Strong Perfect Domination in Graphs

Govindalakshmi T.S.¹,Meena.N²

¹Department of Mathematics, Manonmaniam Sundaranar University College, Puliangudi – 627 855. Affiliated to ManonmaniamSundaranarUniversity, Abishekapatti, Tirunelveli -627 012, TamilNadu, India. ²P.G. and Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli-10 Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, TamilNadu, India.

Abstract

Let G be a simple graph. A subset $S \subseteq V(G)$ is called a strong (weak) perfect dominating set of G if $|N_s(u) \cap S| = I(|N_w(u) \cap S| = I \text{ for every } u \in V(G) - S \text{ where } N_s(u) = \{v \in V(G)/ \deg v \ge \deg u\}$ ($N_w(u) = \{v \in V(G)/ \deg v \le \deg u\}$. The minimum cardinality of a strong (weak) perfect dominating set G is called the strong (weak) perfect domination number and is denoted by $\gamma_{sp}(G)$ ($\gamma_{wp}(G)$). In this paper strong perfect domination number of some standard graphs and their middle graphs are determined.

Keywords - *Dominating set, perfect dominating set, strong dominating set, strong perfect dominating set, strong perfect domination number.*

AMS subject classification: 05C69

I. INTRODUCTION

By a graph, it is meant that a finite, undirected graph without loops and multiple edges. Let G be a graph with vertex V and edge set E. Let p = |V(G)| and q = |E(G)|. The minimum and maximum degrees of vertices in G are denoted by $\delta(G)$ and $\Delta(G)$ respectively. A dominating set D of G is a subset of V (G) such that every vertex in V - D is adjacent to one vertex in D. A dominating set of G of minimum cardinality is a minimum dominating set of G and it cardinality is the domination number of G. It is denoted by $\gamma(G)$. A dominating set S is a perfect dominating set of G if $|N(v) \cap S| = 1$ for each $v \in V$ -S. Every graph G has at least the trivial perfect dominating set consisting of all vertices in V. Minimum cardinality of the perfect dominating set of G is the perfect domination number of G and it is denoted by $\gamma_p(G)$. Motivated by this definition, the strong perfect domination in graph is defined. In this paper strong perfect domination number of standard graphs and their middle graphs are determined.

Definition 1.1: The middle graph M(G) of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident with it.

Definition 1.2:The wheel W_n is defined to be the graph K_1+C_{n-1} , $n \ge 4$

Definition 1.3: The helm H_n is the graph obtained from the wheel W_n with n spokes by adding n pendant edges at each vertex on the wheel's rim.

Definition 1.4: A flower is a graph obtained from a helm by joining each pendant vertex to the central vertex of the helm.

Definition 1.5: Bistar is the graph obtained by joining the apex vertices of two copies of star K_{1, n}.

II. STRONG PERFECT DOMINATION IN GRAPHS

Definition 2.1: A subset $S \subseteq V(G)$ is called a strong (weak) perfect dominating set of G if $|N_s(u) \cap S| = 1(|N_w(u) \cap S| = 1$ for every $u \in V(G) - S$ where $N_s(u) = \{v \in V(G) / \text{ deg } v \ge \text{ deg } u\}$ ($N_w(u) = \{v \in V(G) / \text{ deg } v \le \text{ deg } u\}$). The minimum cardinality of a strong(weak) perfect dominating set G is called the strong(weak) perfect domination number and is denoted by $\gamma_{sp}(G)(\gamma_{wp}(G))$.

Remark 2.2: The maximum cardinality of a strong (weak) perfect dominating set of G is called the strong (weak) perfect domination number and is denoted by $\Gamma_{sp}(G)$ ($\Gamma_{wp}(G)$).

Example 2.3: Consider the following graphs G.

v₂**v**₃

Let $S = \{v_2, v_3\}$, $|N_s(v_1) \cap S| = |\{v_2, v_4\} \cap S| = |\{v_2\}| = 1$, $|N_s(v_4) \cap S| = |\{v_1, v_2\} \cap S| = |\{v_2\}| = 1$, $|N_s(v_5) \cap S| = |\{v_3\} \cap S| = |\{v_3\}| = 1$. Therefore S is a strong perfect dominating set of G. $T = \{v_2, v_5\}$, $|N_s(v_1) \cap S| = |N_s(v_3) \cap S| = |N_s(v_4) \cap S| = \{v_2\} = 1$. T is also a strong perfect dominating set of G. Therefore $\gamma_{sp}(G) \le 2$. G has no full degree vertex. Therefore $\gamma_{sp}(G) \ge 2$. Hence $\gamma_{sp}(G) = 2$.

Remark 2.4: $1 \leq \gamma_{s p}(G) \leq n$ where n = |V(G)|. For: If G has a full degree vertex then $\gamma_{sp}(G) = 1$ and $\gamma_{sp}(K_{m,n}) = m + n, m, n \geq 2, m \neq n$.

Remark 2.5: γ (G) $\leq \gamma_s$ (G) $\leq \gamma_{sp}$ (G).

Remark 2.6: A strong dominating set of a graph G need not be strong perfect dominating set of G.

Example: Consider the following graph G

Let $S = \{v_2, v_3\}$ is a strong dominating set but it is not a strong perfect dominating set. Since $|N_s(v_5) \cap S| = |N_s(v_6) \cap S| = |\{v_2, v_3\}| = 2 \neq 1$. Hence S is not a strong perfect dominating set of G. $T_1 = \{v_2, v_4, v_7\}$, $T_2 = \{v_1, v_3, v_8\}$ and $T_3 = \{v_2, v_3, v_5, v_6\}$ are strong perfect dominating sets of G. $\gamma_{sp}(G) = 3$ and $\Gamma_{sp}(G) = 4$. Therefore $\gamma_s(G) < \gamma_{sp}(G)$.

Theorem 2.7: For any path P_m Then $\gamma_{sp}(P_m) = \begin{cases} n \ if \ m = 3n, n \in N \\ n + 1 \ if \ m = 3n + 1, n \in N \\ n + 2 \ if \ m = 3n + 2, n \in N \end{cases}$

Proof:Case (i): Let $G = P_{3n}$, $n \in N$. Let $v_1, v_2, v_3, \dots, v_{3n}$ be the vertices of G. $\{v_2, v_5, \dots, v_{3n-1}\}$ is a strong perfect dominating set of G. $\gamma_{s p}(G) \leq n$ for all $n \in N$. Since $n = \gamma_s(G) \leq \gamma_{sp}(G)$. Therefore $\gamma_{sp}(P_{3n}) = n$ for all $n \in N$

Case(iii):

 $Let G=P_{3n+2}, n \in N. Let V(G) = \{v_1, v_2, \dots, v_{3n}, v_{3n+1}, v_{3n+2}\}. \{v_1, v_3, v_6, \dots, v_{3n}, v_{3n+2}\}, \{v_2, v_5, v_8, \dots, v_{3n-1}, v_{3n-1}, v_{3n}, v_{3n+1}\}, and \{v_2, v_5, v_8, \dots, v_{3n-1}, v_{3n}, v_{3n+2}\} are some strong perfect dominating sets of P_{3n+2}. Since <math>n+2 = \gamma_s(P_{3n+2}) \le \gamma_{sp}(P_{3n+2})$. Hence $\gamma_{sp}(P_{3n+2}) = n+2$.

Theorem 2.8: For any cycle C_m

Then
$$\gamma_{sp}(C_m) = \begin{cases} n \ if \ m = 3n \\ n + 1 \ if \ m = 3n + 1 \\ n + 2 \ if \ m = 3n + 2 \end{cases}$$

Proof:

 $\begin{array}{l} \textbf{Case(i):} \ Let \ G = C_{3n}, \ n \in N. \ Let \ V(G) = \{v_1, v_2, \ldots, v_{3n}\}. \ \{v_1, v_4, v_7, \ldots, v_{3n-2}\}, \{v_2, v_5, v_8, \ldots, \ldots, v_{3n-1}\} \\ and \ \{v_3, v_6, v_9, \ldots, v_{3n}\} \ are \ strong \ perfect \ dominating \ sets \ of \ C_{3n}. \ \gamma_{sp}(C_{3n}) \leq n \ for \ all \ n \in N. \ It \ is \ verified \ that \ there \ is \ no \ strong \ perfect \ dominating \ sets \ of \ C_{3n}. \ \gamma_{sp}(C_{3n}) \leq n \ for \ all \ n \in N. \ It \ is \ verified \ that \ there \ is \ no \ strong \ perfect \ dominating \ sets \ of \ C_{3n+1}, \ n \in N. \ Let \ V(G) = \ \{v_1, v_2, \ldots, v_{3n+1}\}. \ \{v_1, v_2, v_5, \ldots, v_{3n-1}\}, \ \{v_2, v_3, v_6, \ldots, v_{3n}\}, \{v_3, v_4, v_7, \ldots, v_{3n+1}\} \ are \ some \ strong \ perfect \ dominating \ sets \ of \ C_{3n+1}. \ Therefore \ \gamma_{sp}(C_{3n+1}) \leq n+1, n \in N. \ It \ is \ verified \ that \ there \ is \ no \ strong \ perfect \ dominating \ set \ of \ n \ vertices. \ \gamma_{sp}(C_{3n+1}) \geq n+1. \ Hence \ \gamma_{sp}(C_{3n+1}) = n+1. \end{array}$

Case(iii):Let $G = C_{3n+2}$, $n \in N$. Let $V(G) = \{v_1, v_2, \dots, v_{3n+2}\}$. $\{v_1, v_2, v_3, v_6, \dots, v_{3n}\}$, $\{v_2, v_3, v_4, v_7, \dots, v_{3n+1}\}$, $\{v_3, v_4, v_5, v_8, \dots, v_{3n+2}\}$ are some strong perfect dominating sets of C_{3n+2} . $\gamma_{sp}(C_{3n+2}) \leq n+2$ for all $n \in N$. It is verified that there is no strong perfect dominating set of n+1 vertices. $\gamma_{sp}(C_{3n+2}) \geq n+2$. Hence $\gamma_{sp}(C_{3n+2}) = n+2$.

Theorem 2.9: Let G be a connected graph with n vertices. If Δ (G) = n – 2 and G contains exactly two maximum degree vertices which are non-adjacent then $\gamma_{sp}(G) = n$

Proof: Let u and v be two non-adjacent vertices in G such that deg $u = \text{deg } v = \Delta (G) = n - 2$. Let S be a strong perfect dominating set of G. S must contain u and v. Also the vertices other than u and v must belong to S. Since otherwise $|Ns(w) \cap S| \ge 2$, where $w \in V(G)$, $w \ne u,v$, a contradiction. Hence $\gamma_{sp}(G) = n$.

Remark 2.10:

 $\begin{array}{l} 1. \; \gamma_{sp}(K_n) = 1, \, n \in N. \\ 2. \; \gamma_{sp}(K_{1,n}) = 1, \, n \in N. \\ 3. \gamma_{sp}(W_n) = 1, \, n \in N. \end{array}$

Theorem 2.11: $\gamma_{sp}(D_{r,s}) = 2$. $r,s \in N$

Proof: Let $G = D_{r,s}$. Let u and v be the central vertices of G. Let $u_1, u_2, ..., u_r$ be the vertices adjacent with u and $v_1, v_2, ..., v_s$ be the vertices adjacent with v. Clearly $\{u, v\}$ is the unique strong perfect dominating set of G. Therefore $\gamma_{sp}(G) = 2$.

Theorem 2.12: $\gamma_{sp}(K_{m,n}) = \begin{cases} 2 \ if \ m = n \\ m + n \ if \ m \neq n \end{cases}$

Proof: Let $G = K_{m,n}$.

Let $V(G) = \{v_1, v_2, \dots, v_m, u_1, u_2, \dots, u_n\}.$

Case(i): Let m = n. $\{v_i, u_j\}$ $1 \le i, j \le n$ is a strong perfect dominating set of G. Hence $\gamma_{sp}(G) \le 2$. Since G has no full degree vertex, $\gamma_{sp}(G) \ge 2$. Hence $\gamma_{sp}(G) = 2$.

Case(ii):Let $m \neq n$. Without loss of generality let m < n, degv_i>degu_j, $1 \le i \le m$, $1 \le j \le n$. Each v_i strongly dominates all u_j's, $1 \le j \le m$ and v_i's are mutually non adjacent. Let S be a strong perfect dominating set of G. Then S contains all v_i, $1 \le i \le m$. Some $|N_s(u_j) \cap S| \ge 2$, all u_j's belong to S. Hence $\gamma_{sp}(K_{m,n}) = m+n$.

Theorem 2.13: Let G be a connected graph with |V(G)| = n then $\gamma_{sp}(G \odot K_1) = n$

Proof:Let $V(G) = \{v_1, v_2, ..., v_n\}$. Let $u_1, u_2, ..., u_n$ be the vertices such that v_i and u_i are adjacent. Let S be a γ_{sp} – set of G.Let $|S| = m, m \le n$. The vertices in S strongly unique dominate the pendant vertices u_i 's. Remaining n - m pendant vertices together with vertices of S form a strong perfect dominating set of GOK_1 . Hence $\gamma_{sp}(GOK_1) = m + n - m = n$.

Theorem 2.14: $\gamma_{sp}(H_n) = n+1, n \ge 3.$

Theorem 2.15:Let G be a connected graph $\gamma_{sp}(G) = 1$ if and only if G contain at least one full degree vertex.

III. STRONG PERFECT DOMINATION IN SOME MIDDLE GRAPH

Theorem3.1: Let P_m be the path on m vertices, $m \ge 2$.

Then $\gamma_{sp}(M(P_m)) = \begin{cases} 2n - 1 \ if m = 3n, n \ge 2\\ 2n + 1 \ if m = 3n + 1 \ or \ 3n + 2, n \ge 1 \end{cases}$

Proof: Let V $(P_m) = \{v_1, v_2, ..., v_m\}$ and $E(P_m) = \{e_i/e_i = v_iv_{i+1}, 1 \le i \le m - 1\}$

Case(i): Let m = 3n, $n \ge 2 V(M(P_{3n})) = \{v_1, v_2, \dots, v_{3n}, e_1, e_2, \dots, e_{3n-1}\}$. Each e_i is adjacent with v_i and v_{i+1} , $1 \le i \le 3n - 1$. Their vertices v_i 's are mutually non adjacent. Also e_j is adjacent with $e_{j+1}, 1 \le j \le 3n - 2$. The sub graph induces by $e_1, e_2, \dots, e_{3n-1}$ is a path P_{3n-1} . $S = \{e_1, e_3, e_6, \dots, e_{3n-3}, e_{3n-1}, v_5, v_8, \dots, v_{3n-4}\}$ is the unique strong perfect dominating set of $M(P_{3n}).|S| = 2n - 1$. Hence $\gamma_{sp}(M(P_{3n})) = 2n - 1$, $n \ge 2$.

Case(ii): Let m = 3n+1, $n \ge 1$. $V(M(P_{3n+1})) = \{v_1, v_2, \dots, v_{3n+1}, e_1, e_2, \dots, e_{3n}\}$. Each e_i is adjacent with v_i and v_{i+1} , $1 \le i \le 3n$ and each e_j is adjacent with e_{j+1} , $1 \le j \le 3n+1$. $T = \{e_2, e_5, e_8, \dots, e_{3n-1}, v_1, v_4, v_7, \dots, v_{3n+1}\}$ is the unique strong perfect dominating set of $M(P_{3n+1})$. |T| = 2n+1.

Case(iii): Let m = 3n+2, $n \ge 1$. $V(M(P_{3n+2})) = \{v_1, v_2, \dots, v_{3n+2}, e_1, e_2, \dots, e_{3n+1}\}$. Each e_i is adjacent with v_i and $v_{i+1}, 1 \le i \le 3n+1$ and each e_j is adjacent with $e_{j+1}, 1 \le j \le 3n$. Any strong perfect dominating set must contain either e_1 or e_2 . Since if both e_1 and e_2 belong to any strong perfect dominating set S then $|N_s(v_2) \cap S| = |\{e_1, e_2\}| = 2 > 1$, a contradiction, Hence no other strong perfect dominating set without e_1 and e_2 exists. $S_1 = \{e_1, e_3, e_6, \dots, e_{3n-3}, e_{3n}, v_5, v_8, \dots, v_{3n-1}, v_{3n+2}\}$ $S_2 = \{e_2, e_5, e_8, \dots, e_{3n-1}, e_{3n-1}, e_{3n-1}, v_{3n-2}\}$ are strong perfect dominating sets of $M(P_{3n+2})$, $n \ge 1$. $|S_1| = 2n+1$ and $|S_2| = 2n+1$. Therefore $\gamma_{sp}(M(P_{3n+2})) \ge 2n+1$. Therefore $\gamma_{sp}(M(P_{3n+2})) = 2n+1$, $n \ge 1$.

Theorem 3.2:LetC_m be the cycle on m vertices then $\gamma_{sp}(M(C_m)) = \begin{cases} 2n \ if \ m = 3n \\ 2n + 2 \ if \ m = 3n + 1 \\ 2n + 4 \ if \ m = 3n + 2 \end{cases}$

Proof: Let $G=C_m$, $m \ge 3$. Let $V(G)=\{v_1, v_2, \dots, v_m\}$. Let $E(G)=\{e_i/e_i=v_iv_{i+1}, 1\le i\le m-1\} \cup \{e_m=v_1v_m\}$. $V(M(G)) = \{v_1, v_2, \dots, v_{3n}, e_1, e_2, \dots, e_{3n}\}$. Each e_i is adjacent with $e_{i+1}, 1\le i\le m-1$ and e_1 and e_m are adjacent. Each v_i is adjacent with e_i and $e_{i+1}, 1\le i\le m-1$. The vertex v_m is adjacent with e_1 and e_m , deg $e_i = 4 = \Delta(G), 1\le i\le m$ and deg $v_i = 2$, $1\le i\le m$.

 $\begin{array}{l} \textbf{Case(i):} Let \ m=3n, \ n\geq 1. The \ sub \ graph \ induced \ by \ e_1, e_2, \ldots, e_{3n} \ is \ C_{3n}. Let \ S=\{e_1, e_4, e_7, \ldots, e_{3n-2}\ \}. Each \ e_i \ in \ S \ strongly \ dominates \ e_{i} \ -1, e_{i+1}, v_i, v_{i-1}, 4\leq i\leq 3n-2 \ and \ e_1 \ strongly \ dominates \ e_2, e_{3n}, v_{3n} \ and \ v_1. Since \ the \ vertices \ v_2, v_5, \ldots, v_{3n-1} \ is \ not \ dominated \ by \ any \ vertex \ of \ S \ and \ they \ are \ not \ adjacent \ with \ one \ another. They \ together \ with \ S \ form \ a \ \gamma_{sp} \ -set \ of \ M(G). Similarly \ S_2= \ \{e_2, e_5, e_8, \ldots, e_{3n-1}, v_3, v_6, \ldots, v_{3n} \} \ and \ S_3 = \ \{e_3, e_6, e_9, \ldots, e_{3n}, v_1, v_4, v_7, \ldots, v_{3n-2} \} \ are \ the \ \gamma_{sp} \ -sets \ of \ M(G). \ |S_i| = 2n, \ i = 1,2 \ and \ 3. \ Therefore \ \gamma_{sp}(M(C_{3n})) \leq 2n. \ Therefore \ \gamma_{sp}(M(C_{3n})) \geq 2n. \ Therefore \ \gamma_{sp}(M(C_{3n})) = 2n. \end{array}$

Case(ii): Let $m = 3n+1, n \ge 1$. The sub graph induced by $e_1, e_2, \dots, e_{3n+1}$ is C_{3n+1} . Let $S = \{e_1, e_2, e_5, \dots, e_{3n+1}, v_1\}$. Each e_i in S strongly dominates $e_{i-1}, e_{i+1}, v_i, v_{i-1}, 5 \le i \le 3n - 1$ and e_1, e_2 strongly dominate e_3, e_{3n+1}, v_3 and v_{3n+1} . Since the vertices v_4, v_7, \dots, v_{3n} are not dominated by any vertex of S and they are not adjacent with one another. They together with S form $a\gamma_{sp}$ – set of $M(C_{3n+1})$. i.e) $S_1 = \{e_1, e_2, e_5, \dots, e_{3n-1}, v_1, v_4, v_7, \dots, v_{3n}\}$. $|S_1| = 2n+2$. Therefore $\gamma_{sp}(M(C_{3n+1})) \le 2n+2$. It is verified that no other strong perfect dominating set of 2n+1 vertex exists. Hence $\gamma_{sp}M(C_{3n+1}) \ge 2n+2$. Therefore $\gamma_{sp}M(C_{3n+1}) \ge 2n+2$.

Case(iii): Let $m = 3n+2, n \ge 1$. The subgraph induced by $e_1, e_2, \dots, e_{3n+2}$ is C_{3n+2} . Let $S = \{e_1, e_2, e_3, e_6, \dots, e_{3n}, v_1, v_2\}$. Each e_i in S strongly dominates $e_{i-1}, e_{i+1}, v_i, v_{i-1}, 6 \le i \le 3n$ and e_1, e_2, e_3 , are strongly dominate $e_4, e_{3n+2}, v_1, v_{3n+1}$. Since the vertices $v_4, v_7, \dots, v_{3n+1}$ are not dominated by any of S and they are not adjacent with one another. They together with S form a γ_{sp} - set of $M(C_{3n+2})$. i.e) $S_1 = \{e_1, e_2, e_3, e_6, \dots, e_{3n}, v_1, v_2, v_4, v_7, \dots, v_{3n+1}\}$. $|S_1| = 2n+4$. Therefore $\gamma_{sp}(M(C_{3n+2})) \le 2n+4$. It is verified that no other strong perfect dominating set of 2n+3 vertices exists. Therefore $\gamma_{sp}M(C_{3n+2}) \ge 2n+4$. Hence $\gamma_{sp}(M(C_{3n+2}) = 2n+4$.

Theorem 3.3: Let $G=K_{1,n}n\geq 1$, then $\gamma_{sp}(M(K_{1,n})) = n \gamma_{sp}(K_{1,n})$.

Proof: Let $V(G) = \{v,v_1,v_2,...,v_n\}$ deg v = n and deg $v_i = 1, 1 \le i \le n$, $E(G) = \{e_i/e_i = vv_i, 1\le i\le n\}$. $V(M(K_{1,n})) = \{v,v_1,v_2,...,v_n,e_1,e_2,...,e_n\}$ v and v_i are adjacent with $e_i, 1\le i\le n$ and each e_i is adjacent with all other e_j 's. Therefore the sub graph induced by $\{v,e_1,e_2,...,e_n\}$ is a complete graph K_{n+1} , deg v = n, deg $e_i = n+1 = \Delta(G), 1\le i\le n$ and deg $v_i = 1, 1\le i\le n$. Each e_i strongly dominates v, v_i and $e_j, 1\le j\le n$, for $1\le i\le n$, $i\ne j$. $S_i = \{e_i\} \cup \{v_i/1\le j\le n, j\ne i\}$ is a γ_{sp} – set of $M(K_{1,n})$ and $|S_i| = n$. Therefore $\gamma_{sp}(M(K_{1,n})) = n \gamma_{sp}(K_{1,n})$.

Theorem 3.4: $\gamma_{sp}(M(D_{r,s})) = r+s+1, r,s \ge 1$

Proof: Let $V(D_{r,s}) = \{u,v,u_1,u_2,...,u_r,v_1,v_2,...,v_s\}$. Let e = uv, $e_i = u_iu$, $1 \le i \le r$, $f_j = v_jv$, $1 \le j \le s$. Let $G = M(D_{r,s})$. $V(G) = V(D_{r,s}) \cup \{e,e_i,f_j, 1 \le i \le r, 1 \le j \le s\}$, deg $e = r+s+2 = \Delta(G)$, deg u = r+1, deg v = s+1 deg $u_i = degv_j = 1$, $1 \le i \le r$, $1 \le j \le s$, deg $e_i = r+1$, $1 \le i \le r$, deg $f_j = s+1$, $1 \le j \le s$. $\{e,u_1,u_2,...,u_r,v_1,v_2,...,v_s\}$ is the unique strong perfect dominating set of G. Hence $\gamma_{sp}(G) = r+s+1$.

IV. CONCLUSION

In this paper strong perfect domination number of standard graphs and their middle graphs are determined.

REFERENCES

- [1] B. Chaluvaraju, Perfect k-domination in graphs, Australasian Journal of Combinatorics, Volume 48, Pages 175 184, 2010
- [2] J.V.Changela and G.J.Vala, perfect domination and packing of a graph, International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 12, p61-64, June 2014.
- [3] Daisy P.Salve and Enrico L.Enriquez, Global, Inverse Perfect Domination in Graphs Journal of Pure and Applied Mathematics. ISSN 0973-1763 Volume 12, Number 1. pp. 1-10, 2016.
- [4] M.Livingston and Q.F.Stout. Perfect dominating sets. Congr.Numer.,79: 187-203,1990
- [5] M.Livingston and Q.F.Stout. Perfect dominating sets. Congr.Numer., 79: 187-203, 1990.
- [6] E.Sampathkumar and L.PushpaLatha, Strong weak domination and domination balance in a graph, Discrete Math., 161:235-242,1996.
- [7] SharadaB.Perfect Domination Excellent Trees, International J.Math. Combin.Vol.2,p76-80,2012.
- [8] Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater(Eds), Domination in graphs: Advanced Topics, Marcel Decker, Inc., New York, 1998.
- [9] Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, Fundamentals of domination in graphs, Marcel Decker, Inc., New York 1998.
- [10] C.Yen and R.C.T.Lee, The weighted perfect domination problem and its varients, Discrete Applied Mathematics, 66, p147-160, 1996