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Abstract. In this paper, we introduce the concepts of ĝw-closed sets and ĝw-open

sets in weak structure spaces. Further, we study some of their properties.

1. Introduction

In 1970, Levine [8] introduced the notion of generalized closed (briefly, g-closed)
sets in general topology. Császár [4] introduced a new notion of structures called
weak structures. Al-Omari and Noiri [1] introduced generalized closed sets in weak
structures. In this paper we introduce the notions of ĝw-closed sets and ĝw-open sets
in weak structure spaces. The relation of the class of generalized closed sets with the
class of ĝw-closed sets are to be given. Also we study some of their properties.

2. Preliminaries

Throughout this paper, by a space X, we always mean a topological space (X,
τ) with no separation properties assumed. Let H be a subset of X. We denote the
interior, the closure and the complement of a set H by int(H), cl(H) and X\H or Hc,
respectively.
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Definition 2.1. [9] Let X be a space. A subset H of a space X is said to be semi-open

if H⊆cl(int(H)).

The family of all semi-open sets in X is denoted by SO(X).

The complement of a semi-open set is called semi-closed.

Definition 2.2. [3] The semi-closure of the subset H of a space X is the intersection

of all semi-closed subsets of X containing H and it is denoted by scl(H).

Definition 2.3. [2] A subset H of a space X is called a semi-generalized closed set

(briefly sg-closed) if scl(H)⊆U whenever H⊆U and U is semi-open in (X,τ).

Theorem 2.4. [2] Every semi-closed set is sg-closed but not conversely.

Definition 2.5. [12] Let X be a space and H a subset of X. A point x∈X is called a

θ-cluster point of H if cl(V)∩H6=∅ for every open set V containing x. The set of all

θ-cluster points of H is called the θ-closure of H and is denoted by clθ(H).

A subset H of a space X is said to be θ-closed if clθ(H)=H. The complement of a

θ-closed set is called θ-open. The collection of all θ-open sets in X is denoted by τ θ.

τ θ forms a topology on X.

Definition 2.6. [8] Let X be a space. A subset H of a space X is said to be generalized

closed (briefly, g-closed) if cl(H)⊆U whenever H⊆U and U is open in (X, τ).

The complement of a g-closed set is called g-open.

Definition 2.7. [7] Let X be a space. A subset H of a space X is said to be θw-closed

if clθ(H)⊆U whenever H⊆U and U∈SO(X).

Remark 2.8. [9, 12] For a subset of a space, we have the following implications.

θ-open → open → semi-open.

Definition 2.9. [13] Let X be a space. A subset H of X is said to be ĝ-closed if

cl(H)⊆U whenever H⊆U and U∈SO(X).

The complement of a ĝ-closed set is called ĝ-open.

Theorem 2.10. [8] A subset H is g-open iff F⊆int(H), whenever F is closed and

F⊆H.
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ĝw-CLOSED SETS IN WEAK STRUCTURE SPACES 3

Definition 2.11. [4, 10] Let X be a nonempty set and w⊆P(X) where P(X) is the

power set of X. Then w is called a weak structure (WS in short) on X if ∅ ∈ w.

A non-empty set X with a weak structure w is called a weak structure space (WSS

in short) and is denoted by (X, w). Each member of w is said to be w-open and the

complement of a w-open set is called w-closed.

Definition 2.12. [10] Let (X, w) be a WSS. Let H ⊆ X. Then the interior of H

(briefly iw(H) ) is the union of all w-open sets contained in H and the closure of A

(briefly cw(H)) is the intersection of all w-closed sets containing H.

Remark 2.13. [1] If w is a WS on X, then iw(∅)=∅ and cw(X)=X.

Theorem 2.14. [4] If w is a WS on X and A,B ∈ w then

(1) iw(A)⊆A⊆cw(A),

(2) A⊆B⇒iw(A)⊆iw(B) and cw(A)⊆cw(B),

(3) iw(iw(A))=iw(A) and cw(cw(A))=cw(A),

(4) iw(X − A)=X − cw(A) and cw(X − A)=X − iw(A).

Lemma 2.15. [1] If w is a WS on X, then

(1) x∈iw(A) if and only if there is a w-open set G⊆A such that x∈G,

(2) x∈cw(A) if and only if G∩A6=∅ whenever x∈G∈w,

(3) If A∈w, then A=iw(A) and if A is w-closed then A=cw(A).

Definition 2.16. [1] Let w be a WS on a space X. Then H⊆X is called a generalized

w-closed set (gw-closed in short) if cw(H)⊆U whenever H⊆U∈τ .

The complement of a gw-closed set is called gw-open.

Lemma 2.17. [1] For a WS w on a space X, every w-closed set is a gw-closed set

but not conversely.

Definition 2.18. [1] A space X is called a w-T 1
2
-space if for every gw-closed set H

of X, cw(H)=H.
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Definition 2.19. [1] Let X be a space and w be a WS on X. Then (X, τ) is said to

be w-regular if for each closed set F of X and each x 6∈F, there exist disjoint w-open

sets U and V such that x∈U and F⊆V.

Definition 2.20. [1] Let X be a space and w be a WS on X. Then (X, τ) is said

to be w-normal if for any two disjoint closed sets A and B there exist two disjoint

w-open sets U and V such that A⊆U and B⊆V.

3. Properties of ĝw-closed sets

In this section we introduce ĝw-closed sets and study some of its properties.

Definition 3.1. Let w be a WS on a space X. Then H⊆X is called a ĝw-closed set

if cw(H)⊆U whenever H⊆U∈SO(X).

The complement of a ĝw-closed set is called ĝw-open.

Remark 3.2. (1) Let w be a WS on a space X. Then cw(H)⊆cl(H) for any set

H⊆X.

(2) Let w be a WS on a space X. Then every ĝw-closed set reduces to ĝ-closed

(resp. sg-closed, θw-closed) if one takes w to be τ (resp. SO(X), τθ).

(3) For a WS w on a space X, every w-closed set is ĝw-closed. In fact, if H is

a w-closed set with H⊆U∈SO(X) then H=cw(H)⊆U, so that H is ĝw-closed.

That the converse is not true is shown by the following Example 3.3.

(4) For a WS w on a space X, every ĝw-closed set is gw-closed set. In fact, if H is

a ĝw-closed set with H⊆U∈τ⊆SO(X) then cw(H)⊆U, so that H is gw-closed

set. That the converse is not true is shown by the following Example 3.4.

Example 3.3. Let X={a, b, c} and τ = {φ, {a}, {a, b}, X}. If w = {φ, {b}, {a,b}},

then w is a WS on X. It is easy to check that the subset {b, c} is ĝw-closed but not

w-closed.

Example 3.4. Let X={a, b, c} and τ = {φ, {a}, {a, b}, X}. If w = {φ, {a}},

then w is a WS on X. It is easy to check that the subset {a, c} is gw-closed but not

ĝw-closed.
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ĝw-CLOSED SETS IN WEAK STRUCTURE SPACES 5

Remark 3.5. The Union (resp. the Intersection) of two ĝw-closed sets is not in

general ĝw-closed.

Example 3.6. Let X={a, b, c} and τ = {φ, {b}, {b, c}, X}. If w = {φ, {a, b}, {a,

c}}, then w is a WS on X. It is easy to check that M ={b} and N ={c} are ĝw-closed

sets and M∪N={b, c} is not a ĝw-closed set in X.

Example 3.7. Let X={a, b, c} and τ = {φ, {b}, {b, c}, X}. If w = {φ, {a}, {a,

c}}, then w is a WS on X. It is easy to check that S={b} and T={c} are ĝw-closed

sets and S∩T=∅ is not a ĝw-closed set in X.

Theorem 3.8. Let w be a WS on a space X. If H is ĝw-closed, then cw(H)−H does

not contain any non-empty semi-closed set.

Proof. Let F be a semi-closed subset of X such that F⊆cw(H)−H, where H is ĝw-

closed. Since X−F is semi-open, H⊆X−F and H is ĝw-closed, cw(H)⊆X−F and thus

F⊆X−cw(H). Thus F⊆(X−cw(H))∩cw(H)=∅ and hence F=∅.

If cw(H)−H does not contain any non-empty semi-closed subset of X, then H need
not be ĝw-closed in general.

Example 3.9. In Example 3.6, let H={a}. Then cw(H)−H=X−{a}={b, c} does not

contain any non-empty semi-closed set, but H is not a ĝw-closed set in X.

Corollary 3.10. Let w be a WS on a space X and H⊆X be a ĝw-closed set. Then

cw(H)=H if and only if cw(H)−H is semi-closed.

Proof. Let H be a ĝw-closed set. If cw(H)=H, then cw(H)−H=∅, and cw(H)−H is a

semi-closed set.

Conversely, let cw(H)−H be a semi-closed set, where H is ĝw-closed. Then by Theo-

rem 3.8, cw(H)−H does not contain any non-empty semi-closed set. Since cw(H)−H

is a semi-closed subset of itself, cw(H)−H=∅ and hence cw(H)=H.

Theorem 3.11. A subset H of a space X with a WS w on it is ĝw-closed if and only

if scl({x})∩H 6= ∅ for every x∈cw(H).
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Proof. Let H be a ĝw-closed set in X and suppose if possible that there exists x∈cw(H)

such that scl({x})∩H=∅. Therefore, H⊆X−scl({x}), and so cw(H)⊆X−scl({x}).

Hence x 6∈cw(H), which is a contradiction.

Conversely, suppose that the condition of the theorem holds and let U be any semi-

open set containing H. Let x∈cw(H). Then by hypothesis scl({x})∩H6=∅, so there

exists z∈scl({x})∩H and so z∈H⊆U and U is semi-open. Thus {x}∩U 6=∅. Hence

x∈U, which implies that cw(H)⊆U. This shows that H is ĝw-closed.

Theorem 3.12. Let w be a WS on a space X and H⊆G⊆cw(H), where H is ĝw-closed.

Then G is ĝw-closed.

Proof. Let G⊆U∈SO(X). Since H is ĝw-closed and H⊆U, cw(H)⊆U. Now, G⊆cw(H),

cw(G)⊆cw(H) and hence cw(G)⊆U.

Theorem 3.13. Let X be a space and w be a WS on X. Then H is ĝw-open if and

only if F⊆iw(H) whenever F⊆H and F is semi-closed.

Proof. Let H be a ĝw-open set and F⊆H, where F is semi-closed. Then X−H is

ĝw-closed set contained in a semi-open set X−F. Hence cw(X−H)⊆X−F, that is

X−iw(H)⊆X−F. So F⊆iw(H).

Conversely, suppose that F⊆iw(H) for any semi-closed set F whenever F⊆H. Let

X−H⊆U, where U∈SO(X). Then X−U⊆H and X−U is semi-closed. By assumption,

X−U⊆iw(H) and hence cw(X−H)=X−iw(H)⊆U. Therefore X−H is ĝw-closed and

hence H is ĝw-open.

Theorem 3.14. Let w be a WS on a space X. If H is semi-open and ĝw-closed subset

of X, then cw(H)=H.

Proof. Obvious.

Theorem 3.15. Let w be a WS on a space X. Then the following are equivalent:

(1) For every semi-open set U of X, cw(U)⊆U.

(2) Every subset of X is ĝw-closed.
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ĝw-CLOSED SETS IN WEAK STRUCTURE SPACES 7

Proof. (1)⇒ (2). Let H be any subset of X and H⊆U∈SO(X). Then by (1) cw(U)⊆U

and hence cw(H)⊆cw(U)⊆U. Thus H is ĝw-closed.

(2) ⇒ (1). Let U∈SO(X). Then by (2), U is ĝw-closed and hence cw(U)⊆U.

Theorem 3.16. Let w be a WS on a space X. If a subset H of X is ĝw-open, then

U=X whenever U is semi-open and iw(H)∪(X−H)⊆U.

Proof. Let U∈SO(X) and iw(H)∪(X−H)⊆U for a ĝw-open set H. Then X−U⊆(X−iw(H))∩H.

That is X−U⊆ cw(X−H)−(X−H). Since X−H is ĝw-closed, by Theorem 3.8, X−U=∅

and hence X=U.

Theorem 3.17. Let w be a WS on a space X. If a subset H of X is ĝw-open and

iw(H)⊆G⊆H, then G is ĝw-open.

Proof. We have X−H⊆X−G⊆X−iw(H)=cw(X−H). Since X−H is ĝw-closed, it fol-

lows from Theorem 3.12 that X−G is ĝw-closed and hence G is ĝw-open.

Let us introduce ĝw-T 1
2
-space.

Definition 3.18. A space X is called a ĝw-T 1
2
-space if for every ĝw-closed set H of

X, cw(H)=H.

Example 3.19. Let X={a, b, c}, τ = {φ, {a}, {a, b}, X} and w = {φ, {a}}. Then

ĝw-closed sets are {b, c}, X. Therefore (X, τ) is a ĝw-T 1
2
-space.

Example 3.20. Let X={a, b, c}, τ = {φ, {a}, {a, b}, {a, c}, X} and w = {φ, {a,

b}, {a, c}}. Then ĝw-closed sets are {b}, {c}, {b, c}, φ, X. Therefore (X, τ) is not

a ĝw-T 1
2
-space.

Proposition 3.21. Every ĝw-T 1
2
-space is w-T 1

2
-space.

Proof. It follows from Remark 3.2(3).

Theorem 3.22. Let w be a WS on a space X. Then the implication (1) ⇒ (2) holds.

If iw({x})∈w for every x∈X, then the following statements are equivalent:

(1) X is a ĝw-T 1
2
-space.
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(2) Every singleton is either semi-closed or {x}=iw({x}).

Proof. (1)⇒ (2). Suppose {x} is not semi-closed subset for some x∈X. Then X−{x}

is not semi-open and hence X is the only semi-open set containing X−{x}. Therefore

X−{x} is ĝw-closed. Since X is a ĝw-T 1
2
-space, cw(X−{x})=X−iw({x})=X−{x} and

thus {x}=iw({x}).

(2)⇒ (1). Let H be a ĝw-closed subset of X and x∈cw(H). We show that x∈H. If {x}

is semi-closed and x/∈H, then x∈(cw(H)−H). Then {x}⊆X−H and hence H⊆X−{x}.

Since H is a ĝw-closed set and X−{x} is a semi-open subset of X, cw(H)⊆X−{x}

and hence {x}⊆X−cw(H). Therefore, {x}∈cw(H)∩(X−cw(H))=∅. This is a contra-

diction. Therefore, x∈H. If {x}=iw({x}), since x∈cw(H), then for every w-open set

U containing x, we have U∩H6=∅. But {x}=iw({x}) is w-open and {x}∩H 6=∅. Hence

x∈H. Therefore, in both cases we have x∈H. Therefore, cw(H)=H and hence X is a

ĝw-T 1
2
-space.

4. ĝw-regular spaces and ĝw-normal spaces

Definition 4.1. Let X be a space and w be a WS on X. Then (X, τ) is said to

be ĝw-regular if for each semi-closed set F of X and each x6∈F, there exist disjoint

w-open sets U and V such that x∈U and F⊆V.

Example 4.2. Let X={a, b, c}, τ={φ, {a}, {b, c}, X} and w={φ, {a}, {b, c}, {b},

X}. Then semi-closed sets are {a}, {b, c}, φ, X. Therefore (X, τ) is a ĝw-regular.

Theorem 4.3. Let w be a WS on a space X. Consider the following statements:

(1) X is ĝw-regular.

(2) For each x∈X and U∈SO(X) with x∈U; there exist V∈w such that x∈V⊆cw(V)⊆U.

Then the implication (1)⇒ (2) holds. If iw(H)∈w for every w-closed set H of a space

X, then the following statements are equivalent.

Proof. (1) ⇒ (2). Let x6∈(X−U), where U∈SO(X). Then by (1) there exist dis-

joint G, V∈w such that X−U⊆G and x∈V. Thus V⊆X−G and hence x∈V⊆cw(V)

⊆cw(X−G)=X−G⊆U.

Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 58 Issue 3  - June 2018

Text Box
ISSN: 2231-5373                            http://www.ijmttjournal.org                        Page 171




ĝw-CLOSED SETS IN WEAK STRUCTURE SPACES 9

(2)⇒ (1). Let F be a semi-closed set and x6∈F. Then x∈X−F∈SO(X) and hence there

exist V∈w such that x∈V⊆cw(V)⊆X−F. Therefore, F⊆X−cw(V)=iw(X−V)∈w.

The implication (2) ⇒ (1) in the above theorem need not be true in general.

Example 4.4. Let X={a, b, c, d} and τ = {φ, {a}, {b}, {a, b}, {a, b, c}, X} with

a WS w = {φ, {a}, {b}, {c}, {d}}. Since for each H∈w, cw(H)=H, then for each

U∈SO(X) with x∈U there exist V∈w such that x∈V⊆cw(V)⊆U. But if F={c, d},

a 6∈F, it is clear that X is not ĝw-regular.

Theorem 4.5. Let X be a space and w be a WS on X, and consider the following

statements:

(1) X is ĝw-regular.

(2) For each semi-closed set F and x 6∈F, there exist U∈w and a ĝw-open set V

such that x∈U, F⊆V and U∩V=∅.

(3) For each H⊆X and each semi-closed set F with H∩F=∅, there exist U∈w and

a ĝw-open set V such that H∩U6=∅, F⊆V and U∩V=∅.

Then the implications (1) ⇒ (2) ⇒ (3) hold. If iw(H)∈w for every ĝw-open set H of

X, then the statements are equivalent.

Proof. (1) ⇒ (2). Obvious.

(2) ⇒ (3). Let H⊆X and F be a semi-closed set with H∩F=∅. Then for a∈H, a6∈ F,

and hence by (2), there exist U∈w and a ĝw-open set V such that a∈U, F⊆V and

U∩V=∅. Hence H∩U6=∅, F⊆V and U∩V=∅.

(3) ⇒ (1). Let x6∈F, where F is semi-closed in X. Since F∩{x}=∅, by (3) there exist

U∈w and a ĝw-open set W such that x∈U, F⊆W and U∩W=∅. Then by Theorem

3.13 we have F⊆iw(W)=V∈w and hence U∩V=∅.

Definition 4.6. Let X be a space and w be a WS on X. Then (X, τ) is said to be

ĝw-normal if for any disjoint semi-closed sets A and B there exist two disjoint w-open

sets U and V such that A⊆U and B⊆V.

Example 4.7. Let X={a, b, c}, τ={φ, {b}, {b, c}, X} and w={φ, {a, b}, {c}, X}.

Then semi-closed sets are {a}, {c }, {a, c}, φ, X. Therefore (X, τ) is a ĝw-normal.
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Theorem 4.8. Let X be a space and w be a WS on X, and consider the following

statements:

(1) X is ĝw-normal.

(2) For any pair of disjoint semi-closed sets M and N of X, there exist disjoint

ĝw-open sets P and Q of X such that M⊆P and N⊆Q.

(3) For each semi-closed set M and each semi-open set N containing M, there

exist a ĝw-open set P such that M⊆P⊆cw(P)⊆N.

Then the implications (1) ⇒ (2) ⇒ (3) hold. If iw(M)∈w and cw(M) is w-closed

for every ĝw-open set M of X, then the statements are equivalent.

Proof. (1) ⇒ (2). Let M and N be a pair of disjoint semi-closed sets of X. Then by

(1) there exist disjoint w-open sets P and Q of X such that M⊆P and N⊆Q. Then

(2) follows from Remark 3.2(3).

(2) ⇒ (3). Let M be a semi-closed set and N be a semi-open set containing M.

Then M and X−N are two disjoint semi-closed sets. Hence by (2) there exist dis-

joint ĝw-open sets P and Q of X such that M⊆P and X−N⊆Q. Since Q is ĝw-open

and X−N is a semi-closed set with X−N⊆Q, by Theorem 3.13, X−N⊆iw(Q). Hence

cw(X−Q)=X−iw(Q)⊆N. Thus M⊆P⊆cw(P)⊆ cw(X−Q)⊆N.

(3) ⇒ (1). Let M and N be two disjoint semi-closed subsets of X. Then M is a

semi-closed set and X−N is a semi-open set containing M. Thus by (3) there exists

a ĝw-open set P such that M⊆P⊆cw(P) ⊆X−N. Thus by Theorem 3.13, M⊆iw(P)

and N⊆X−cw(P), where iw(P) and X−cw(P)=iw(X−P) are disjoint sets. Since P is

ĝw-open, iw(P)∈w and iw(X−P)∈w. Hence X is ĝw-normal.

The implication (3) ⇒ (1) in the above theorem need not be true in general.

Example 4.9. Let X={a, b, c} and τ = {φ, {a}, {a, c}, {a, b}, X} . Let w be a

WS on a space X and w = {φ, {a, c}, {a, b}}. Then it can be easily checked that

(X, τ) is not ĝw-normal but for each semi-closed set M and each semi-open set N

containing M, there exists a ĝw-open set P such that M⊆P⊆cw(P)⊆N.

Theorem 4.10. Let X be a space and w be a WS on X and consider the following

statements:
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(1) For each g-closed set M and each open set N containing M, there exists a

w-open set P such that cl(M)⊆P⊆cw(P)⊆N.

(2) For each closed set M and each g-open set N containing M, there exists a

w-open set P such that M⊆P⊆cw(P)⊆int(N).

(3) For each g-closed set M and each open set N containing M, there exists a

ĝw-open set P such that cl(M)⊆P⊆cw(P)⊆N.

(4) For each closed set M and each open set N containing M, there exists a ĝw-

open set P such that M⊆P⊆cw(P)⊆N.

(5) For each closed set M and each g-open set N containing M, there exists a

ĝw-open set P such that M⊆P⊆cw(P)⊆int(N).

Then the implications (1) ⇒ (2)⇒ (3)⇒ (4)⇒ (5) hold. If iw(M)∈w for every ĝw-

open set M of X, then the statements are equivalent:

Proof. (1)⇒ (2). Let M be a closed set and N be a g-open set containing M. Then by

Theorem 2.10 M⊆int(N). Since M is g-closed and int(N) is open, by (1) there exists

a w-open set such that P⊆cw(P)⊆int(N).

(2) ⇒ (3) and (3) ⇒ (4) are obvious.

(4) ⇒ (5). Let M be a closed set and N be a g-open set containing M. Since N

is g-open and M is closed, by Theorem 2.10 M⊆int(N). Thus by (4), there exists a

ĝw-open set P such that M⊆P⊆cw(P)⊆int(N).

(5)⇒ (1). Let M be a g-closed subset of X and N be an open set containing M. Then

cl(M)⊆N, where N is g-open. Thus by (5), there exists a ĝw-open set G such that

cl(M)⊆G⊆cw(G)⊆int(N)⊆ N. Since G is ĝw-open and cl(M)⊆G, by Theorem 3.13,

cl(M)⊆iw(G). Put P=iw(G). Then P∈w and cl(M)⊆P⊆cw(P)=cw(iw(G))⊆cw(G)⊆N.

5. Conclusion

A new class of generalized closed sets called ĝw-closed sets in weak structure is
defined and studied. Properties of ĝw-closed sets are given. Also the new notion of
ĝw-open sets (or the complement of ĝw-closed sets) is introduced and investigated.
Properties of ĝw-T 1

2
-space, ĝw-normal and ĝw-regular are defined and studied. Prop-

erties and Characterizations of ĝw-normal and ĝw-regular are given.
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