ĝw-Closed Sets in Weak Structure Spaces

¹N.Seenivasagan, ²O. Ravi, ³T.Prabakaran and ⁴V.Sangeetha Subha

¹Department of Mathematics, Government Arts College for Women, Nilakottai, Tamil Nadu, India.

²Controller of Examinations, Madurai Kamaraj University, Madurai, Tamil Nadu, India.

³Department of Mathematics, Latha Mathavan Engineering College, Madurai, Tamil Nadu, India.

⁴Research Scholar, Bharathidasan University, Tiruchirapalli, Tamil Nadu, India.

ABSTRACT. In this paper, we introduce the concepts of $\hat{g}w$ -closed sets and $\hat{g}w$ -open sets in weak structure spaces. Further, we study some of their properties.

1. Introduction

In 1970, Levine [8] introduced the notion of generalized closed (briefly, g-closed) sets in general topology. Császár [4] introduced a new notion of structures called weak structures. Al-Omari and Noiri [1] introduced generalized closed sets in weak structures. In this paper we introduce the notions of $\hat{g}w$ -closed sets and $\hat{g}w$ -open sets in weak structure spaces. The relation of the class of generalized closed sets with the class of $\hat{g}w$ -closed sets are to be given. Also we study some of their properties.

2. Preliminaries

Throughout this paper, by a space X, we always mean a topological space (X, τ) with no separation properties assumed. Let H be a subset of X. We denote the interior, the closure and the complement of a set H by int(H), cl(H) and X\H or H^c, respectively.

⁰2010 Mathematics Subject Classification: 54A05, 54C10.

Key words and phrases. weak structure, generalized closed set, $\hat{g}w$ -closed set, $\hat{g}w$ -open set.

Definition 2.1. [9] Let X be a space. A subset H of a space X is said to be semi-open if $H \subseteq cl(int(H))$.

The family of all semi-open sets in X is denoted by SO(X). The complement of a semi-open set is called semi-closed.

Definition 2.2. [3] The semi-closure of the subset H of a space X is the intersection of all semi-closed subsets of X containing H and it is denoted by scl(H).

Definition 2.3. [2] A subset H of a space X is called a semi-generalized closed set (briefly sg-closed) if $scl(H) \subseteq U$ whenever $H \subseteq U$ and U is semi-open in (X,τ) .

Theorem 2.4. [2] Every semi-closed set is sg-closed but not conversely.

Definition 2.5. [12] Let X be a space and H a subset of X. A point $x \in X$ is called a θ -cluster point of H if $cl(V) \cap H \neq \emptyset$ for every open set V containing x. The set of all θ -cluster points of H is called the θ -closure of H and is denoted by $cl_{\theta}(H)$.

A subset H of a space X is said to be θ -closed if $cl_{\theta}(H)=H$. The complement of a θ -closed set is called θ -open. The collection of all θ -open sets in X is denoted by τ_{θ} . τ_{θ} forms a topology on X.

Definition 2.6. [8] Let X be a space. A subset H of a space X is said to be generalized closed (briefly, g-closed) if $cl(H) \subseteq U$ whenever $H \subseteq U$ and U is open in (X, τ) .

The complement of a g-closed set is called g-open.

Definition 2.7. [7] Let X be a space. A subset H of a space X is said to be θ w-closed if $cl_{\theta}(H) \subseteq U$ whenever $H \subseteq U$ and $U \in SO(X)$.

Remark 2.8. [9, 12] For a subset of a space, we have the following implications. θ -open \rightarrow open \rightarrow semi-open.

Definition 2.9. [13] Let X be a space. A subset H of X is said to be \hat{g} -closed if $cl(H)\subseteq U$ whenever $H\subseteq U$ and $U\in SO(X)$.

The complement of a \hat{g} -closed set is called \hat{g} -open.

Theorem 2.10. [8] A subset H is g-open iff $F \subseteq int(H)$, whenever F is closed and $F \subseteq H$. ISSN: 2231-5373 http://www.ijmttjournal.org Page 165 **Definition 2.11.** [4, 10] Let X be a nonempty set and $w \subseteq P(X)$ where P(X) is the power set of X. Then w is called a weak structure (WS in short) on X if $\emptyset \in w$.

A non-empty set X with a weak structure w is called a weak structure space (WSS in short) and is denoted by (X, w). Each member of w is said to be w-open and the complement of a w-open set is called w-closed.

Definition 2.12. [10] Let (X, w) be a WSS. Let $H \subseteq X$. Then the interior of H(briefly $i_w(H)$) is the union of all w-open sets contained in H and the closure of A(briefly $c_w(H)$) is the intersection of all w-closed sets containing H.

Remark 2.13. [1] If w is a WS on X, then $i_w(\emptyset) = \emptyset$ and $c_w(X) = X$.

Theorem 2.14. [4] If w is a WS on X and $A, B \in w$ then

(1) $i_w(A) \subseteq A \subseteq c_w(A)$, (2) $A \subseteq B \Rightarrow i_w(A) \subseteq i_w(B)$ and $c_w(A) \subseteq c_w(B)$, (3) $i_w(i_w(A)) = i_w(A)$ and $c_w(c_w(A)) = c_w(A)$, (4) $i_w(X - A) = X - c_w(A)$ and $c_w(X - A) = X - i_w(A)$.

Lemma 2.15. [1] If w is a WS on X, then

- (1) $x \in i_w(A)$ if and only if there is a w-open set $G \subseteq A$ such that $x \in G$,
- (2) $x \in c_w(A)$ if and only if $G \cap A \neq \emptyset$ whenever $x \in G \in w$,
- (3) If $A \in w$, then $A = i_w(A)$ and if A is w-closed then $A = c_w(A)$.

Definition 2.16. [1] Let w be a WS on a space X. Then $H \subseteq X$ is called a generalized w-closed set (gw-closed in short) if $c_w(H) \subseteq U$ whenever $H \subseteq U \in \tau$.

The complement of a gw-closed set is called gw-open.

Lemma 2.17. [1] For a WS w on a space X, every w-closed set is a gw-closed set but not conversely.

Definition 2.18. [1] A space X is called a w- $T_{\frac{1}{2}}$ -space if for every gw-closed set Hof X, $c_w(H)=H$.ISSN: 2231-5373http://www.ijmttjournal.orgPage 166

Definition 2.19. [1] Let X be a space and w be a WS on X. Then (X, τ) is said to be w-regular if for each closed set F of X and each $x \notin F$, there exist disjoint w-open sets U and V such that $x \in U$ and $F \subseteq V$.

Definition 2.20. [1] Let X be a space and w be a WS on X. Then (X, τ) is said to be w-normal if for any two disjoint closed sets A and B there exist two disjoint w-open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

3. Properties of $\hat{g}w$ -closed sets

In this section we introduce $\hat{g}w$ -closed sets and study some of its properties.

Definition 3.1. Let w be a WS on a space X. Then $H \subseteq X$ is called a $\hat{g}w$ -closed set if $c_w(H) \subseteq U$ whenever $H \subseteq U \in SO(X)$.

The complement of a $\hat{g}w$ -closed set is called $\hat{g}w$ -open.

- **Remark 3.2.** (1) Let w be a WS on a space X. Then $c_w(H) \subseteq cl(H)$ for any set $H \subseteq X$.
 - (2) Let w be a WS on a space X. Then every \hat{g} w-closed set reduces to \hat{g} -closed (resp. sg-closed, θ w-closed) if one takes w to be τ (resp. $SO(X), \tau_{\theta}$).
 - (3) For a WS w on a space X, every w-closed set is ĝw-closed. In fact, if H is a w-closed set with H⊆U∈SO(X) then H=c_w(H)⊆U, so that H is ĝw-closed. That the converse is not true is shown by the following Example 3.3.
 - (4) For a WS w on a space X, every ĝw-closed set is gw-closed set. In fact, if H is a ĝw-closed set with H⊆U∈τ⊆SO(X) then c_w(H)⊆U, so that H is gw-closed set. That the converse is not true is shown by the following Example 3.4.

Example 3.3. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. If $w = \{\phi, \{b\}, \{a, b\}\}$, then w is a WS on X. It is easy to check that the subset $\{b, c\}$ is $\hat{g}w$ -closed but not w-closed.

Example 3.4. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. If $w = \{\phi, \{a\}\}$, then w is a WS on X. It is easy to check that the subset $\{a, c\}$ is gw-closed but not $\hat{g}w$ -closed. ISSN: 2231-5373 http://www.ijmtijournal.org Page 167 **Remark 3.5.** The Union (resp. the Intersection) of two $\hat{g}w$ -closed sets is not in general $\hat{g}w$ -closed.

Example 3.6. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{b, c\}, X\}$. If $w = \{\phi, \{a, b\}, \{a, c\}\}$, then w is a WS on X. It is easy to check that $M = \{b\}$ and $N = \{c\}$ are $\hat{g}w$ -closed sets and $M \cup N = \{b, c\}$ is not a $\hat{g}w$ -closed set in X.

Example 3.7. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{b, c\}, X\}$. If $w = \{\phi, \{a\}, \{a, c\}\}$, then w is a WS on X. It is easy to check that $S = \{b\}$ and $T = \{c\}$ are $\hat{g}w$ -closed sets and $S \cap T = \emptyset$ is not a $\hat{g}w$ -closed set in X.

Theorem 3.8. Let w be a WS on a space X. If H is $\hat{g}w$ -closed, then $c_w(H)-H$ does not contain any non-empty semi-closed set.

Proof. Let F be a semi-closed subset of X such that $F \subseteq c_w(H) - H$, where H is $\hat{g}w$ closed. Since X-F is semi-open, $H \subseteq X - F$ and H is $\hat{g}w$ -closed, $c_w(H) \subseteq X - F$ and thus $F \subseteq X - c_w(H)$. Thus $F \subseteq (X - c_w(H)) \cap c_w(H) = \emptyset$ and hence $F = \emptyset$.

If $c_w(H)$ -H does not contain any non-empty semi-closed subset of X, then H need not be $\hat{g}w$ -closed in general.

Example 3.9. In Example 3.6, let $H=\{a\}$. Then $c_w(H)-H=X-\{a\}=\{b, c\}$ does not contain any non-empty semi-closed set, but H is not a $\hat{g}w$ -closed set in X.

Corollary 3.10. Let w be a WS on a space X and $H \subseteq X$ be a $\hat{g}w$ -closed set. Then $c_w(H) = H$ if and only if $c_w(H) - H$ is semi-closed.

Proof. Let H be a $\hat{g}w$ -closed set. If $c_w(H)=H$, then $c_w(H)-H=\emptyset$, and $c_w(H)-H$ is a semi-closed set.

Conversely, let $c_w(H)-H$ be a semi-closed set, where H is $\hat{g}w$ -closed. Then by Theorem 3.8, $c_w(H)-H$ does not contain any non-empty semi-closed set. Since $c_w(H)-H$ is a semi-closed subset of itself, $c_w(H)-H=\emptyset$ and hence $c_w(H)=H$.

Theorem 3.11. A subset H of a space X with a WS w on it is $\hat{g}w$ -closed if and only if $scl(\{x\}) \cap H \neq \emptyset$ for every $x \in c_w(H)$. ISSN: 2231-5373 http://www.ijmttjournal.org Page 168 *Proof.* Let H be a $\hat{g}w$ -closed set in X and suppose if possible that there exists $x \in c_w(H)$ such that $scl(\{x\}) \cap H = \emptyset$. Therefore, $H \subseteq X - scl(\{x\})$, and so $c_w(H) \subseteq X - scl(\{x\})$. Hence $x \notin c_w(H)$, which is a contradiction.

Conversely, suppose that the condition of the theorem holds and let U be any semiopen set containing H. Let $x \in c_w(H)$. Then by hypothesis $scl(\{x\}) \cap H \neq \emptyset$, so there exists $z \in scl(\{x\}) \cap H$ and so $z \in H \subseteq U$ and U is semi-open. Thus $\{x\} \cap U \neq \emptyset$. Hence $x \in U$, which implies that $c_w(H) \subseteq U$. This shows that H is $\hat{g}w$ -closed.

Theorem 3.12. Let w be a WS on a space X and $H \subseteq G \subseteq c_w(H)$, where H is $\hat{g}w$ -closed. Then G is $\hat{g}w$ -closed.

Proof. Let $G \subseteq U \in SO(X)$. Since H is $\hat{g}w$ -closed and $H \subseteq U$, $c_w(H) \subseteq U$. Now, $G \subseteq c_w(H)$, $c_w(G) \subseteq c_w(H)$ and hence $c_w(G) \subseteq U$.

Theorem 3.13. Let X be a space and w be a WS on X. Then H is $\hat{g}w$ -open if and only if $F \subseteq i_w(H)$ whenever $F \subseteq H$ and F is semi-closed.

Proof. Let H be a $\hat{g}w$ -open set and F \subseteq H, where F is semi-closed. Then X-H is $\hat{g}w$ -closed set contained in a semi-open set X-F. Hence $c_w(X-H)\subseteq X-F$, that is $X-i_w(H)\subseteq X-F$. So $F\subseteq i_w(H)$.

Conversely, suppose that $F \subseteq i_w(H)$ for any semi-closed set F whenever $F \subseteq H$. Let $X-H\subseteq U$, where $U\in SO(X)$. Then $X-U\subseteq H$ and X-U is semi-closed. By assumption, $X-U\subseteq i_w(H)$ and hence $c_w(X-H)=X-i_w(H)\subseteq U$. Therefore X-H is $\hat{g}w$ -closed and hence H is $\hat{g}w$ -open.

Theorem 3.14. Let w be a WS on a space X. If H is semi-open and $\hat{g}w$ -closed subset of X, then $c_w(H)=H$.

Proof. Obvious.

Theorem 3.15. Let w be a WS on a space X. Then the following are equivalent:

- (1) For every semi-open set U of X, $c_w(U) \subseteq U$.
- (2) Every subset of X is $\hat{g}w$ -closed.

ISSN: 2231-5373

Proof. (1) \Rightarrow (2). Let H be any subset of X and $H \subseteq U \in SO(X)$. Then by (1) $c_w(U) \subseteq U$ and hence $c_w(H) \subseteq c_w(U) \subseteq U$. Thus H is $\hat{g}w$ -closed.

 $(2) \Rightarrow (1)$. Let $U \in SO(X)$. Then by (2), U is $\hat{g}w$ -closed and hence $c_w(U) \subseteq U$.

Theorem 3.16. Let w be a WS on a space X. If a subset H of X is $\hat{g}w$ -open, then U=X whenever U is semi-open and $i_w(H)\cup(X-H)\subseteq U$.

Proof. Let U∈SO(X) and $i_w(H)\cup(X-H)\subseteq U$ for a $\hat{g}w$ -open set H. Then X-U⊆(X- $i_w(H)$)∩H. That is X-U⊆ $c_w(X-H)-(X-H)$. Since X-H is $\hat{g}w$ -closed, by Theorem 3.8, X-U= \emptyset and hence X=U.

Theorem 3.17. Let w be a WS on a space X. If a subset H of X is $\hat{g}w$ -open and $i_w(H) \subseteq G \subseteq H$, then G is $\hat{g}w$ -open.

Proof. We have $X-H\subseteq X-G\subseteq X-i_w(H)=c_w(X-H)$. Since X-H is $\hat{g}w$ -closed, it follows from Theorem 3.12 that X-G is $\hat{g}w$ -closed and hence G is $\hat{g}w$ -open.

Let us introduce $\hat{g}w$ -T¹/₁-space.

Definition 3.18. A space X is called a $\hat{g}w$ - $T_{\frac{1}{2}}$ -space if for every $\hat{g}w$ -closed set H of X, $c_w(H)=H$.

Example 3.19. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $w = \{\phi, \{a\}\}$. Then $\hat{g}w$ -closed sets are $\{b, c\}, X$. Therefore (X, τ) is a $\hat{g}w$ - $T_{\frac{1}{2}}$ -space.

Example 3.20. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $w = \{\phi, \{a, b\}, \{a, c\}\}$. Then $\hat{g}w$ -closed sets are $\{b\}, \{c\}, \{b, c\}, \phi, X$. Therefore (X, τ) is not a $\hat{g}w$ - $T_{\frac{1}{2}}$ -space.

Proposition 3.21. Every $\hat{g}w$ - $T_{\frac{1}{2}}$ -space is w- $T_{\frac{1}{2}}$ -space.

Proof. It follows from Remark 3.2(3).

Theorem 3.22. Let w be a WS on a space X. Then the implication $(1) \Rightarrow (2)$ holds. If $i_w(\{x\}) \in w$ for every $x \in X$, then the following statements are equivalent:

(1) X is a $\hat{g}w$ - $T_{\frac{1}{2}}$ -space.

ISSN: 2231-5373

http://www.ijmttjournal.org

(2) Every singleton is either semi-closed or $\{x\} = i_w(\{x\})$.

Proof. (1) ⇒ (2). Suppose {x} is not semi-closed subset for some x∈X. Then X-{x} is not semi-open and hence X is the only semi-open set containing X-{x}. Therefore X-{x} is $\hat{g}w$ -closed. Since X is a $\hat{g}w$ -T¹/₂-space, $c_w(X-\{x\})=X-i_w(\{x\})=X-\{x\}$ and thus {x}=i_w({x}).

 $(2) \Rightarrow (1)$. Let H be a $\hat{g}w$ -closed subset of X and $x \in c_w(H)$. We show that $x \in H$. If $\{x\}$ is semi-closed and $x \notin H$, then $x \in (c_w(H)-H)$. Then $\{x\} \subseteq X-H$ and hence $H \subseteq X-\{x\}$. Since H is a $\hat{g}w$ -closed set and $X-\{x\}$ is a semi-open subset of X, $c_w(H) \subseteq X-\{x\}$ and hence $\{x\} \subseteq X-c_w(H)$. Therefore, $\{x\} \in c_w(H) \cap (X-c_w(H))=\emptyset$. This is a contradiction. Therefore, $x \in H$. If $\{x\}=i_w(\{x\})$, since $x \in c_w(H)$, then for every w-open set U containing x, we have $U \cap H \neq \emptyset$. But $\{x\}=i_w(\{x\})$ is w-open and $\{x\} \cap H \neq \emptyset$. Hence $x \in H$. Therefore, in both cases we have $x \in H$. Therefore, $c_w(H)=H$ and hence X is a $\hat{g}w$ -T₁-space.

4. $\hat{g}w$ -regular spaces and $\hat{g}w$ -normal spaces

Definition 4.1. Let X be a space and w be a WS on X. Then (X, τ) is said to be $\hat{g}w$ -regular if for each semi-closed set F of X and each $x \notin F$, there exist disjoint w-open sets U and V such that $x \in U$ and $F \subseteq V$.

Example 4.2. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $w = \{\phi, \{a\}, \{b, c\}, \{b\}, X\}$. X}. Then semi-closed sets are $\{a\}, \{b, c\}, \phi, X$. Therefore (X, τ) is a $\hat{g}w$ -regular.

Theorem 4.3. Let w be a WS on a space X. Consider the following statements:

(1) X is $\hat{g}w$ -regular.

(2) For each $x \in X$ and $U \in SO(X)$ with $x \in U$; there exist $V \in w$ such that $x \in V \subseteq c_w(V) \subseteq U$. Then the implication (1) \Rightarrow (2) holds. If $i_w(H) \in w$ for every w-closed set H of a space

X, then the following statements are equivalent.

Proof. (1) ⇒ (2). Let $x \notin (X-U)$, where $U \in SO(X)$. Then by (1) there exist disjoint G, $V \in w$ such that $X-U \subseteq G$ and $x \in V$. Thus $V \subseteq X-G$ and hence $x \in V \subseteq c_w(V)$ $\subseteq c_w(X-G)=X-G \subseteq U$.ISSN: 2231-5373http://www.ijmttjournal.orgPage 171

 $(2) \Rightarrow (1)$. Let F be a semi-closed set and $x \notin F$. Then $x \in X - F \in SO(X)$ and hence there exist $V \in w$ such that $x \in V \subseteq c_w(V) \subseteq X - F$. Therefore, $F \subseteq X - c_w(V) = i_w(X - V) \in w$.

The implication $(2) \Rightarrow (1)$ in the above theorem need not be true in general.

Example 4.4. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ with a WS $w = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}\}$. Since for each $H \in w$, $c_w(H) = H$, then for each $U \in SO(X)$ with $x \in U$ there exist $V \in w$ such that $x \in V \subseteq c_w(V) \subseteq U$. But if $F = \{c, d\}$, $a \notin F$, it is clear that X is not $\hat{g}w$ -regular.

Theorem 4.5. Let X be a space and w be a WS on X, and consider the following statements:

- (1) X is $\hat{g}w$ -regular.
- (2) For each semi-closed set F and x∉F, there exist U∈w and a ĝw-open set V such that x∈U, F⊆V and U∩V=Ø.
- (3) For each H⊆X and each semi-closed set F with H∩F=Ø, there exist U∈w and a ĝw-open set V such that H∩U≠Ø, F⊆V and U∩V=Ø.

Then the implications $(1) \Rightarrow (2) \Rightarrow (3)$ hold. If $i_w(H) \in w$ for every $\hat{g}w$ -open set H of X, then the statements are equivalent.

Proof. $(1) \Rightarrow (2)$. Obvious.

(2) \Rightarrow (3). Let $H \subseteq X$ and F be a semi-closed set with $H \cap F = \emptyset$. Then for $a \in H$, $a \notin F$, and hence by (2), there exist $U \in w$ and a $\hat{g}w$ -open set V such that $a \in U$, $F \subseteq V$ and $U \cap V = \emptyset$. Hence $H \cap U \neq \emptyset$, $F \subseteq V$ and $U \cap V = \emptyset$.

(3) \Rightarrow (1). Let $x \notin F$, where F is semi-closed in X. Since $F \cap \{x\} = \emptyset$, by (3) there exist $U \in w$ and a $\hat{g}w$ -open set W such that $x \in U$, $F \subseteq W$ and $U \cap W = \emptyset$. Then by Theorem 3.13 we have $F \subseteq i_w(W) = V \in w$ and hence $U \cap V = \emptyset$.

Definition 4.6. Let X be a space and w be a WS on X. Then (X, τ) is said to be $\hat{g}w$ -normal if for any disjoint semi-closed sets A and B there exist two disjoint w-open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Example 4.7. Let $X = \{a, b, c\}, \tau = \{\phi, \{b\}, \{b, c\}, X\}$ and $w = \{\phi, \{a, b\}, \{c\}, X\}$.Then semi-closed sets are $\{a\}, \{c\}, \{a, c\}, \phi, X$. Therefore (X, τ) is a $\hat{g}w$ -normal.ISSN: 2231-5373http://www.ijmttjournal.org

Theorem 4.8. Let X be a space and w be a WS on X, and consider the following statements:

- (1) X is $\hat{g}w$ -normal.
- (2) For any pair of disjoint semi-closed sets M and N of X, there exist disjoint ĝw-open sets P and Q of X such that M⊆P and N⊆Q.
- (3) For each semi-closed set M and each semi-open set N containing M, there exist a $\hat{g}w$ -open set P such that $M \subseteq P \subseteq c_w(P) \subseteq N$.

Then the implications $(1) \Rightarrow (2) \Rightarrow (3)$ hold. If $i_w(M) \in w$ and $c_w(M)$ is w-closed for every $\hat{g}w$ -open set M of X, then the statements are equivalent.

Proof. (1) \Rightarrow (2). Let M and N be a pair of disjoint semi-closed sets of X. Then by (1) there exist disjoint *w*-open sets P and Q of X such that M \subseteq P and N \subseteq Q. Then (2) follows from Remark 3.2(3).

(2) \Rightarrow (3). Let M be a semi-closed set and N be a semi-open set containing M. Then M and X-N are two disjoint semi-closed sets. Hence by (2) there exist disjoint $\hat{g}w$ -open sets P and Q of X such that M \subseteq P and X-N \subseteq Q. Since Q is $\hat{g}w$ -open and X-N is a semi-closed set with X-N \subseteq Q, by Theorem 3.13, X-N \subseteq i_w(Q). Hence $c_w(X-Q)=X-i_w(Q)\subseteq N$. Thus M \subseteq P \subseteq c_w(P) \subseteq c_w(X-Q) \subseteq N.

(3) \Rightarrow (1). Let M and N be two disjoint semi-closed subsets of X. Then M is a semi-closed set and X-N is a semi-open set containing M. Thus by (3) there exists a $\hat{g}w$ -open set P such that $M \subseteq P \subseteq c_w(P) \subseteq X-N$. Thus by Theorem 3.13, $M \subseteq i_w(P)$ and $N \subseteq X - c_w(P)$, where $i_w(P)$ and $X - c_w(P) = i_w(X-P)$ are disjoint sets. Since P is $\hat{g}w$ -open, $i_w(P) \in w$ and $i_w(X-P) \in w$. Hence X is $\hat{g}w$ -normal.

The implication $(3) \Rightarrow (1)$ in the above theorem need not be true in general.

Example 4.9. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, c\}, \{a, b\}, X\}$. Let w be a WS on a space X and $w = \{\phi, \{a, c\}, \{a, b\}\}$. Then it can be easily checked that (X, τ) is not $\hat{g}w$ -normal but for each semi-closed set M and each semi-open set N containing M, there exists a $\hat{g}w$ -open set P such that $M \subseteq P \subseteq c_w(P) \subseteq N$.

Theorem 4.10. Let X be a space and w be a WS on X and consider the following statements:

ISSN: 2231-5373

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 58 Issue 3 - June 2018

- (1) For each g-closed set M and each open set N containing M, there exists a w-open set P such that $cl(M) \subseteq P \subseteq c_w(P) \subseteq N$.
- (2) For each closed set M and each g-open set N containing M, there exists a w-open set P such that $M \subseteq P \subseteq c_w(P) \subseteq int(N)$.
- (3) For each g-closed set M and each open set N containing M, there exists a $\hat{g}w$ -open set P such that $cl(M) \subseteq P \subseteq c_w(P) \subseteq N$.
- (4) For each closed set M and each open set N containing M, there exists a $\hat{g}w$ open set P such that $M \subseteq P \subseteq c_w(P) \subseteq N$.
- (5) For each closed set M and each g-open set N containing M, there exists a $\hat{g}w$ -open set P such that $M \subseteq P \subseteq c_w(P) \subseteq int(N)$.

Then the implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ hold. If $i_w(M) \in w$ for every $\hat{g}w$ open set M of X, then the statements are equivalent:

Proof. (1) \Rightarrow (2). Let M be a closed set and N be a g-open set containing M. Then by Theorem 2.10 M \subseteq int(N). Since M is g-closed and int(N) is open, by (1) there exists a *w*-open set such that $P\subseteq c_w(P)\subseteq$ int(N).

 $(2) \Rightarrow (3)$ and $(3) \Rightarrow (4)$ are obvious.

 $(4) \Rightarrow (5)$. Let M be a closed set and N be a g-open set containing M. Since N is g-open and M is closed, by Theorem 2.10 M \subseteq int(N). Thus by (4), there exists a $\hat{g}w$ -open set P such that M \subseteq P \subseteq c_w(P) \subseteq int(N).

 $(5) \Rightarrow (1)$. Let M be a g-closed subset of X and N be an open set containing M. Then $cl(M)\subseteq N$, where N is g-open. Thus by (5), there exists a $\hat{g}w$ -open set G such that $cl(M)\subseteq G\subseteq c_w(G)\subseteq int(N)\subseteq N$. Since G is $\hat{g}w$ -open and $cl(M)\subseteq G$, by Theorem 3.13, $cl(M)\subseteq i_w(G)$. Put $P=i_w(G)$. Then $P\in w$ and $cl(M)\subseteq P\subseteq c_w(P)=c_w(i_w(G))\subseteq c_w(G)\subseteq N$.

5. Conclusion

A new class of generalized closed sets called $\hat{g}w$ -closed sets in weak structure is defined and studied. Properties of $\hat{g}w$ -closed sets are given. Also the new notion of $\hat{g}w$ -open sets (or the complement of $\hat{g}w$ -closed sets) is introduced and investigated. Properties of $\hat{g}w$ -T_{1/2}-space, $\hat{g}w$ -normal and $\hat{g}w$ -regular are defined and studied. Properties and Characterizations of $\hat{g}w$ -normal and $\hat{g}w$ -regular are given.

ISSN: 2231-5373

http://www.ijmttjournal.org

References

- A. Al-Omari and T. Noiri, A unified theory of generalized closed sets in weak structures, Acta Math. Hungar., 135(1-2)(2012), 174-183, doi: 10.1007/s10474-011-0169-0.
- [2] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(1987), 375-382.
- [3] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22(1971), 99-112.
- [4] Á. Császár, Weak Structures, Acta Math. Hungar., 131 (1-2)(2011), 193-195 doi:10.1007/s10474-010-0020-z.
- [5] E. Ekici, On weak structures due to Császár, Acta Math. Hungar., 134(4)(2012), 565-570, doi: 10.1007/s10474-011-0145-8.
- [6] E. Ekici, Further New generalized topologies via mixed constructions due to Császár, Mathematica Bohemica, 140(1)(2015), 1-9.
- [7] S. Ganesan, O. Ravi and R. Latha, θw -closed sets in topological spaces, International Journal of Mathematical Archive, 2(8)(2011), 1381-1390.
- [8] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, (2) 19(1970), 89-96.
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. monthly, 70(1963), 36-41.
- [10] M. Navaneethakrishnan and S. Thamaraiselvi, On some subsets defined with respect to weak structures, Acta Math. Hungar., doi: 10.1007/s10474-012-0240-5.
- [11] M. Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore (2002).
- [12] N. V. Velićko, H-closed topological spaces, Amer. Math. Soc. Transl., (2), 78(1968), 103-118.
- [13] M. K. R. S. Veerakumar, On \hat{g} -closed sets in topological spaces, Bull. Allahabad Math. Soc., 18(2003), 99-112.