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I.  INTRODUCTION 

In 1970, Levine [16] introduced the concept of generalized closed sets and discussed the properties of sets, 

closed and open maps, compactness, normal and separation axioms. 

Later in 1985, Fukutake [5] gave a new type of generalized closed set in bitopological spaces. Ahmad Al - 

Omari and Md. Noorani [1] made an analytical study and gave the concept of generalized b-closed set in topological 

spaces. Indirani and Banupriya [9] introduce a new class of closed sets called regular generalized star star b-closed 

sets. 

         II.   PRELIMINARIES 

 Throughout this paper  (X, τ1, τ2)  represents a bitopological space in which no separation axioms are 

assumed, if A is a subset of a topological space X with a topology  τ, with then the closure of A is denoted  by  τ - 

cl(A) or cl(A), the interior of A is denoted by  τ - int(A) or int(A), semi - closure and pre - closure of A is denoted by 

τ - scl(A) or scl(A) and  pcl(A) or pcl(A) respectively, semi - interior of A is denoted by τ - sint(A) or sint(A) and 

the complement of A is denoted by  Ac. 

2.1 Definition  

A subset A of a topological space (X, τ) is called: 

1) An α - open set if A  ⊆  int(cl(int(A))). 

2) A semi - open set if A  ⊆  cl(int(A)). 

3) A pre - open set if A  ⊆  int(cl(A)). 

4) A semi - pre - open set or β - open set if A  ⊆  cl(int(cl(A))). 

5) A regular open set if A =  int(cl(A)). 

6) A b - open set if A  ⊆  int(cl(A)) U cl(int(A)). 

2.2 Definition   

Let (X, τ) a topological space and A be a subset of X, then A is called: 

1) A generalized closed set if cl(A) ⊆  U whenever A  ⊆  U and U is open in X. It is also denoted as g - closed set. 

2) A generalized α - closed set if αcl(A)  ⊆  U whenever A  ⊆  U and U is α - open in X. It is also denoted as gα - 

closed set. 

3) An α - generalized closed set if αcl(A) ⊆  U whenever A  ⊆  U and U is open in X. It is also denoted as αg - 

closed set. 
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4) A generalized b - closed set if bcl(A) ⊆  U whenever A ⊆ U and U is open in X. It is also denoted as gb -closed 

closed set. 

5) Semi generalized closed set if scl(A) ⊆  U whenever A ⊆ U and U is semi - open in X. It is also denoted as sg - 

closed set. 

6) A generalized semi - closed set if scl(A) ⊆ U whenever A  ⊆  U and U is open in X. It is also denoted as gs - 

closed set. 

7) w - closed set if cl(A)  ⊆  U whenever A  ⊆  U and U is semi - open in X. 

8) A weakly generalized closed set if cl(int(A))  ⊆  U and U is open in X. It is also denoted as wg - closed set. 

9) A semi - generalized b - closed set if bcl(A) ⊆  U whenever A  ⊆  U and U is semi-open in X. . It is also denoted 

as sgb - closed set. 

10) A strongly generalized closed set if cl(A) ⊆  U whenever A  ⊆  U and U is g - open in X. It is also denoted as g* 

- closed set. 

11) A generalized gαb - closed set if bcl(A) ⊆ U whenever A ⊆ U and U is α - open in X. It is also denoted as gαb - 

closed set. 

12)  A regular generalized b - closed set if bcl(A) ⊆ U whenever A ⊆ U and U is regular - open in X. It is also 

denoted as rgb - closed set. 

2.3 Definition  

A subset A of a bitopological space (X, τ1, τ2) is called a 

1) (τ1,τ2) - pre - open if A ⊆  τ1 - int(τ2 - cl(A)). 

2) (τ1,τ2) - semi - open if A ⊆  τ2 - cl(τ1 - int(A)). 

3) (τ1,τ2) - α - open if A ⊆  τ1 - int(τ2 - cl(τ1 - int(A)). 

4) (τ1,τ2) - regular - open if A = τ1 - int(τ2 - cl(A)). 

2.4 Definition 

A subset A of a bitopological space (X, τ1, τ2) is called a 

1) (τ1, τ2) - g - closed if τ2 - cl(A)  ⊆  U whenever A ⊆ U and U ϵ τ1. 

2) (τ1, τ2) - gs - closed if τ2 - scl(A)  ⊆  U whenever A  ⊆  U and U ϵ τ1. 

3) (τ1, τ2) - weakly generalized closed ((τ1,τ2) - wg - closed) sets if τ2 - cl(τ1 - int(A)) ⊆  U whenever  A ⊆ U and U 

is τ1 - open in X. 

4) (τ1, τ2) - w - closed if τ2 - cl(A) ⊆ U whenever A ⊆ U and U is semi - open in τ1. 

5) (τ1, τ2) - g* - closed if  τ2 - cl(A) ⊆ U whenever  A ⊆  U and U is τ1 - g open in X. 

6) (τ1, τ2) - αg - closed if  τ2 - αcl(A) ⊆ U whenever  A  ⊆  U and U is τ1 - open in X. 

7) (τ1, τ2) - gα - closed if  τ2 - αcl(A) ⊆ U whenever  A  ⊆  U and U is τ1 - α - open in X. 

8) (τ1, τ2) - g*p - closed if  τ2 - pcl(A) ⊆ U whenever  A ⊆  U and U is τ 1 - g - open in X. 

9) (τ1, τ2) - rg - closed if  τ2 - cl(A) ⊆ U whenever  A ⊆ U and U is τ1 - regular open in X. 

10) (τ1, τ2) - rg** - closed if τ2 - cl(τ1 - int(A))  ⊆  U whenever  A  ⊆  U and U is (τ1, τ2) - regular  open in X. 

11) (τ1, τ2) - rw - closed if  τ2 - cl(A) ⊆  U whenever  A  ⊆  U and U is τ1 - regular - semi - open in X. 

12) (τ1, τ2) - regular weakly generalized closed((τ1, τ2) - wg - closed) sets if  τ2 - cl (τ1 - int(A)) ⊆  U whenever  

A  ⊆  U and U is τ1 - regular open in X. 

III (Τ1, Τ2) - RG**B CLOSED SETS IN BITOPOLOGICAL SPACES 

In this section (τ1, τ2) - rg**b closed sets in bitopological spaces are introduced and some of their properties 

are studied. 

3.1 Definition 

Let i, j ϵ {1, 2} be fixed integers. A subset A of a topological spaces (X, τ1 ,τ2) is called regular generalized 

star star b closed set if τ2 - rg*bcl(A) ⊆ U whenever A ⊆ U and U is τ1 - open in (X, τ1).The family of all (τ1 ,τ2) - 

rg**b closed sets in bitopological space (X, τ1, τ2) is denoted by D*rg**b(τ1, τ2). 

3.2 Remark 
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By setting τ1 = τ2 in definition 3.1 (τ1, τ2) - rg**b closed set is a rg**b closed set. 

3.3 Proposition 

 If A is a τ2 - closed subset of (X, τ1, τ2) then A is   (τ1, τ2) - rg**b closed set. 

Proof 

 Let A be any τ2 - closed set. Therefore τ2 - cl(A) = A and U be any τ1 - open set containing A. Since τ2 - 

rg*bcl(A) ⊆ τ2 - cl(A) ⊆ U then τ2 - rg*bcl(A) ⊆ U. Hence A is (τ1, τ2) - rg**b closed set. 

The converse of this proposition need not be true as seen from the following example. 

Example 3.4 

Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and      

τ2   =   {X, ϕ, {a}, {b}, {a, b}}. 

The sets {a}, {b} are (τ1, τ2) - rg**b closed but not τ2 - closed. 

3.5 Proposition 

If A is a τ2 - b - closed subset of (X, τ1, τ2) then A is (τ1, τ2) - rg**b closed set. 

Proof 

  Let A be any τ2 - b - closed set in (X, τ1, τ2) such that A  ⊆  U and U is τ1 - open set. Since A is a τ2 - b - 

closed which implies that τ2 - rg*bcl (A) ⊆ τ2 - cl(A) ⊆ U then τ2 - rg*bcl(A) ⊆ U. Hence A is (τ1, τ2) - rg**b closed 

set. 

The converse of this proposition need not be true as seen from the following example. 

3.6 Example 

 Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and      

τ2   =   {X, ϕ, {a}, {b}, {a, b}}. 

The set {a, b} is (τ1, τ2) - rg**b closed but not τ2 - b - closed. 

3.7 Proposition 

If A is τ2 - α closed subset of (X, τ1, τ2) then A is     (τ1, τ2) - rg**b closed set. 

Proof 

 Let A be any τ2 - α closed set in (X, τ1, τ2) such that A ⊆ U and U is τ1 - open set. Since every  α - closed 

set is rg*b - closed set and A is a τ2 - α - closed set, it is true that τ2 - rg*bcl(A)  ⊆  τ2 - αcl(A) ⊆ τ2 - cl(A) = A ⊆ U 

then τ2 - rg*bcl(A) ⊆ U whenever A  ⊆  U. Hence A is (τ1, τ2) - rg**b closed set. 

The converse of this proposition need not be true as seen from following example. 

3.8 Example  

Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and      

τ2   =   {X, ϕ, {a}, {b}, {a, b}}. 
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The sets {a}, {b} are (τ1, τ2) - rg**b closed set but not in τ2 - α - closed set. 

3.9 Proposition 

 If A is a (τ1, τ2) - g - closed subset of (X, τ1, τ2) then A is (τ1, τ2) - rg**b closed set. 

Proof 

Let A be any (τ1, τ2) - g - closed set in (X, τ1, τ2) such that A  ⊆  U and U is τ1 - open set. Since A is a (τ1, 

τ2) - g - closed which implies that τ2 - rg*bcl (A) ⊆  τ2 - cl (A)  ⊆  U then τ2 - rg*bcl (A) ⊆  U. Hence A is (τ1, τ2) - 

rg**b closed set. 

The converse of this proposition need not be true as seen from the following example. 

3.10 Example 

  Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and      

τ2   =   {X, ϕ, {a}, {b}, {a, b}}. 

The set {b} is (τ1, τ2) - rg**b closed set but not in (τ1, τ2) - g - closed set. 

3.11 Proposition  

If A is a (τ1, τ2) - g* - closed subset of (X, τ1, τ2) then A is (τ1, τ2) - rg**b closed set. 

Proof 

  Let A be any (τ1, τ2) - g* - closed set in (X, τ1, τ2) such that A  ⊆  U and U be any τ1 - open set containing 

A. Since A is a (τ1, τ2) - g* - closed which implies that τ2 - rg*bcl(A) ⊆ τ2 - cl(A) ⊆ U then τ2 - rg*bcl(A) ⊆ U. 

Hence A is (τ1, τ2) - rg**b closed set. 

The converse of this proposition need not be true as seen from the following example. 

3.12 Example 

Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and      

τ2   =   {X, ϕ, {a}, {b}, {a, b}}. 

The sets {b}, {c} are (τ1, τ2) - rg**b closed but not (τ1, τ2) - g* - closed. 

3.13 Proposition  

If A is a (τ1, τ2) - g*p - closed subset of (X, τ1, τ2) then A is (τ1, τ2) - rg**b closed set. 

Proof  

Assume that A is (τ1, τ2) - g*p - closed set in (X, τ1, τ2) such that A ⊆ U and U be any τ1 - open set. Since A 

is a (τ1, τ2) - g*p - closed set, we have τ2 - pcl(A) ⊆ U, τ2 - rg*bcl(A) ⊆ τ2 - pcl(A) ⊆ U then τ2 - rg*bcl(A) ⊆ U. 

Hence A is     (τ1, τ2) - rg**b closed set. 

The converse of this proposition need not be true as seen from the following example. 

3.14 Example 

Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and      

τ2   =   {X, ϕ, {a}, {b}, {a, b}}. 
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The set {b} is (τ1, τ2) - rg**b closed but not (τ1, τ2) - g*p - closed. 

3.15 Proposition  

If A is a (τ1, τ2) - gb - closed subset of (X, τ1, τ2) then A is (τ1, τ2) - rg**b closed set. 

Proof 

  Assume that A is (τ1, τ2) - gb - closed set in (X, τ1, τ2) such that A ⊆ U and U be any τ1 - open set. Since A 

is a   (τ1, τ2) - gb - closed set, we have τ2 - rg*bcl(A) ⊆ U. Hence A is (τ1, τ2) - rg**b closed set. 

The converse of this proposition need not be true as seen from the following example. 

3.16 Example 

Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and      

τ2   =   {X, ϕ, {a}, {b}, {a, b}}. 

The set {b} is (τ1, τ2) - rg**b closed but not (τ1, τ2) - gb - closed. 

3.17 Proposition   

If A is a (τ1, τ2) - αg - closed subset of (X, τ1, τ2) then A is (τ1, τ2) - rg**b closed set. 

Proof 

  Assume that A is (τ1, τ2) - αg - closed set in (X, τ1, τ2) such that A ⊆ U and U be any τ1 - open set. Since A 

is a   (τ1, τ2) - αg - closed set, then τ2 - rg*bcl (A) ⊆ τ2 - αcl(A) ⊆ U. Therefore τ2 - rg*bcl(A) ⊆  U. Hence A is (τ1, 

τ2) - rg**b closed set. 

The converse of this proposition need not be true as seen from the following example. 

3.18 Example 

  Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and      

τ2   =   {X, ϕ, {a}, {b}, {a, b}}. 

The set {b} is (τ1, τ2) - rg**b closed but not (τ1, τ2) - αg - closed. 

3.19 Proposition 

 If A is a (τ1, τ2) - gα - closed subset of (X, τ1, τ2) then A is (τ1, τ2) - rg**b closed set. 

Proof 

Assume that A is (τ1, τ2) - gα - closed set in (X, τ1, τ2) such that A ⊆ U and U be any τ1 - open set 

containing A. Since A is a (τ1, τ2) - gα - closed set, then τ2 - rg*bcl(A)  ⊆  τ2 - αcl(A) ⊆ U. Therefore τ2 - rg*bcl(A) 

 ⊆  U. Hence A is    (τ1, τ2) - rg**b closed set. 

The converse of this proposition need not be true as seen from the following examples. 

3.20 Example 

 Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and  

  τ2   = {X, ϕ, {a}, {b}, {a, b}}. 
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The sets {a}, {b} are (τ1, τ2) - rg**b closed but not (τ1, τ2) - gα - closed. 

3.21 Proposition  

If A is a (τ1, τ2) - gαb - closed subset of (X, τ1, τ2) then A is (τ1, τ2) - rg**b closed set. 

Proof 

 Assume that A is (τ1, τ2) - gαb - closed set in (X, τ1, τ2) such that A ⊆ U and U be any τ1 - open set 

containing A. Since A is a (τ1, τ2) - gαb - closed set, then τ2 - rg*bcl(A)  ⊆  τ2 - αbcl(A) ⊆ U. Therefore τ2 - rg*bcl(A) 

⊆ U. Hence A is (τ1, τ2) - rg**b closed set. 

The converse of this proposition need not be true as seen from the following example. 

3.22 Example 

Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and                 

τ2   = {X, ϕ, {a}, {b}, {a, b}}. 

The set {a, b} is (τ1, τ2) - rg**b closed but not (τ1, τ2) - gαb - closed. 

3.23 Proposition 

 If A is a (τ1, τ2) - gs - closed subset of (X, τ1, τ2) then A is (τ1, τ2) - rg**b closed set. 

Proof 

Assume that A is (τ1, τ2) - gs - closed set in (X, τ1, τ2) such that A ⊆ U and U be any τ1 - open set containing 

A. Since A is a (τ1, τ2) - gs - closed set, then τ2 - rg*bcl(A) ⊆ τ2  - scl(A) ⊆ U. Therefore τ2 - rg*bcl(A) ⊆ U. Hence A 

is (τ1, τ2) - rg**b closed set. 

The converse of this proposition need not be true as seen from the following example. 

3.24 Example  

Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and   

 τ2 = {X, ϕ, {a}, {b}, {a, b}}. 

The sets {a, b}, {a, c} are (τ1, τ2) - rg**b closed but not (τ1, τ2) - gs - closed. 

3.25 Proposition  

 If A is a (τ1, τ2) - sg - closed subset of (x, τ1, τ2) then A is (τ1, τ2) - rg**b closed set. 

Proof                                                                                                                                                                      

 Assume that A is (τ1, τ2) - sg - closed set in (x, τ1, τ2) such that A ⊆ U and U be any τ1 - open set containing 

A. Since A is a (τ1, τ2) - sg - closed set, then τ2 - rg*bcl(A) ⊆ τ2 - scl(A) ⊆U. Therefore τ2 - rg*bcl(A) ⊆ U. Hence A 

is          (τ1, τ2) - rg**b closed set. 

The converse of this proposition need not be true as seen from the following example. 

3.26 Example  

  Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and    

 τ2   =   {X, ϕ, {a}, {b}, {a, b}}. 
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The set {a, b} is (τ1, τ2) - rg**b closed but not (τ1, τ2) - sg - closed.  

3.27 Proposition  

 If A is a (τ1, τ2) - rg - closed subset of (x, τ1, τ2) then A is (τ1, τ2) - rg**b closed set. 

Proof 

  Assume that A is (τ1, τ2) - rg - closed set in (x, τ1, τ2) such that A ⊆ U and U be any τ1- open set containing 

A. Since A is a (τ1, τ2) - sg - closed set, then τ2 - rg*bcl(A) ⊆ τ2 - cl(A) ⊆ U. Therefore τ2 - rg*bcl(A) ⊆ U. Hence A 

is          (τ1, τ2) - rg**b closed set. 

The converse of this proposition need not be true as seen from the following example. 

3.28 Example 

 Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and    

τ2   =   {X, ϕ, {a}, {b}, {a, b}}. 

The sets {a}, {b} are (τ1, τ2) - rg**b closed but not (τ1, τ2) - rg - closed. 

3.29 Proposition  

If A is a (τ1, τ2) - w - closed subset of (X, τ1, τ2) then A is (τ1, τ2) - rg**b closed set. 

Proof 

Assume that A is (τ1, τ2) - w - closed set in (X, τ1, τ2) such that  A ⊆ U and U be any τ1 - open set 

containing A. Since A is a (τ1, τ2) - w - closed set, then τ2 - rg*bcl(A) ⊆ τ2 - cl(A) ⊆ U. Therefore τ2 - rg*bcl(A) ⊆ U. 

Hence A is           (τ1, τ2) - rg**b closed set. 

The converse of this proposition need not be true as seen from the following example. 

3.30 Example 

 Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and   

τ2   =  {X, ϕ, {a}, {b}, {a, b}}. 

The sets {a}, {b} are (τ1, τ2) - rg**b closed but not (τ1, τ2) - w - closed. 

3.31 Proposition  

If A is a (τ1, τ2) - rwg - closed subset of (X, τ1, τ2) then A is (τ1, τ2) -   rg**b closed set. 

Proof                                                                                                                                                                                      

Assume that A is (τ1, τ2) - rwg - closed set in (X, τ1, τ2) such that A ⊆ U and U be any τ1 - open set containing A. 

Since A is a (τ1, τ2) - rwg - closed set, then τ2 - rg*bcl(A) ⊆ τ2 - cl(τ1 - int(A)) ⊆ U. Therefore τ2 - rg*bcl(A) ⊆ U. 

Hence A is (τ1, τ2) - rg**b closed set. 

The converse of this proposition need not be true as seen from the following example. 

3.32 Example 

Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and  

  τ2 = {X, ϕ, {a}, {b}, {a, b}}. 
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The sets {a}, {b} are (τ1, τ2) - rg**b closed but not (τ1, τ2) - rwg - closed. 

 3.33 Proposition 

 If A is a (τ1, τ2) - wg - closed subset of (X, τ1, τ2) then A is (τ1, τ2) - rg**b closed set. 

Proof 

Assume that A is (τ1, τ2) - wg - closed set in (X, τ1, τ2) such that A ⊆ U and U be any τ1 - open set 

containing A. Since A is a (τ1, τ2) - rwg - closed set, then τ2 - rg*bcl(A) ⊆ τ2 - cl(τ1 - int(A)) ⊆ U. Therefore τ2 - 

rg*bcl(A) ⊆ U. Hence A is (τ1, τ2) - rg**b closed set. 

The converse of this proposition need not be true as seen from the following example. 

3.34 Example  

Consider the topological space X = {a, b, c} and with topologies τ1 = {X, ϕ, {b}, {c}, {b, c}} and 

 τ2   = {X, ϕ, {a}, {b}, {a, b}}. 

The set {b} is (τ1, τ2) - rg**b closed set but not (τ1, τ2) - wg - closed set. 

 

Fig 3.1.1 Pictorial Representation of the above results. 

IV. CONCLUSION 

In this paper, (τ1, τ2) - rg**b closed sets in bitopological spaces were introduced and extended to be 

investigated. The concept of (τ1, τ2) - rg**b closed sets can be extended further to other topological spaces namely 

ideal topology, soft topology and so on and their properties can be investigated. 
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