{4}$. Define $f: V\left(G_{1}+G_{2}\right) \rightarrow \mathrm{Z}_{2} \times \mathrm{Z}_{2}$ such that $\left.f\right|_{V\left(G_{i}\right)}=f_{i} \quad$ for $i=1,2$. Then clearly $\quad\left|v_{f}(i)-v_{f}(j)\right| \leq 1 \quad \forall i, j=e, a, b, c$ and $e_{f}(e)=\frac{q_{1}}{4}+n_{1}+\frac{p_{1} p_{2}}{4}, \quad \quad e_{f}(a)=\frac{q_{1}}{4}+n_{2}+\frac{p_{1} p_{2}}{4}, e_{f}(b)=\frac{q_{1}}{4}+n_{3}+\frac{p_{1} p_{2}}{4}, e_{f}(c)=\frac{q_{1}}{4}+n_{4}+\frac{p_{1} p_{2}}{4}$.Therefore, $\left|e_{f}(i)-e_{f}(j)\right|=\left|e_{f_{2}}(i)-e_{f_{2}}(j)\right| \leq 1 \quad \forall i, j=e, a, b, c$.

Case(ii). Let $p_{1} \equiv 0(\bmod 4)$ and $\quad q_{2} \equiv 0(\bmod 4)$. Then $\quad v_{f_{1}}(i)=\frac{p_{1}}{4}, \quad \forall i=e, a, b, c$ and $\left|e_{f_{1}}(i)-e_{f_{1}}(j)\right| \leq 1$, $\forall i, j=e, a, b, c . \quad$ Let $\quad e_{f_{1}}(e)=n_{1}, \quad e_{f_{1}}(a)=n_{2}, \quad e_{f_{1}}(b)=n_{3}, \quad e_{f_{1}}(c)=n_{4}$ and $\quad\left|v_{f_{2}}(i)-v_{f_{2}}(j)\right| \leq 1 \quad$, $\forall i, j=e, a, b, c$ and $\quad e_{f_{2}}(i)=\frac{q_{2}}{4} \forall i=e, a, b, c . \quad$ Let $\quad v_{f_{2}}(e)=m_{1}, \quad v_{f_{2}}(a)=m_{2}, \quad v_{f_{2}}(b)=m_{3}$ and $v_{f_{2}}(c)=m_{4}$. Define $\quad f: V\left(G_{1}+G_{2}\right) \rightarrow \mathrm{Z}_{2} \times \mathrm{Z}_{2}$ such that $\left.f\right|_{V\left(G_{i}\right)}=f_{i}$ for $i=1,2$.Then $v_{f}(e)=\frac{p_{1}}{4}+m_{1}$, $v_{f}(a)=\frac{p_{1}}{4}+m_{2}, v_{f}(b)=\frac{p_{1}}{4}+m_{3}$ and $v_{f}(c)=\frac{p_{1}}{4}+m_{4}$. Therefore, $\quad\left|v_{f}(i)-v_{f}(j)\right|=\left|v_{f_{2}}(i)-v_{f_{2}}(j)\right| \leq 1$ $\forall i, j=e, a, b, c . \quad$ Now, $\quad e_{f}(e)=n_{1}+\frac{q_{1}}{4}+\frac{p_{1}}{4}\left(m_{1}+m_{2}+m_{3}+m_{4}\right)=n_{1}+\frac{q_{1}}{4}+\frac{p_{1} p_{2}}{4} . \quad$ Similarly $e_{f}(a)=n_{2}+\frac{q_{1}}{4}+\frac{p_{1} p_{2}}{4}, e_{f}(b)=n_{3}+\frac{q_{1}}{4}+\frac{p_{1} p_{2}}{4}$ and $e_{f}(c)=n_{4}+\frac{q_{1}}{4}+\frac{p_{1} p_{2}}{4}$. Therefore, $\left|e_{f}(i)-e_{f}(j)\right|=\left|e_{f_{1}}(i)-e_{f_{1}}(j)\right| \leq 1 \quad \forall i, j=e, a, b, c$. In a similar manner we can consider the other two cases. Hence $G_{1}+G_{2}$ is $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ - cordial under f.
Theorem5. Every connected graph is an induced sub graph of a $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ - cordial graph.
Proof: Let G be a connected (p, q) graph with vertices $v_{1}, v_{2}, \ldots, v_{p}$. If G itself is $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$-cordial, there is nothing to prove. Otherwise, define $f: V(G) \rightarrow \mathrm{Z}_{2} \times \mathrm{Z}_{2}$ such that $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq \alpha$ $\forall i, j=e, a, b, c$ where α is possibly a small positive integer. Let $e_{f}(e)=m_{1}, \quad e_{f}(a)=m_{2}, e_{f}(b)=m_{3}$,
$e_{f}(c)=m_{4}$. Let $m=\min \left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}$ and $M=\max \left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}$. Since G is not $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ cordial, we have $M-m \geq 2$ and $p>3$. Let u be a vertex in G whose label is x, and such that $v_{f}(x)=n_{1}$ is the minimum. Add a new vertex v and label it with x, then $v_{f}(x)=n_{1}+1$. Let $M-m=2$. If $M-m_{1}>1$, join v with a vertex in G whose label is x, then $e_{f}(e)=m_{1}+1$. If $M-m_{2}>1$, join v with a vertex in G whose label is $x+a$, then $e_{f}(a)=m_{2}+1$. Similarly if $M-m_{3}>1$, join v with a vertex in G whose label is $x+b$, then $e_{f}(b)=m_{3}+1$ and if if $M-m_{4}>1$, join v with a vertex in G whose label is $x+c$, then $e_{f}(c)=m_{4}+1$. If $M-m>2$, we repeat the above process with the new graph H_{1}. Since this process reduce the difference $M-m$, after a finite number of steps, we get a $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ - cordial graph which contains G as an induced sub graph.
Notation: A (p, q) graph has p vertices and q edges. For basic concepts in graph theory, we follow [3] and for graph labeling follow [4].

CONCLUSION

The cycle C_{n} is $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ - cordial for all n except $n=4,5$ and $n \equiv 2(\bmod 4)$ and the complete bipartite graph $K_{m, n}$ where $m \leq n$ is $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ - cordial for all m and n except $m \& n \equiv 2(\bmod 4)$. Also if G_{i} are $\left(p_{i}, q_{i}\right) \mathrm{Z}_{2} \times \mathrm{Z}_{2}$ - cordial labeled graph under f_{i} for $i=1,2$ respectively then $G_{1}+G_{2}$ is $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$-cordial if (i) either p_{1} or $p_{2} \equiv 0(\bmod 4)$ and (ii) either q_{1} or $q_{2} \equiv 0(\bmod 4)$. Every connected graph is an induced sub graph of a $Z_{2} \times Z_{2}$ - cordial graph.

ACKNOWLEDGEMENTS

The author is grateful to Dr M I Jinnah, Former Prof \& Head, Department of Mathematics, University of Kerala, Thiruvananthapuram for his valuable suggestions.

REFERENCES

[1] Mark Hovey, A - cordial Graphs, Discrete mathematics 93(1991) 183 - 194, North Holland.
[2] O.Pechenik and J. Wise, Generalized graph cordialty, Discuss. Math. Graph Theory 32 (2012) 557-567.
[3] WB West, Introduction to Graph Theory, (2 ${ }^{\text {nd }}$ Edn) Pearson Education (2001)
[4] Joseph A Gallian, A Dynamic Survey of Graph Labeling, 19 ${ }^{\text {th }}$ Edn, December 23, 2016.

