(τ_1, τ_2) - rg**b Closed Sets in Bitopological Spaces

M. Narmatha¹ & K. Indirani²

¹Assistant Professor, Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore. ²Associate Professor, Department of Mathematics, Nirmala College for Women, Coimbatore.

Abstract

In this paper, the concept of regular generalized star star b - closed sets are extended to bitopological spaces are obtained.

Key words: $(\tau_1, \tau_2) - rg^{**}b$ closed sets, $\tau_2 - b$ - closed set, $(\tau_1, \tau_2) - g^*$ - closed sets.

I. INTRODUCTION

In 1970, Levine [16] introduced the concept of generalized closed sets and discussed the properties of sets, closed and open maps, compactness, normal and separation axioms.

Later in 1985, Fukutake [5] gave a new type of generalized closed set in bitopological spaces. Ahmad Al -Omari and Md. Noorani [1] made an analytical study and gave the concept of generalized b-closed set in topological spaces. Indirani and Banupriya [9] introduce a new class of closed sets called regular generalized star star b-closed sets.

II. PRELIMINARIES

Throughout this paper (X, τ_1, τ_2) represents a bitopological space in which no separation axioms are assumed, if A is a subset of a topological space X with a topology τ , with then the closure of A is denoted by $\tau - cl(A)$ or cl(A), the interior of A is denoted by $\tau - int(A)$ or int(A), semi - closure and pre - closure of A is denoted by $\tau - scl(A)$ or scl(A) and pcl(A) or pcl(A) respectively, semi - interior of A is denoted by $\tau - sint(A)$ or sint(A) and the complement of A is denoted by A^c .

2.1 Definition

A subset A of a topological space (X, τ) is called:

- 1) An α open set if $A \subseteq int(cl(int(A)))$.
- 2) A semi open set if $A \subseteq cl(int(A))$.
- 3) A pre open set if $A \subseteq int(cl(A))$.
- 4) A semi pre open set or β open set if $A \subseteq cl(int(cl(A)))$.
- 5) A regular open set if A = int(cl(A)).
- 6) A b open set if $A \subseteq int(cl(A)) \cup cl(int(A))$.

2.2 Definition

Let (X, τ) a topological space and A be a subset of X, then A is called:

- 1) A generalized closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. It is also denoted as g closed set.
- 2) A generalized α closed set if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α open in X. It is also denoted as $g\alpha$ closed set.
- 3) An α generalized closed set if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. It is also denoted as αg closed set.

- A generalized b closed set if bcl(A) ⊆ U whenever A ⊆ U and U is open in X. It is also denoted as gb -closed closed set.
- 5) Semi generalized closed set if scl(A) ⊆ U whenever A ⊆ U and U is semi open in X. It is also denoted as sg closed set.
- 6) A generalized semi closed set if scl(A) ⊆ U whenever A ⊆ U and U is open in X. It is also denoted as gs closed set.
- 7) w closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.
- 8) A weakly generalized closed set if $cl(int(A)) \subseteq U$ and U is open in X. It is also denoted as wg closed set.
- 9) A semi generalized b closed set if bcl(A) ⊆ U whenever A ⊆ U and U is semi-open in X. . It is also denoted as sgb closed set.
- 10) A strongly generalized closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g open in X. It is also denoted as g^* closed set.
- 11) A generalized gab closed set if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is α open in X. It is also denoted as $g\alpha b$ closed set.
- 12) A regular generalized b closed set if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X. It is also denoted as rgb closed set.

2.3 Definition

A subset A of a bitopological space (X, τ_1, τ_2) is called a

- 1) (τ_1, τ_2) pre open if $A \subseteq \tau_1$ int $(\tau_2$ cl(A)).
- 2) (τ_1, τ_2) semi open if $A \subseteq \tau_2$ $cl(\tau_1 int(A))$.
- 3) $(\tau_1, \tau_2) \alpha$ open if $A \subseteq \tau_1 int(\tau_2 cl(\tau_1 int(A)))$.
- 4) (τ_1, τ_2) regular open if $A = \tau_1 int(\tau_2 cl(A))$.

2.4 Definition

A subset A of a bitopological space (X, τ_1, τ_2) is called a

- 1) $(\tau_1, \tau_2) g$ closed if τ_2 cl(A) \subseteq U whenever A \subseteq U and U $\in \tau_1$.
- 2) (τ_1, τ_2) gs closed if τ_2 scl(A) \subseteq U whenever A \subseteq U and U $\epsilon \tau_1$.
- 3) (τ_1, τ_2) weakly generalized closed $((\tau_1, \tau_2) wg closed)$ sets if $\tau_2 cl(\tau_1 int(A)) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 open in X.
- 4) (τ_1, τ_2) w closed if τ_2 cl(A) \subseteq U whenever A \subseteq U and U is semi open in τ_1 .
- 5) $(\tau_1, \tau_2) g^* closed if \tau_2 cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_1 g$ open in X.
- 6) $(\tau_1, \tau_2) \alpha g$ closed if $\tau_2 \alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 open in X.
- 7) $(\tau_1, \tau_2) g\alpha$ closed if $\tau_2 \alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_1 \alpha$ open in X.
- 8) $(\tau_1, \tau_2) g^*p$ closed if $\tau_2 pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_1 g$ open in X.
- 9) $(\tau_1, \tau_2) rg closed$ if $\tau_2 cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_1 regular$ open in X.
- 10) $(\tau_1, \tau_2) rg^{**} closed \text{ if } \tau_2 cl(\tau_1 int(A)) \subseteq U \text{ whenever } A \subseteq U \text{ and } U \text{ is } (\tau_1, \tau_2) regular \text{ open in } X.$
- 11) (τ_1, τ_2) rw closed if τ_2 cl(A) \subseteq U whenever A \subseteq U and U is τ_1 regular semi open in X.
- 12) (τ_1, τ_2) regular weakly generalized closed $((\tau_1, \tau_2) wg closed)$ sets if $\tau_2 cl (\tau_1 int(A)) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 regular open in X.

III (T1, T2) - RG**B CLOSED SETS IN BITOPOLOGICAL SPACES

In this section (τ_1, τ_2) - rg**b closed sets in bitopological spaces are introduced and some of their properties are studied.

3.1 Definition

Let i, j \in {1, 2} be fixed integers. A subset A of a topological spaces (X, τ_1 , τ_2) is called regular generalized star star b closed set if τ_2 - rg*bcl(A) \subseteq U whenever A \subseteq U and U is τ_1 - open in (X, τ_1). The family of all (τ_1 , τ_2) - rg**b closed sets in bitopological space (X, τ_1 , τ_2) is denoted by D*rg**b(τ_1 , τ_2).

3.2 Remark

By setting $\tau_1 = \tau_2$ in *definition 3.1* (τ_1 , τ_2) - rg**b closed set is a rg**b closed set.

3.3 Proposition

If A is a τ_2 - closed subset of (X, τ_1, τ_2) then A is (τ_1, τ_2) - rg**b closed set.

Proof

Let A be any τ_2 - closed set. Therefore τ_2 - cl(A) = A and U be any τ_1 - open set containing A. Since τ_2 - rg*bcl(A) $\subseteq \tau_2$ - cl(A) $\subseteq U$ then τ_2 - rg*bcl(A) $\subseteq U$. Hence A is (τ_1, τ_2) - rg**b closed set.

The converse of this proposition need not be true as seen from the following example.

Example 3.4

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

 $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}.$

The sets {a}, {b} are (τ_1, τ_2) - rg**b closed but not τ_2 - closed.

3.5 Proposition

If A is a τ_2 - b - closed subset of (X, τ_1, τ_2) then A is (τ_1, τ_2) - rg**b closed set.

Proof

Let A be any τ_2 - b - closed set in (X, τ_1, τ_2) such that $A \subseteq U$ and U is τ_1 - open set. Since A is a τ_2 - b - closed which implies that τ_2 - rg*bcl $(A) \subseteq \tau_2$ - cl $(A) \subseteq U$ then τ_2 - rg*bcl $(A) \subseteq U$. Hence A is (τ_1, τ_2) - rg**b closed set.

The converse of this proposition need not be true as seen from the following example.

3.6 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

 $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}.$

The set $\{a, b\}$ is (τ_1, τ_2) - rg**b closed but not τ_2 - b - closed.

3.7 Proposition

If A is $\tau_2 - \alpha$ closed subset of (X, τ_1, τ_2) then A is $(\tau_1, \tau_2) - rg^{**b}$ closed set.

Proof

Let A be any $\tau_2 - \alpha$ closed set in (X, τ_1, τ_2) such that $A \subseteq U$ and U is τ_1 - open set. Since every α - closed set is rg*b - closed set and A is a $\tau_2 - \alpha$ - closed set, it is true that $\tau_2 - rg*bcl(A) \subseteq \tau_2 - \alpha cl(A) \subseteq \tau_2 - cl(A) = A \subseteq U$ then $\tau_2 - rg*bcl(A) \subseteq U$ whenever $A \subseteq U$. Hence A is $(\tau_1, \tau_2) - rg**b$ closed set.

The converse of this proposition need not be true as seen from following example.

3.8 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

The sets {a}, {b} are (τ_1, τ_2) - rg**b closed set but not in τ_2 - α - closed set.

3.9 Proposition

If A is a (τ_1, τ_2) - g - closed subset of (X, τ_1, τ_2) then A is (τ_1, τ_2) - rg**b closed set.

Proof

Let A be any (τ_1, τ_2) - g - closed set in (X, τ_1, τ_2) such that $A \subseteq U$ and U is τ_1 - open set. Since A is a (τ_1, τ_2) - g - closed which implies that τ_2 - rg*bcl $(A) \subseteq \tau_2$ - cl $(A) \subseteq U$ then τ_2 - rg*bcl $(A) \subseteq U$. Hence A is (τ_1, τ_2) - rg**b closed set.

The converse of this proposition need not be true as seen from the following example.

3.10 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

 $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}.$

The set {b} is (τ_1, τ_2) - rg**b closed set but not in (τ_1, τ_2) - g - closed set.

3.11 Proposition

If A is a (τ_1, τ_2) - g* - closed subset of (X, τ_1, τ_2) then A is (τ_1, τ_2) - rg**b closed set.

Proof

Let A be any $(\tau_1, \tau_2) - g^*$ - closed set in (X, τ_1, τ_2) such that $A \subseteq U$ and U be any τ_1 - open set containing A. Since A is a $(\tau_1, \tau_2) - g^*$ - closed which implies that $\tau_2 - rg^*bcl(A) \subseteq \tau_2 - cl(A) \subseteq U$ then $\tau_2 - rg^*bcl(A) \subseteq U$. Hence A is $(\tau_1, \tau_2) - rg^{**}b$ closed set.

The converse of this proposition need not be true as seen from the following example.

3.12 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

 $\tau_2 \ = \ \{X, \, \phi, \, \{a\}, \, \{b\}, \, \{a, \, b\} \}.$

The sets {b}, {c} are (τ_1, τ_2) - rg**b closed but not (τ_1, τ_2) - g* - closed.

3.13 Proposition

If A is a (τ_1, τ_2) - g*p - closed subset of (X, τ_1, τ_2) then A is (τ_1, τ_2) - rg**b closed set.

Proof

Assume that A is $(\tau_1, \tau_2) - g^*p$ - closed set in (X, τ_1, τ_2) such that $A \subseteq U$ and U be any τ_1 - open set. Since A is a $(\tau_1, \tau_2) - g^*p$ - closed set, we have $\tau_2 - pcl(A) \subseteq U$, $\tau_2 - rg^*bcl(A) \subseteq \tau_2 - pcl(A) \subseteq U$ then $\tau_2 - rg^*bcl(A) \subseteq U$. Hence A is $(\tau_1, \tau_2) - rg^{**b}$ closed set.

The converse of this proposition need not be true as seen from the following example.

3.14 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

The set {b} is (τ_1, τ_2) - rg**b closed but not (τ_1, τ_2) - g*p - closed.

3.15 Proposition

If A is a (τ_1, τ_2) - gb - closed subset of (X, τ_1, τ_2) then A is (τ_1, τ_2) - rg**b closed set.

Proof

Assume that A is (τ_1, τ_2) - gb - closed set in (X, τ_1, τ_2) such that $A \subseteq U$ and U be any τ_1 - open set. Since A is a (τ_1, τ_2) - gb - closed set, we have τ_2 - rg*bcl(A) \subseteq U. Hence A is (τ_1, τ_2) - rg**b closed set.

The converse of this proposition need not be true as seen from the following example.

3.16 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

 $\tau_2 \ = \ \{X, \, \phi, \, \{a\}, \, \{b\}, \, \{a, \, b\}\}.$

The set {b} is (τ_1, τ_2) - rg**b closed but not (τ_1, τ_2) - gb - closed.

3.17 Proposition

If A is a (τ_1, τ_2) - αg - closed subset of (X, τ_1, τ_2) then A is (τ_1, τ_2) - $rg^{**}b$ closed set.

Proof

Assume that A is $(\tau_1, \tau_2) - \alpha g$ - closed set in (X, τ_1, τ_2) such that $A \subseteq U$ and U be any τ_1 - open set. Since A is a $(\tau_1, \tau_2) - \alpha g$ - closed set, then $\tau_2 - rg^*bcl(A) \subseteq \tau_2 - \alpha cl(A) \subseteq U$. Therefore $\tau_2 - rg^*bcl(A) \subseteq U$. Hence A is $(\tau_1, \tau_2) - rg^{**}b$ closed set.

The converse of this proposition need not be true as seen from the following example.

3.18 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

 $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}.$

The set {b} is (τ_1, τ_2) - rg**b closed but not (τ_1, τ_2) - α g - closed.

3.19 Proposition

If A is a (τ_1, τ_2) - ga - closed subset of (X, τ_1, τ_2) then A is (τ_1, τ_2) - rg**b closed set.

Proof

Assume that A is $(\tau_1, \tau_2) - g\alpha$ - closed set in (X, τ_1, τ_2) such that $A \subseteq U$ and U be any τ_1 - open set containing A. Since A is a $(\tau_1, \tau_2) - g\alpha$ - closed set, then $\tau_2 - rg^*bcl(A) \subseteq \tau_2 - \alpha cl(A) \subseteq U$. Therefore $\tau_2 - rg^*bcl(A) \subseteq U$. Hence A is $(\tau_1, \tau_2) - rg^{**b}$ closed set.

The converse of this proposition need not be true as seen from the following examples.

3.20 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

The sets {a}, {b} are (τ_1, τ_2) - rg**b closed but not (τ_1, τ_2) - ga - closed.

3.21 Proposition

If A is a (τ_1, τ_2) - gab - closed subset of (X, τ_1, τ_2) then A is (τ_1, τ_2) - rg**b closed set.

Proof

Assume that A is (τ_1, τ_2) - gab - closed set in (X, τ_1, τ_2) such that $A \subseteq U$ and U be any τ_1 - open set containing A. Since A is a (τ_1, τ_2) - gab - closed set, then τ_2 - rg*bcl(A) $\subseteq \tau_2$ - abcl(A) $\subseteq U$. Therefore τ_2 - rg*bcl(A) $\subseteq U$. Hence A is (τ_1, τ_2) - rg**b closed set.

The converse of this proposition need not be true as seen from the following example.

3.22 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

 $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}.$

The set {a, b} is (τ_1, τ_2) - rg**b closed but not (τ_1, τ_2) - gab - closed.

3.23 Proposition

If A is a (τ_1, τ_2) - gs - closed subset of (X, τ_1, τ_2) then A is (τ_1, τ_2) - rg**b closed set.

Proof

Assume that A is (τ_1, τ_2) - gs - closed set in (X, τ_1, τ_2) such that $A \subseteq U$ and U be any τ_1 - open set containing A. Since A is a (τ_1, τ_2) - gs - closed set, then τ_2 - rg*bcl(A) $\subseteq \tau_2$ - scl(A) $\subseteq U$. Therefore τ_2 - rg*bcl(A) $\subseteq U$. Hence A is (τ_1, τ_2) - rg**b closed set.

The converse of this proposition need not be true as seen from the following example.

3.24 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

 $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}.$

The sets {a, b}, {a, c} are (τ_1, τ_2) - rg**b closed but not (τ_1, τ_2) - gs - closed.

3.25 Proposition

If A is a (τ_1, τ_2) - sg - closed subset of (x, τ_1, τ_2) then A is (τ_1, τ_2) - rg**b closed set.

Proof

Assume that A is (τ_1, τ_2) - sg - closed set in (x, τ_1, τ_2) such that $A \subseteq U$ and U be any τ_1 - open set containing A. Since A is a (τ_1, τ_2) - sg - closed set, then τ_2 - rg*bcl(A) $\subseteq \tau_2$ - scl(A) $\subseteq U$. Therefore τ_2 - rg*bcl(A) $\subseteq U$. Hence A is (τ_1, τ_2) - rg**b closed set.

The converse of this proposition need not be true as seen from the following example.

3.26 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

The set $\{a, b\}$ is (τ_1, τ_2) - rg**b closed but not (τ_1, τ_2) - sg - closed.

3.27 Proposition

If A is a (τ_1, τ_2) - rg - closed subset of (x, τ_1, τ_2) then A is (τ_1, τ_2) - rg**b closed set.

Proof

Assume that A is (τ_1, τ_2) - rg - closed set in (x, τ_1, τ_2) such that $A \subseteq U$ and U be any τ_1 - open set containing A. Since A is a (τ_1, τ_2) - sg - closed set, then τ_2 - rg*bcl(A) $\subseteq \tau_2$ - cl(A) $\subseteq U$. Therefore τ_2 - rg*bcl(A) $\subseteq U$. Hence A is (τ_1, τ_2) - rg**b closed set.

The converse of this proposition need not be true as seen from the following example.

3.28 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

 $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}.$

The sets {a}, {b} are (τ_1, τ_2) - rg**b closed but not (τ_1, τ_2) - rg - closed.

3.29 Proposition

If A is a (τ_1, τ_2) - w - closed subset of (X, τ_1, τ_2) then A is (τ_1, τ_2) - rg**b closed set.

Proof

Assume that A is $(\tau_1, \tau_2) - w$ - closed set in (X, τ_1, τ_2) such that $A \subseteq U$ and U be any τ_1 - open set containing A. Since A is a $(\tau_1, \tau_2) - w$ - closed set, then $\tau_2 - rg^*bcl(A) \subseteq \tau_2 - cl(A) \subseteq U$. Therefore $\tau_2 - rg^*bcl(A) \subseteq U$. Hence A is $(\tau_1, \tau_2) - rg^{**b}$ closed set.

The converse of this proposition need not be true as seen from the following example.

3.30 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

 $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}.$

The sets {a}, {b} are (τ_1, τ_2) - rg**b closed but not (τ_1, τ_2) - w - closed.

3.31 Proposition

If A is a (τ_1, τ_2) - rwg - closed subset of (X, τ_1, τ_2) then A is (τ_1, τ_2) - rg**b closed set.

Proof

Assume that A is (τ_1, τ_2) - rwg - closed set in (X, τ_1, τ_2) such that $A \subseteq U$ and U be any τ_1 - open set containing A. Since A is a (τ_1, τ_2) - rwg - closed set, then τ_2 - rg*bcl(A) $\subseteq \tau_2$ - cl(τ_1 - int(A)) \subseteq U. Therefore τ_2 - rg*bcl(A) \subseteq U. Hence A is (τ_1, τ_2) - rg**b closed set.

The converse of this proposition need not be true as seen from the following example.

3.32 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

The sets {a}, {b} are (τ_1, τ_2) - rg**b closed but not (τ_1, τ_2) - rwg - closed.

3.33 Proposition

If A is a (τ_1, τ_2) - wg - closed subset of (X, τ_1, τ_2) then A is (τ_1, τ_2) - rg**b closed set.

Proof

Assume that A is (τ_1, τ_2) - wg - closed set in (X, τ_1, τ_2) such that $A \subseteq U$ and U be any τ_1 - open set containing A. Since A is a (τ_1, τ_2) - rwg - closed set, then τ_2 - rg*bcl(A) $\subseteq \tau_2$ - cl(τ_1 - int(A)) \subseteq U. Therefore τ_2 - rg*bcl(A) \subseteq U. Hence A is (τ_1, τ_2) - rg**b closed set.

The converse of this proposition need not be true as seen from the following example.

3.34 Example

Consider the topological space $X = \{a, b, c\}$ and with topologies $\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and

 $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}.$

The set {b} is (τ_1, τ_2) - rg**b closed set but not (τ_1, τ_2) - wg - closed set.

Fig 3.1.1 Pictorial Representation of the above results.

IV. CONCLUSION

In this paper, $(\tau_1, \tau_2) - rg^{**b}$ closed sets in bitopological spaces were introduced and extended to be investigated. The concept of $(\tau_1, \tau_2) - rg^{**b}$ closed sets can be extended further to other topological spaces namely ideal topology, soft topology and so on and their properties can be investigated.

V. REFERENCES

- [1] Ahmad Al Omari and Md. Salmi & Md. Noorani, on generalized b closed sets. Bull. Malayas. Mat. Sci. Soc (2) 32(1) (2009), 19 30.
- [2] B. Bhattacharya and A. Paul, on bitopological alpha open set, Isro journal of Mathematics, 5(2) (2013), 10-14.
- [3] S.S Benchalli and R.S. Wali, on rw closed sets in topological spaces, Bull. Malayas. Math. Sci. Soc (2) 30(1) (2007), 99 110.
- [4] K. Chandra Sekhara Rao and K. Kannan, regular generalized star closed sets in bitopological spaces, Thai journal of Math., vol. 4, (2), (2006), 341- 349.
- [5] O. A. EI Tantaury and H. M. Abu Donia, generalized separation Axioms in bitopological spaces, the Arabian JI for science and engg., vol. 30, no.1A, 117 - 129, (2005).
- [6] T. Fukutake, on generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part 3, 35, 19 28(1985).
- [7] T. Fukutake, P. Sundaram and Sheik John. M, 2002, w closed sets and w -open sets in bitopological spaces. Bull. Fukuoka Univ. Ed. Vol. 51.part -3, 1 - 9.

- [8] Y. Gnanmbal, on generalized pre regular sets in topological spaces, Indian J. Pure Appl. Math 28(1997), 351-360.
- K. Indirani and Banupriya, on regular generalized star star b closed sets in topological spaces, national congress (NARC 2014) ISBN 978 -1 - 9415052 - 4 - 3.
- [10] S. Jafara, M. Lellis Thivagar and S. A. Thisaya Ponmani, (1, 2) α open sets based on bitopological separation axioms, sochw journal of Math., vol.33, no.3, p, 375 - 381, 2007.
- [11] M. Jelic, P. Feebly continuous mappings. International meeting on topology in Italy. (Lecce, 1990/Otranto, 1990). Rend. Circ. Math. Palermo (2) suppl. No. 24 (1990), 387- 395.
- [12] JK. Kannan, D. Nareasimha, and K. K. Chandrasekhara Rao, regular generalized star star closed sets in bitopological spaces, word Academy, Engineering and Technology, vol. 54, (2011), 33 - 35.
- [13] M. Karpagaduri, A. Pushpalatha, (i, j) rw closed set in bitopological spaces, International journal of computer applications vol. 47 no. 6, June 2012.
- [14] J. C. Kelly, Bitopological Spaces, Proc. London, Math. Soc., 13(1963), 71-89.
- [15] F.H. Khber and H.S. Al Saadi, on pair wise generalized closed sets, JKAU, Sci. vol.21, no.(2009) 2. 269 295.
- [16] N. Levine, generalized closed set in topology. Rend cir, mat. Palermo (2) 19 (1970) 89 96.
- [17] N. Levine, Semi open sets in topological spaces, Amer Math. Monthly, 70(1963), 36-41.
- [18] S.N. Maheswari and R. Prasad, on semi open sets in bitopological spaces. Math. No tar, 26, (1977/78), 29 37.
- [19] Sheik John. M and Sundaram. P, g* closed sets in bitopological spaces, Indian. J. Pure. Appl. Math 35(1), 71 80 (2004).
- [20] L. Vinayagamoorthi, N. Nagaveni., on generalized αb closed sets, proceeding ICMD Allahabad, Puspha publications vol.1, 2010 -11.