Strong Perfect Domination in Graphs

Govindalakshmi T.S. ${ }^{1}$,Meena. N^{2}
${ }^{1}$ Department of Mathematics,Manonmaniam Sundaranar University College, Puliangudi - 627855. Affiliated to ManonmaniamSundaranarUniversity, Abishekapatti, Tirunelveli -627 012, TamilNadu, India.
${ }^{2}$ P.G. and Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli-10 Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, TamilNadu,India.

Abstract

Let G be a simple graph. A subset $S \subseteq V(G)$ is called a strong (weak) perfect dominating set of G if $\left|N_{s}(u) \cap S\right|=1\left(\left|N_{w}(u) \cap S\right|=1\right.$ for every $u \in V(G)-S$ where $N_{s}(u)=\{v \in V(G) / \operatorname{deg} v \geq \operatorname{deg} u\}\left(N_{w}(u)=\{v\right.$ $\in V(G) / \operatorname{deg} v \leq \operatorname{deg} u\}$. The minimum cardinality of a strong (weak) perfect dominating set G is called the strong (weak) perfect domination number and is denoted by $\gamma_{s p}(G)\left(\gamma_{w p}(G)\right.$). In this paper strong perfect domination number of some standard graphs and their middle graphs are determined.

Keywords - Dominating set, perfect dominating set, strong dominating set, strong perfect dominating set, strong perfect domination number.

AMS subject classification: 05C69

I. INTRODUCTION

By a graph, it is meant that a finite, undirected graph without loops and multiple edges. Let G be a graph with vertex V and edge set E . Let $\mathrm{p}=|\mathrm{V}(\mathrm{G})|$ and $\mathrm{q}=|\mathrm{E}(\mathrm{G})|$. The minimum and maximum degrees of vertices in G are denoted by $\delta(\mathrm{G})$ and $\Delta(\mathrm{G})$ respectively. A dominating set D of G is a subset of $\mathrm{V}(\mathrm{G})$ such that every vertex in $\mathrm{V}-\mathrm{D}$ is adjacent to one vertex in D . A dominating set of G of minimum cardinality is a minimum dominating set of G and it cardinality is the domination number of G. It is denoted by $\gamma(\mathrm{G})$. A dominating set S is a perfect dominating set of G if $|N(v) \cap S|=1$ for each $v \in V$ - S. Every graph G has at least the trivial perfect dominating set consisting of all vertices in V. Minimum cardinality of the perfect dominating set of G is the perfect domination number of G and it is denoted by $\gamma_{\mathrm{p}}(\mathrm{G})$. Motivated by this definition, the strong perfect domination in graph is defined. In this paper strong perfect domination number of standard graphs and their middle graphs are determined.

Definition 1.1: The middle graph $M(G)$ of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and in whichtwo vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident with it.

Definition 1.2:The wheel W_{n} is defined to be the graph $K_{1}+C_{n-1}, n \geq 4$
Definition 1.3: The helm H_{n} is the graph obtained from the wheel W_{n} with n spokes by adding n pendant edges at each vertex on the wheel's rim.

Definition 1.4: A flower is a graph obtained from a helm by joining each pendant vertex to the central vertex of the helm.

Definition 1.5: Bistar is the graph obtained by joining the apex vertices of two copies of star $\mathrm{K}_{1, \mathrm{n}}$.

II. STRONG PERFECT DOMINATION IN GRAPHS

Definition 2.1: A subset $S \subseteq V(G)$ is called a strong (weak) perfect dominating set of G if $\left|N_{s}(u) \cap S\right|=1(\mid N$ ${ }_{w}(\mathrm{u}) \cap \mathrm{S} \mid=1$ for every $\mathrm{u} \in \mathrm{V}(\mathrm{G})-\mathrm{S}$ where $\mathrm{N}_{\mathrm{s}}(\mathrm{u})=\{\mathrm{v} \in \mathrm{V}(\mathrm{G}) / \operatorname{deg} \mathrm{v} \geq \operatorname{deg} \mathrm{u}\}\left(\mathrm{N}_{\mathrm{w}}(\mathrm{u})=\{\mathrm{v} \in \mathrm{V}(\mathrm{G}) / \operatorname{deg} \mathrm{v} \leq\right.$ deg u$\}$). The minimum cardinality of a strong(weak) perfect dominating set G is called the strong(weak) perfect domination number and is denoted by $\gamma_{\mathrm{sp}}(\mathrm{G})\left(\gamma_{\mathrm{wp}}(\mathrm{G})\right)$.

Remark 2.2: The maximum cardinality of a strong (weak) perfect dominating set of G is called the strong (weak) perfect domination number and is denoted by $\Gamma_{\mathrm{sp}}(\mathrm{G})\left(\Gamma_{\mathrm{wp}}(\mathrm{G})\right)$.

Example 2.3: Consider the following graphs G.

Fig. 1
Let $S=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\},\left|\mathrm{N}_{\mathrm{s}}\left(\mathrm{v}_{1}\right) \cap \mathrm{S}\right|=\left|\left\{\mathrm{v}_{2}, \mathrm{v}_{4}\right\} \cap S\right|=\left|\left\{\mathrm{v}_{2}\right\}\right|=1,\left|\mathrm{~N}_{\mathrm{s}}\left(\mathrm{v}_{4}\right) \cap \mathrm{S}\right|=\left|\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\} \cap \mathrm{S}\right|=\left|\left\{\mathrm{v}_{2}\right\}\right|=1,\left|\mathrm{~N}_{\mathrm{s}}\left(\mathrm{v}_{5}\right) \cap \mathrm{S}\right|=$ $\left|\left\{\mathrm{v}_{3}\right\} \cap S\right|=\left|\left\{\mathrm{v}_{3}\right\}\right|=1$. Therefore S is a strong perfect dominating set of $\mathrm{G} . \mathrm{T}=\left\{\mathrm{v}_{2}, \mathrm{v}_{5}\right\},\left|\mathrm{N}_{\mathrm{s}}\left(\mathrm{v}_{1}\right) \cap \mathrm{S}\right|=$ $\left|N_{s}\left(\mathrm{v}_{3}\right) \cap S\right|=\left|\mathrm{N}_{\mathrm{s}}\left(\mathrm{v}_{4}\right) \cap \mathrm{S}\right|=\left\{\mathrm{v}_{2}\right\}=1$. T is also a strong perfect dominating set of G . Therefore $\gamma_{\mathrm{sp}}(\mathrm{G}) \leq 2$. G has no full degree vertex. Therefore $\gamma_{\mathrm{sp}}(G) \geq 2$. Hence $\gamma_{\mathrm{sp}}(G)=2$.

Remark 2.4: $1 \leq \gamma_{\mathrm{sp}}(\mathrm{G}) \leq \mathrm{n}$ where $\mathrm{n}=|\mathrm{V}(\mathrm{G})|$. For: If G has a full degree vertex then $\gamma_{\mathrm{sp}}(\mathrm{G})=1$ and $\gamma_{\mathrm{sp}}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=\mathrm{m}+\mathrm{n}, \mathrm{m}, \mathrm{n} \geq 2, \mathrm{~m} \neq \mathrm{n}$.

Remark 2.5: $\gamma(\mathrm{G}) \leq \gamma_{\mathrm{s}}(\mathrm{G}) \leq \gamma_{\mathrm{sp}}(\mathrm{G})$.
Remark 2.6: A strong dominating set of a graph G need not be strong perfect dominating set of G.
Example: Consider the following graph G

Fig. 2

Let $S=\left\{v_{2}, v_{3}\right\}$ is a strong dominating set but it is not a strong perfect dominating set. Since $\left|N_{s}\left(v_{5}\right) \cap S\right|=$ $\left|N_{s}\left(v_{6}\right) \cap S\right|=\left|\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\}\right|=2 \neq 1$. Hence S is not a strong perfect dominating set of G. $T_{1}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{7}\right\}, \mathrm{T}_{2}=$ $\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{8}\right\}$ and $\mathrm{T}_{3}=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$ are strong perfect dominating sets of G. $\gamma_{\mathrm{sp}}(\mathrm{G})=3$ and $\Gamma_{\mathrm{sp}}(\mathrm{G})=4$. Therefore $\gamma_{\mathrm{s}}(\mathrm{G})<\gamma_{\mathrm{sp}}(\mathrm{G})$.

Theorem 2.7: For any path P_{m}
Then $\gamma_{\mathrm{sp}}\left(\mathrm{P}_{\mathrm{m}}\right)=\left\{\begin{array}{c}n \text { if } m=3 n, n \epsilon N \\ n+1 \text { if } m=3 n+1, n \in N \\ n+2 \text { if } m=3 n+2, n \in N\end{array}\right.$

Proof:Case (i): Let $G=P_{3 n}, n \in N$. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{3 n}$ be the vertices of G. $\left\{v_{2}, v_{5}, \ldots, v_{3 n-1}\right\}$ is a strong perfectdominating set of G. $\gamma_{s p}(G) \leq n$ for all $n \in N$. Since $n=\gamma_{s}(G) \leq \gamma_{s p}(G)$. Therefore $\gamma_{s p}\left(P_{3 n}\right)=n$ for all $\mathrm{n} \in \mathrm{N}$

Case(ii):Let $\quad \mathrm{G}=\mathrm{P}_{3 \mathrm{n}+1}, \mathrm{n} \in \mathrm{N}^{2} \operatorname{Letv}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{3 \mathrm{n}+1}$ be the vertices of $\quad \mathrm{G} .\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{8}, \ldots, \mathrm{v}_{3 n}\right.$ $\left.{ }_{1,}, \mathrm{v}_{3 n+1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{6}, \ldots, \mathrm{v}_{3 \mathrm{n}}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v} 6, \ldots, \mathrm{v}_{3 \mathrm{n}}\right\}$ are some strong perfect dominating sets of $\mathrm{P}_{3 \mathrm{n}+1} \cdot \gamma_{\text {sp }}\left(\mathrm{P}_{3 \mathrm{n}+1}\right) \leq \mathrm{n}+1$ for all $n \in N$. Since $n+1=\gamma_{s}\left(P_{3 n+1}\right) \leq \gamma_{s p}\left(P_{3 n+1}\right)$. Therefore $\gamma_{s p}\left(P_{3 n+1}\right)=n+1$.

Case(iii):

$\operatorname{LetG}=\mathrm{P}_{3 \mathrm{n}+2}, \mathrm{n} \in \mathrm{N} \cdot \operatorname{LetV}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . \mathrm{v}_{3 \mathrm{n}}, \mathrm{v}_{3 \mathrm{n}+1}, \mathrm{v}_{3 \mathrm{n}+2}\right\} .\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{6}, \ldots ., \mathrm{v}_{3 \mathrm{n}}, \mathrm{v}_{3 \mathrm{n}+2}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{8}, \ldots \ldots . ., \mathrm{v}_{3 \mathrm{n}-}\right.$ $\left.1,3 n, v_{3 n+1}\right\}$,and $\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{8} \ldots \ldots \ldots ., \mathrm{v}_{3 n-1}, \mathrm{v}_{3 n}, \mathrm{v}_{3 n+2}\right\}$ are some strong perfect dominating sets of $\mathrm{P}_{3 n+2}$. Since $\mathrm{n}+2=$ $\gamma_{\mathrm{s}}\left(\mathrm{P}_{3 \mathrm{n}+2}\right) \leq \gamma_{\mathrm{sp}}\left(\mathrm{P}_{3 \mathrm{n}+2}\right)$. Hence $\gamma_{\mathrm{sp}}\left(\mathrm{P}_{3 \mathrm{n}+2}\right)=\mathrm{n}+2$.

Theorem 2.8: For any cycle C_{m}
Then $\gamma_{\mathrm{sp}}\left(\mathrm{C}_{\mathrm{m}}\right)=\left\{\begin{array}{c}n \text { if } m=3 n \\ n+1 \text { if } m=3 n+1 \\ n+2 \text { if } m=3 n+2\end{array}\right.$

Proof:

Case(i): Let $G=C_{3 n}, n \in N$. Let $V(G)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots ., \mathrm{v}_{3 \mathrm{n}}\right\} .\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{7}, \ldots, \mathrm{v}_{3 \mathrm{n}-2}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{8}, \ldots \ldots \ldots \ldots \ldots ., \mathrm{v}_{3 \mathrm{n}-1}\right\}$ and $\left\{\mathrm{v}_{3}, \mathrm{v}_{6}, \mathrm{~V}_{9}, \ldots, \mathrm{v}_{3 \mathrm{n}}\right\}$ are strong perfect dominating sets of $\mathrm{C}_{3 \mathrm{n}} . \gamma_{\mathrm{sp}}\left(\mathrm{C}_{3 \mathrm{n}}\right) \leq \mathrm{n}$ for all $\mathrm{n} \in \mathrm{N}$. It is verified that there is no strong perfect dominating set of $n-1$ vertices. Therefore $\gamma_{\mathrm{sp}(\mathrm{G})} \geq \mathrm{n}$. Hence $\gamma_{\mathrm{sp}}\left(\mathrm{C}_{3 \mathrm{n}}\right)=\mathrm{n}$ for all $\mathrm{n} \in \mathrm{N}$.
Case(ii): Let $G=C_{3 n+1}, \quad n \in N$. Let $V(G)=\quad\left\{v_{1}, v_{2}, \ldots, v_{3 n+1}\right\} .\left\{v_{1}, v_{2}, v_{5}, \ldots, v_{3 n-1}\right.$, $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{6}, \ldots, \mathrm{v}_{3 \mathrm{n}}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{7}, \ldots, \mathrm{v}_{3 \mathrm{n}+1}\right\}$ are some strongperfect dominating sets of $\mathrm{C}_{3 \mathrm{n}+1}$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{C}_{3 \mathrm{n}+1}\right) \leq$ $\mathrm{n}+1, \mathrm{n} \in \mathrm{N}$. It is verified that there is no strong perfect dominating set of n vertices. $\gamma_{\mathrm{sp}}\left(\mathrm{C}_{3 \mathrm{n}+1}\right) \geq \mathrm{n}+1$. Hence $\gamma_{\mathrm{sp}}\left(\mathrm{C}_{3 \mathrm{n}+1}\right)=\mathrm{n}+1$.
Case(iii):Let $G=C_{3 n+2}, n \in N$. Let $V(G)=\left\{v_{1}, v_{2}, \ldots \ldots, v_{3 n+2}\right\} .\left\{v_{1}, v_{2}, v_{3}, v_{6}, \ldots, v_{3 n}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{7}, \ldots\right.$ $\left.\ldots, \mathrm{v}_{3 \mathrm{n}+1}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{8}, \ldots, \mathrm{v}_{3 \mathrm{n}+2}\right\}$ are some strongperfectdominating sets of $\mathrm{C}_{3 \mathrm{n}+2} \cdot \gamma_{\mathrm{sp}}\left(\mathrm{C}_{3 \mathrm{n}+2}\right) \leq \mathrm{n}+2$ for all $\mathrm{n} \in$ N. It is verified that there is no strong perfect dominating set of $\mathbf{n}+1$ vertices. $\gamma_{\text {sp }}\left(C_{3 n+2}\right) \geq n+2$. Hence $\gamma_{\mathrm{sp}}\left(\mathrm{C}_{3 \mathrm{n}+2}\right)=\mathrm{n}+2$.

Theorem 2.9: Let G be a connected graph with n vertices. If $\Delta(G)=n-2$ and G contains exactly two maximum degree vertices which are non-adjacent then $\gamma_{\mathrm{sp}}(\mathrm{G})=\mathrm{n}$

Proof: Let u and v be two non-adjacent vertices in G such that $\operatorname{deg} u=\operatorname{deg} v=\Delta(G)=n-2$. Let S be a strong perfect dominating set of G. S must contain u and v. Also the vertices other than u and v must belong to S. Since otherwise $|N s(w) \cap S| \geq 2$, where $w \in V(G), w \neq u, v$, a contradiction. Hence $\gamma_{s p}(G)=n$.

Remark 2.10:

1. $\gamma_{\mathrm{sp}}\left(\mathrm{K}_{\mathrm{n}}\right)=1, \mathrm{n} \in \mathrm{N}$.
2. $\gamma_{\mathrm{sp}}\left(\mathrm{K}_{1, \mathrm{n}}\right)=1, \mathrm{n} \in \mathrm{N}$.
3. $\gamma_{\mathrm{sp}}\left(\mathrm{W}_{\mathrm{n}}\right)=1, \mathrm{n} \in \mathrm{N}$.

Theorem 2.11: $\gamma_{\mathrm{sp}}\left(\mathrm{D}_{\mathrm{r}, \mathrm{s}}\right)=2 . \mathrm{r}, \mathrm{s} \in \mathrm{N}$
Proof: Let $G=D_{r, s}$. Let u and v be the central vertices of G. Let $u_{1}, u_{2}, \ldots, u_{r}$ be the vertices adjacent with u and $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{s}}$ be the vertices adjacent with v . Clearly $\{\mathrm{u}, \mathrm{v}\}$ is the unique strong perfect dominating set of G . Therefore $\gamma_{\mathrm{sp}}(\mathrm{G})=2$.

Theorem 2.12: $\gamma_{\mathrm{sp}}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=\left\{\begin{array}{c}2 \text { if } m=n \\ m+n \text { if } m \neq n\end{array}\right.$
Proof: Let $G=K_{m, n}$.
Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{m}, u_{1}, u_{2}, \ldots, u_{n}\right\}$.
Case(i): Let $m=n .\left\{v_{i}, u_{j}\right\} 1 \leq i, j \leq n$ is a strong perfect dominating set of G. Hence $\gamma_{s p}(G) \leq 2$. Since G has no full degree vertex, $\gamma_{\mathrm{sp}}(\mathrm{G}) \geq 2$. Hence $\gamma_{\mathrm{sp}}(\mathrm{G})=2$.
Case(ii):Let $\mathrm{m} \neq \mathrm{n}$. Without loss of generality let $\mathrm{m}<\mathrm{n}, \operatorname{degv}_{\mathrm{i}}>\operatorname{degu}_{\mathrm{j}}, 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$. Each v_{i} strongly dominates all u_{j} 's, $1 \leq \mathrm{j} \leq \mathrm{m}$ and v_{i} 's are mutually non adjacent. Let S be a strong perfect dominating set of G. Then S contains all $v_{i}, 1 \leq i \leq m$. Some $\left|N_{s}\left(u_{j}\right) \cap S\right| \geq 2$, all u_{j} 's belong to S. Hence $\gamma_{s p}\left(K_{m, n}\right)=m+n$.

Theorem 2.13: Let G be a connected graph with $|\mathrm{V}(\mathrm{G})|=\mathrm{n}$ then $\gamma_{\mathrm{sp}}\left(\mathrm{G} \odot \mathrm{K}_{1}\right)=\mathrm{n}$
Proof:Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices such that v_{i} and u_{i} are adjacent. Let S be a $\gamma_{s p}$ - set of G.Let $|S|=m, m \leq n$. The vertices in S strongly unique dominate the pendant vertices u_{i} 's. Remaining $\mathrm{n}-\mathrm{m}$ pendant vertices together with vertices ofS form a strong perfect dominating set of $\mathrm{G}_{\mathrm{O}}^{1} \mathrm{~K}_{1}$. Hence $\gamma_{\mathrm{sp}}\left(\mathrm{GO} \mathrm{K}_{1}\right)=\mathrm{m}+\mathrm{n}-\mathrm{m}=\mathrm{n}$.

Theorem 2.14: $\gamma_{\mathrm{sp}}\left(\mathrm{H}_{\mathrm{n}}\right)=\mathrm{n}+1, \mathrm{n} \geq 3$.
Proof: Let $V\left(H_{n}\right)=\left\{v_{1}, v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\} \cdot E\left(H_{n}\right)=\left\{v_{i} / 1 \leq i \leq n\right\} \cup\left\{\mathrm{vu}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} /\right.$ $1 \leq \mathrm{i} \leq \mathrm{n}-1\} \cup\left\{\mathrm{v}_{\mathrm{n}} \mathrm{v}_{\mathrm{i}}\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} .\{\mathrm{v}\} \cup\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ is the unique strong perfect dominating set of H_{n}. Hence $\gamma_{\mathrm{sp}}\left(\mathrm{H}_{\mathrm{n}}\right)=\mathrm{n}+1$.

Theorem 2.15:Let G be a connected graph $\gamma_{\mathrm{sp}}(\mathrm{G})=1$ if and only if G contain atleast one full degree vertex.

III. STRONG PERFECT DOMINATION IN SOME MIDDLE GRAPH

Theorem3.1: Let P_{m} be the path on m vertices, $\mathrm{m} \geq 2$.
Then $\gamma_{\mathrm{sp}}\left(\mathrm{M}\left(\mathrm{P}_{\mathrm{m}}\right)\right.$
$=\left\{\begin{array}{c}2 n-1 \text { ifm }=3 n, n \geq 2 \\ 2 n+1 \text { ifm }=3 n+1 \text { or } 3 n+2, n \geq 1\end{array}\right.$
Proof: Let $V\left(P_{m}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $E\left(P_{m}\right)=\left\{e_{i} / e_{i}=v_{i} v_{i+1}, 1 \leq i \leq m-1\right\}$
Case(i): Let $m=3 n, n \geq 2 V\left(M\left(P_{3 n}\right)\right)=\left\{v_{1}, v_{2}, \ldots, v_{3 n}, e_{1}, e_{2}, \ldots, e_{3 n-1}\right\}$. Each e_{i} is adjacent with v_{i} and $v_{i+1}, 1 \leq$ $\mathrm{i} \leq 3 n-1$. Their vertices v_{i} 's are mutually non adjacent. Also e_{j} is adjacent with $\mathrm{e}_{\mathrm{j}+1}, 1 \leq \mathrm{j} \leq 3 \mathrm{n}-2$. The sub graph induces by $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{3 n-1}$ is a path $\mathrm{P}_{3 n-1}$. $\mathrm{S}=\left\{\mathrm{e}_{1}, \mathrm{e}_{3}, \mathrm{e}_{6}, \ldots, \mathrm{e}_{3 n-3}, \mathrm{e}_{3 n-1}, \mathrm{v}_{5}, \mathrm{v}_{8}, \ldots, \mathrm{v}_{3 n-4}\right\}$ is the unique strong perfect dominating set of $M\left(P_{3 n}\right) .|S|=2 n-1$. Hence $\gamma_{s p}\left(M\left(P_{3 n}\right)\right)=2 n-1, n \geq 2$.

Case(ii): Let $m=3 n+1, n \geq 1 . V\left(M\left(P_{3 n+1}\right)\right)=\left\{v_{1}, v_{2}, \ldots, v_{3 n+1}, e_{1}, e_{2}, \ldots, e_{3 n}\right\}$. Each e_{i} is adjacent with v_{i} and v_{i+1}, $1 \leq \mathrm{i} \leq 3 \mathrm{n}$ and each e_{j} is adjacent with $\mathrm{e}_{\mathrm{j}+1}, 1 \leq \mathrm{j} \leq 3 \mathrm{n}+1 . \mathrm{T}=\left\{\mathrm{e}_{2}, \mathrm{e}_{5}, \mathrm{e}_{8}, \ldots \mathrm{e}_{3 \mathrm{n}-1}, \mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{7}, \ldots \mathrm{v}_{3 \mathrm{n}+1}\right\}$ is the unique strong perfect dominating set of $\mathrm{M}\left(\mathrm{P}_{3 \mathrm{n}+1}\right) \cdot|\mathrm{T}|=2 \mathrm{n}+1$.

Case(iii): Let $m=3 n+2, n \geq 1 . V\left(M\left(P_{3 n+2}\right)\right)=\left\{v_{1}, v_{2}, \ldots v_{3 n+2}, e_{1}, e_{2}, \ldots . e_{3 n+1}\right\}$. Each e_{i} is adjacent with v_{i} and $\mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq 3 \mathrm{n}+1$ and each e_{j} is adjacent with $\mathrm{e}_{\mathrm{j}+1}, 1 \leq \mathrm{j} \leq 3 \mathrm{n}$. Any strong perfect dominating set must contain either e_{1} or e_{2} Since if both e_{1} and e_{2} belong to any strongperfect dominating set S then $\left|N_{s}\left(v_{2}\right) \cap S\right|=\left|\left\{e_{1}, e_{2}\right\}\right|$ $=2>1$, a contradiction, Hence no other strong perfect dominating set without e_{1} and e_{2} exists. $S_{1}=$ $\left\{\mathrm{e}_{1}, \mathrm{e}_{3}, \mathrm{e}_{6}, \ldots \ldots \ldots \ldots ., \mathrm{e}_{3 n-3}, \mathrm{e}_{3 n}, \mathrm{v}_{5}, \mathrm{v}_{8}, \ldots, \mathrm{v}_{3 n-1}, \mathrm{v}_{3 n+2}\right\} \quad \mathrm{S}_{2}=\left\{\mathrm{e}_{2}, \mathrm{e}_{5}, \mathrm{e}_{8}, \ldots \ldots, \mathrm{e}_{3 n-1}, \mathrm{e}_{3 n+1}, \mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{7}, \ldots, \mathrm{v}_{3 n-2}\right\}$ are strongperfect dominating sets of $\mathrm{M}\left(\mathrm{P}_{3 \mathrm{n}+2}\right), \quad \mathrm{n} \geq 1 .\left|\mathrm{S}_{1}\right|=2 \mathrm{n}+1$ and $\left|\mathrm{S}_{2}\right|=2 \mathrm{n}+1$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{M}\left(\mathrm{P}_{3 \mathrm{n}+2}\right) \leq\right.$ $2 n+1, n \geq 1$. It is verified that no other strong perfect dominating set of $2 n$ vertices exist. Hence $\gamma_{s p}\left(M\left(P_{3 n+2}\right)\right)$ $\geq 2 \mathrm{n}+1$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{M}\left(\mathrm{P}_{3 \mathrm{n}+2}\right)=2 \mathrm{n}+1, \mathrm{n} \geq 1\right.$

Theorem 3.2: LetC C_{m} be the cycle on m vertices then $\gamma_{s p}\left(M\left(C_{m}\right)\right)=\left\{\begin{array}{c}2 n \text { if } m=3 n \\ 2 n+2 \text { if } m=3 n+1 \\ 2 n+4 \text { if } m=3 n+2\end{array}\right.$
Proof: Let $G=C_{m}, m \geq 3$. Let $V(G)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}\right\}$. Let $\mathrm{E}(\mathrm{G})=\left\{\mathrm{e}_{\mathrm{i}} / \mathrm{e}_{\mathrm{i}}=\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{m}-1\right\} \cup\left\{\mathrm{e}_{\mathrm{m}}=\mathrm{v}_{1} \mathrm{v}_{\mathrm{m}}\right\}$. V(M) G$\left.)\right)$ $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{3 n}, \mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{3 \mathrm{n}}\right\}$. Each e_{i} is adjacent with $\mathrm{e}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{m}-1$ and e_{1} and e_{m} are adjacent. Each v_{i} is adjacent with e_{i} and $\mathrm{e}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{m}-1$. The vertex v_{m} is adjacent with e_{1} and $\mathrm{e}_{\mathrm{m}}, \operatorname{dege}_{\mathrm{i}}=4=\Delta(\mathrm{G}), 1 \leq \mathrm{i} \leq \mathrm{m}$ and $\operatorname{deg} \mathrm{v}_{\mathrm{i}}=2,1 \leq \mathrm{i} \leq \mathrm{m}$.
Case(i):Let $m=3 n, n \geq 1$. The sub graph induced by $e_{1}, e_{2}, \ldots, e_{3 n}$ is $C_{3 n}$. Let $S=\left\{e_{1}, e_{4}, e_{7}, \ldots, e_{3 n-2}\right\}$. Each e_{i} in S strongly dominates $\mathrm{e}_{\mathrm{i}-1}, \mathrm{e}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}-1}, 4 \leq \mathrm{i} \leq 3 \mathrm{n}-2$ and e_{1} strongly dominates $\mathrm{e}_{2}, \mathrm{e}_{3 n}, \mathrm{v}_{3 n}$ and v_{1}. Since the vertices $\mathrm{v}_{2}, \mathrm{v}_{5}, \ldots, \mathrm{v}_{3 \mathrm{n}-1}$ is not dominated by any vertex of S and they are not adjacent with one another. They together with S form a $\gamma_{s p}-$ set of $M(G)$.Similarly $S_{2}=\left\{\mathrm{e}_{2}, \mathrm{e}_{5}, \mathrm{e}_{8}, \ldots \ldots \ldots \ldots . ., \mathrm{e}_{3 \mathrm{n}-1}, \mathrm{v}_{3}, \mathrm{v}_{6}, \ldots, \mathrm{v}_{3 n}\right\}$ and $\mathrm{S}_{3}=$ $\left\{\mathrm{e}_{3}, \mathrm{e}_{6}, \mathrm{e}_{9}, \ldots, \mathrm{e}_{3 \mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{7}, \ldots, \mathrm{v}_{3 \mathrm{n}-2}\right\}$ are the γ_{sp} - sets of $\mathrm{M}(\mathrm{G}) .\left|\mathrm{S}_{\mathrm{i}}\right|=2 \mathrm{n}, \mathrm{i}=1,2$ and 3 . Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{M}\left(\mathrm{C}_{3 \mathrm{n}}\right)\right) \leq$ 2 n . It is verified that no other strong perfect dominating set of $2 \mathrm{n}-1$ vertex exists. Hence $\gamma_{\mathrm{sp}}\left(\mathrm{M}\left(\mathrm{C}_{3 \mathrm{n}}\right)\right) \geq 2 \mathrm{n}$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{M}\left(\mathrm{C}_{3 \mathrm{n}}\right)\right)=2 \mathrm{n}$.

Case(ii): Let $m=3 n+1, n \geq 1$.The sub graph induced by $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{3 n+1}$ is $\mathrm{C}_{3 \mathrm{n}+1}$. Let $S=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{5}, \ldots \ldots \ldots ., \mathrm{e}_{3 n-}\right.$ $\left.{ }_{1}, \mathrm{v}_{1}\right\}$. Each e_{i} in S strongly dominates $\mathrm{e}_{\mathrm{i}-1}, \mathrm{e}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}-1}, 5 \leq \mathrm{i} \leq 3 \mathrm{n}-1$ and $\mathrm{e}_{1}, \mathrm{e}_{2}$ strongly dominate $\mathrm{e}_{3}, \mathrm{e}_{3 \mathrm{n}+1}, \mathrm{v}_{3}$ and $\mathrm{v}_{3 \mathrm{n}+1}$. Since the vertices $\mathrm{v}_{4}, \mathrm{v}_{7}, \ldots, \mathrm{v}_{3 \mathrm{n}}$ are not dominated by any vertex of S and they are not adjacent with one another. They together with S form $a \gamma_{s p}-$ set of $M\left(C_{3 n+1}\right)$. i.e) $S_{1}=\left\{e_{1}, \mathrm{e}_{2}, \mathrm{e}_{5}, \ldots, \mathrm{e}_{3 n-1}, \mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{7}, \ldots, \mathrm{v}_{3 n}\right\}$. $\left|\mathrm{S}_{1}\right|$ $=2 \mathrm{n}+2$.Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{M}\left(\mathrm{C}_{3 \mathrm{n}+1}\right)\right) \leq 2 \mathrm{n}+2$. It is verified that no other strong perfect dominating set of $2 \mathrm{n}+1$ vertex exists. Hence $\gamma_{\mathrm{sp}} \mathrm{M}\left(\mathrm{C}_{3 \mathrm{n}+1}\right) \geq 2 \mathrm{n}+2$. Therefore $\gamma_{\mathrm{sp}} \mathrm{M}\left(\mathrm{C}_{3 \mathrm{n}+1}\right)=2 \mathrm{n}+2$.

Case(iii): Let $m=3 n+2, n \geq 1$. The subgraph induced by $e_{1}, e_{2}, \ldots, e_{3 n+2}$ is $C_{3 n+2}$. Let $S=$ $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{6}, \ldots, \mathrm{e}_{3 \mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{2}\right\}$. Each e_{i} in S strongly dominates $\mathrm{e}_{\mathrm{i}-1}, \mathrm{e}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}-1}, 6 \leq \mathrm{i} \leq 3 \mathrm{n}$ and $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}$, are strongly dominate $\mathrm{e}_{4}, \mathrm{e}_{3 \mathrm{n}+2}, \mathrm{v}_{1}, \mathrm{v}_{3 \mathrm{n}+1}$. Since the vertices $\mathrm{v}_{4}, \mathrm{v}_{7}, \ldots, \mathrm{v}_{3 \mathrm{n}+1}$ are not dominated by any of S and they are not adjacent with one another. They together with S form a $\gamma_{\mathrm{sp}^{-}}$set of $\mathrm{M}\left(\mathrm{C}_{3 \mathrm{n}+2}\right)$. i.e) $\mathrm{S}_{1}=$ $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{6}, \ldots, \mathrm{e}_{3 \mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{7}, \ldots, \mathrm{v}_{3 \mathrm{n}+1}\right\}$. $\left|\mathrm{S}_{1}\right|=2 \mathrm{n}+4$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{M}\left(\mathrm{C}_{3 \mathrm{n}+2}\right)\right) \leq 2 \mathrm{n}+4$. It is verified that no other strong perfect dominating set of $2 n+3$ vertices exists.Therefore $\gamma_{s p} M\left(C_{3 n+2}\right) \geq 2 n+4$. Hence $\gamma_{s p}\left(M\left(C_{3 n+2}\right)\right.$ $=2 n+4$.
Theorem 3.3: Let $\mathrm{G}=\mathrm{K}_{1, \mathrm{n}} \mathrm{n} \geq 1$, then $\gamma_{\mathrm{sp}}\left(\mathrm{M}\left(\mathrm{K}_{1, \mathrm{n}}\right)\right)=\mathrm{n} \gamma_{\mathrm{sp}}\left(\mathrm{K}_{1, \mathrm{n}}\right)$.
Proof: Let $V(G)=\left\{v, v_{1}, v_{2}, \ldots, v_{n}\right\} \operatorname{deg} v=n$ and $\operatorname{deg} v_{i}=1,1 \leq i \leq n, E(G)=\left\{e_{i} / e_{i}=v_{i}, 1 \leq i \leq n\right\} . V\left(M\left(K_{1, n}\right)\right)$ $=\left\{\mathrm{v}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}, \mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}\right\} \mathrm{v}$ and v_{i} are adjacent with $\mathrm{e}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$ and each e_{i} is adjacent with all other e_{j} 's. Therefore the sub graph induced by $\left\{v, e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a complete $\operatorname{graph}_{\mathrm{n}+1}, \operatorname{deg} \mathrm{v}=\mathrm{n}, \operatorname{dege}_{\mathrm{i}}=\mathrm{n}+1=\Delta(\mathrm{G}), 1 \leq$ $\mathrm{i} \leq \mathrm{n}$ and deg $\mathrm{v}_{\mathrm{i}}=1,1 \leq \mathrm{i} \leq \mathrm{n}$. Each e_{i} strongly dominates $\mathrm{v}, \mathrm{v}_{\mathrm{i}}$ and $\mathrm{e}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \mathrm{n}$, for $1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \neq \mathrm{j} . \mathrm{S}_{\mathrm{i}}=\{$ $\left.\mathrm{e}_{\mathrm{i}}\right\} \cup\left\{\mathrm{v}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \mathrm{n}, \mathrm{j} \neq \mathrm{i}\right\}$ is a $\gamma_{\mathrm{sp}}-$ set of $\mathrm{M}\left(\mathrm{K}_{1, \mathrm{n}}\right)$ and $\left|\mathrm{S}_{\mathrm{i}}\right|=\mathrm{n}$. Therefore $\gamma_{\text {sp }}\left(\mathrm{M}\left(\mathrm{K}_{1, \mathrm{n})}\right)=\mathrm{n} \gamma_{\mathrm{sp}}\left(\mathrm{K}_{1, \mathrm{n}}\right)\right.$.

Theorem 3.4: $\gamma_{\mathrm{sp}}\left(\mathrm{M}\left(\mathrm{D}_{\mathrm{r}, \mathrm{s}}\right)\right)=\mathrm{r}+\mathrm{s}+1, \mathrm{r}, \mathrm{s} \geq 1$
Proof: Let $V\left(D_{r, s}\right)=\left\{u, v_{,} u_{1}, u_{2}, \ldots, u_{r}, v_{1}, v_{2}, \ldots, v_{s}\right\}$. Let $e=u v, e_{i}=u_{i} u, 1 \leq i \leq r, f_{j}=v_{j} v, 1 \leq j \leq s$. Let $G=$ $\mathrm{M}\left(\mathrm{D}_{\mathrm{r}, \mathrm{s}}\right) . \mathrm{V}(\mathrm{G})=\mathrm{V}\left(\mathrm{D}_{\mathrm{r}, \mathrm{s}}\right) \cup\left\{\mathrm{e}, \mathrm{e}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}, 1 \leq \mathrm{i} \leq \mathrm{r}, 1 \leq \mathrm{j} \leq \mathrm{s}\right\}$, $\operatorname{deg} \mathrm{e}=\mathrm{r}+\mathrm{s}+2=\Delta(\mathrm{G}), \operatorname{deg} \mathrm{u}=\mathrm{r}+1$, $\operatorname{deg} \mathrm{v}=\mathrm{s}+1 \operatorname{degu}_{\mathrm{i}}=$ $\operatorname{degv}_{\mathrm{j}}=1,1 \leq \mathrm{i} \leq \mathrm{r}, 1 \leq \mathrm{j} \leq \mathrm{s}, \operatorname{dege}_{\mathrm{i}}=\mathrm{r}+1,1 \leq \mathrm{i} \leq \mathrm{r}, \operatorname{deg} \mathrm{f}_{\mathrm{j}}=\mathrm{s}+1,1 \leq \mathrm{j} \leq \mathrm{s} .\left\{\mathrm{e}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{r}}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{s}}\right\}$ is the unique strong perfect dominating set of G . Hence $\gamma_{\mathrm{sp}}(\mathrm{G})=\mathrm{r}+\mathrm{s}+1$.

IV. CONCLUSION

In this paper strong perfect domination number of standard graphs and their middle graphs are determined.

REFERENCES

[1] B. Chaluvaraju, Perfect k-domination in graphs, Australasian Journal of Combinatorics,Volume 48, Pages 175-184, 2010
[2] J.V.Changela and G.J.Vala, perfect domination and packing of a graph, International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 12, p61-64, June 2014.
[3] Daisy P.Salve and Enrico L.Enriquez,Global,Inverse Perfect Domination in Graphs Journal of Pure and Applied Mathematics. ISSN 0973-1763 Volume 12,Number 1.pp.1-10,2016.
[4] M.Livingston and Q.F.Stout. Perfect dominating sets. Congr.Numer.,79: 187-203,1990
[5] M.Livingston and Q.F.Stout. Perfect dominating sets. Congr.Numer.,79: 187-203,1990.
[6] E.Sampathkumar and L.PushpaLatha, Strong weak domination and domination balance in a graph, Discrete Math., 161:235242,1996.
[7] SharadaB.Perfect Domination Excellent Trees, International J.Math. Combin.Vol.2,p76-80,2012.
[8] Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater(Eds), Domination in graphs: Advanced Topics, Marcel Decker, Inc., New York, 1998.
[9] Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, Fundamentals of domination in graphs, Marcel Decker, Inc., New York 1998.
[10] C.Yen and R.C.T.Lee, The weighted perfect domination problem and its varients, Discrete Applied Mathematics,66, p147-160, 1996

