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Abstract. A partial semiring is a structure possessing an infinitary partial addition and

a binary multiplication, subject to a set of axioms. The partial functions under disjoint-

domain sums and functional composition is a partial semiring. In this paper we obtain

equivalent conditions and some characteristics of 2-absorbing subsemimodules and weakly

2-absorbing subsemimodules in partial semirings.

Index Terms: Semimodule, 2-absorbing subsemimodule, weakly 2-absorbing subsemimodule,

commutative partial semiring.

Introduction

Partially defined infinitary operations occur in the contexts ranging from integration the-

ory to programming language semantics. The general cardinal algebras studied by Tarski in

1949, Housdorff topological commutative groups studied by Bourbaki in 1966, Σ-structures

studied by Higgs in 1980, sum ordered partial monoids and sum ordered partial semirings

(so-rings) studied by Arbib, Manes and Benson[2], [3], and Streenstrup[13] are some of the

algebraic structures of the above type.

In 2014, M. S. Reddy[12] introduced the notion of 2-absorbing subsemimodules in par-

tial semirings which is the generelisation of subsemimodules in partial semirings. In this

paper, we consider the 2-absorbing subsemimodules of partial semirings and obtain vari-

ous equivalent conditions of it. Also we obtain the characterizations of weakly 2-absorbing

subsemimodules interms of weakly 2-absorbing partial ideals of partial semirings.
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1. Preliminaries

In this section we collect some definitions and results for our use in this paper.

Definition 1.1. [3] A partial monoid is a pair (M,Σ) where M is a nonempty set and Σ is

a partial addition defined on some, but not necessarily all families (xi : i ∈ I) in M subject

to the following axioms:

(1) Unary Sum Axiom. If (xi : i ∈ I) is a one element family in M and I = {j}, then

Σ(xi : i ∈ I) is defined and equals xj.

(2) Partition-Associativity Axiom. If (xi : i ∈ I) is a family in M and (Ij : j ∈ J) is a

partition of I, then (xi : i ∈ I) is summable if and only if (xi : i ∈ Ij) is summable

for every j in J and (Σ(xi : i ∈ Ij) : j ∈ J) is summable. we write

Σ(xi : i ∈ I) = Σ(Σ(xi : i ∈ Ij) : j ∈ J).

Definition 1.2. [13] A partial semiring is a quadruple (R,Σ, ·, 1), where (R,Σ) is a partial

monoid, (R, ·, 1) is a monoid with multiplicative operation ‘·’ and unit 1, and the additive

and multiplicative structures obey the following distributive laws: If Σ(xi : i ∈ I) is defined

in R, then for all y in R, Σ(y · xi : i ∈ I) and Σ(xi · y : i ∈ I) are defined and

y · Σ(xi : i ∈ I) = Σ(y · xi : i ∈ I), Σ(xi : i ∈ I) · y = Σ(xi · y : i ∈ I).

Definition 1.3. [3] A partial semiring (R,Σ, ·, 1) is said to be commutative, if xy = yx

∀ x, y ∈ R.

Definition 1.4. [10] Let (R,Σ, ·, 1) be a partial semiring and (M,Σ) be a partial monoid.

Then M is said to be a left partial semimodule over R if there exists a function ∗: R ×M

−→ M : (r, x) 7−→ r ∗ x which satisfies the following axioms for x, (xi : i ∈ I) in M and

r1, r2, (rj : j ∈ J) in R

(i). if Σixi exists then r ∗ (Σixi) = Σi(r ∗ xi),

(ii). if Σjrj exists (Σjrj) ∗ x = Σj(rj ∗ x),

(iii). r1 ∗ (r2 ∗ x) = (r1 · r2) ∗ x and

(iv). 1R ∗ x = x.

Definition 1.5. [10] Let (M,Σ) be a left partial semimodule over a partial semiring R. Then

a nonempty subset N of M is said to be a subsemimodule of M if N is closed under Σ and

∗.
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Definition 1.6. [10] If N is a proper subsemimodule of a partial semimodule M over R then

(N : M) = {r ∈ R | rM ⊆ N}.

Definition 1.7. [10] Let M be a partial semimodule over R. Then M is said to be multipli-

cation partial semimodule if for all subsemimodules N of M there exists a partial ideal I of

R such that N = IM .

Theorem 1.8. [10] A partial semimodule M over R is a multiplication partial semimodule

if and only if there exists a partial ideal I of R such that Rm = IM for each m ∈M .

Definition 1.9. [10] Let M be a multiplication partial semimodule over R and N , K be

subsemimodules of M such that N = IM and K = JM for some partial ideals I, J of R.

Then the multiplication of N and K is defined as NK = (IM)(JM) = (IJ)M .

Definition 1.10. [10] Let M be a multiplication partial semimodule over R and m1,m2 ∈

M such that Rm1 = IM and Rm2 = JM for some partial ideals I, J of R. Then the

multiplication of m1 and m2 is defined as m1m2 = (IM)(JM) = (IJ)M .

Definition 1.11. [12] Let M be a partial semimodule over R and N be a proper subsemi-

module of M . Then N is said to be a 2-absorbing subsemimodule of M if for any a, b ∈ R

and m ∈M , ab ∗m ∈ N implies ab ∈ (N : M) or a ∗m ∈ N or b ∗m ∈ N .

Remark 1.12. [8] Let R be a so-ring and I be a proper ideal of R. If I is a 2-absorbing

ideal then I is a semi-2-absorbing ideal of R.

Theorem 1.13. [12] Let M be a multiplication partial semimodule over R and N be a

subsemimodule of M . Then the following conditions are equivalent:

(i). N is a 2-absorbing subsemimodule of M

(ii). for any subsemimodules U, V of W of M , UVW ⊆ N implies UV ⊆ N or VW ⊆ N

or UW ⊆ N

(iii). for any m1,m2,m3 ∈ M , m1m2m3 ⊆ N implies m1m2 ⊆ N or m2m3 ⊆ N or

m1m3 ⊆ N .

Definition 1.14. [11] Let M be a multiplication partial semimodule over R. A subset S

of M is said to be multiplication closed subset (in short closed subset) if for any m,n ∈ S,

mn
⋂

S 6= ∅.
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Definition 1.15. [3] A left partial semimodule M over R is said to be entire if and only if

r ∗m 6= 0M whenever 0 6= r ∈ R and 0M 6= m ∈M .

Throughout this paper, R denotes a commutative semiring.

2. 2-Absorbing Subsemimodules

Following the notion of [11], we proved the following results:

Theorem 2.1. Let K be a multiplication partial semimodule over R. Let B be a sub-

semimodule of K and T be a closed subset of K such that B
⋂

T = ∅. Then there is a

subsemimodule P of K which is maximal with respect to the property that B ⊆ P and P
⋂

T

= ∅. Furthermore, P is a 2-absorbing subsemimodule of K.

Proof. Take A = {J | J is a subsemimodule of K, B ⊆ J and J
⋂
T = ∅}. Clearly B ∈ A.

Moreover (A, ⊆) is a partially ordered set in which every simply ordered family has an upper

bound. By Zorn’s lemma, A has a maximal element. Let it be P . i.e., P is a subsemimodule

of M which is maximal with respect to the property that B ⊆ P and P
⋂

T = ∅. Now we

have to prove P is a 2-absorbing subsemimodule of M . Let a, b ∈ R and k ∈ K such that

(ab)∗k ∈ P . Suppose ab /∈ (P : K), a∗k /∈ P and b∗k /∈ P . Then (ab)K * P , a∗k /∈ P and

b∗k /∈ P . ⇒ P ⊂ P +R(ab)K, P ⊂ P +R(a∗k) and P ⊂ P +R(b∗k). By the maximality of

P , (P +R(ab)K)
⋂

T 6= ∅, (P +R(a∗k))
⋂
T 6= ∅ and (P +R(b∗k))

⋂
T 6= ∅. ⇒ ∃ r, s, t ∈ T

such that r ∈ P +R(ab)K, s ∈ P +R(a ∗ k) and t ∈ P +R(b ∗ k). Since T is a closed subset

of K, rst
⋂

T 6= ∅. Moreover rst = [P + R(ab)K][P + R(a ∗ k)][P + R(b ∗ k)] ⊆ P . Thus

P
⋂

T 6= ∅, a contradiction. Therefore P is a 2-absorbing subsemimodule of K. Hence the

theorem. �

Theorem 2.2. Every 2-absorbing subsemimodule T of a multiplication partial semimodule

K over R contains a minimal 2-absorbing subsemimodule.

Proof. Take A = {L | L is a 2− absorbing subsemimodule of K such that L ⊆ T}. Since

T ∈ A, (A, ⊆) is a non-empty partially ordered set. Let {Li | i ∈ I} be a decreasing

chain of subsemimodules of K such that Li ⊆ T ∀i ∈ I and let L′ =
⋂

i∈I Li. Then L′ is a

subsemimodule of K and L′ ⊆ T . Now we prove that L′ is 2-absorbing. Let k1, k2, k3 ∈ K

such that k1k2k3 ⊆ L′, k1k2 * L′ and k2k3 * L′. Then k1k2 * Lk, k2k3 * Lk for some k ∈ I

(since {Li | i ∈ I} is a decreasing chain). ⇒ k1k3 ⊆ Lk. Now for any i ≤ k, Li ⊇ Lk and
4

Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 58 Issue 3- June 2018

Text Box
ISSN: 2231-5373                          http://www.ijmttjournal.org                                      Page 208



hence k1k3 ⊆ Li. For any i > k, Li ⊆ Lk. ⇒ k1k2 * Li, k2k3 * Li and hence k1k3 ⊆ Li

∀i > k. Hence k1k3 ⊆ L′. By theorem 1.13., L′ is a 2-absorbing subsemimodule of K and

L′ ∈ A. Then by Zorn’s lemma, A has a minimal element. Hence the theorem. �

Definition 2.3. Let K be a partial semimodule over R and T be a subsemimodule of K.

Then T is said to be semi-2-absorbing if and only if its associated partial ideal (T : K) is

semi-2-absorbing.

Remark 2.4. Every 2-absorbing subsemimodule of a partial semimodule over R is semi-2-

absorbing subsemimodule.

Proof. Let K be a partial semimodule over R. Let T be a subsemimodule of K. Suppose T is

a 2-absorbing subsemimodule of K. Then its associated partial ideal (T : K) is a 2-absorbing

partial ideal of R. By remark 1.12., (T : K) is a semi-2-absorbing partial ideal of R. Hence

T is a semi-2-absorbing subsemimodule of K. �

The following is an example of a partial semimodule over R in which a semi-2-absorbing

subsemimodule is not 2-absorbing.

Example 2.5. Let R be a partial semiring N with finite support addition and usual multi-

plication. Then K = N× N is a left partial semimodule over R by the scalar multiplication

∗ : (x, (a, b)) −→ (xa, xb). Take T ′ = 0 × 4N. Then (T ′ : K) = {0} is a semi-2-absorbing

partial ideal of R and hence T ′ is semi-2-absorbing subsemimodule of K. For 2, 2 ∈ R,

(0, 1) ∈ K, (2, 2) ∗ (0, 1) = (0, 4) ∈ T ′.But 2 · 2 = 4 /∈ (T ′ : K) = {0} and 2 ∗ (0, 1) =

(0, 2) /∈ T ′. Hence T ′ is not a 2-absorbing subsemimodule of K.

Theorem 2.6. Let K be a multiplication partial semimodule over R and S be a subsemi-

module of K. Then the following conditions are equivalent:

(i). S is a semi-2-absorbing subsemimodule

(ii). for any subsemimodule H of K, H3 ⊆ S implies H2 ⊆ S

(iii). for any k ∈ K, k3 ⊆ S implies k2 ⊆ S.

Proof. (i) ⇒ (ii): Suppose S is a semi-2-absorbing subsemimodule. Then (S : K) is a semi-

2-absorbing partial ideal of R. Let H be a subsemimodule of K such that H3 ⊆ S. Since

K is a multiplication partial semimodule, ∃ a partial ideal J of R such that H = JK. ⇒

H3 = (JK)(JK)(JK) = J3K ⊆ S. ⇒ J3 ⊆ (S : K). ⇒ J2 ⊆ (S : K) (since (S : K) is a
5
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semi-2-absorbing partial ideal). ⇒ J2K ⊆ S. ⇒ (JK)(JK) ⊆ S. ⇒ H2 ⊆ S.

(ii) ⇒ (i): Suppose for any subsemimodule H of K, H3 ⊆ S implies H2 ⊆ S. Let J be a

partial ideal of R such that J3 ⊆ (S : K). ⇒ J3K ⊆ S. ⇒ (JK)3 ⊆ S. By assumption,

(JK)2 ⊆ S. ⇒ J2K ⊆ S. ⇒ J2 ⊆ (S : K). Therefore (S : K) is a semi-2-absorbing partial

ideal of R. Hence S is a semi-2-absorbing subsemimodule of K.

(ii) ⇒ (iii): Suppose for any subsemimodule H of K, H3 ⊆ S implies H2 ⊆ S. Let k ∈ K

such that k3 ⊆ S. Since K is a multiplication partial semimodule, ∃ a partial ideal J of R

such that Rk = JK. ⇒ k3 ⊆ (Rk)3 = (JK)3 ⊆ S. Since JK is a subsemimodule of K, by

assumption (JK)2 ⊆ S. ⇒ (Rk)2 ⊆ S. Since k ∈ Rk, k2 ⊆ (Rk)2. Hence k2 ⊆ S.

(iii) ⇒ (ii): Suppose for any k ∈ K, k3 ⊆ S implies k2 ⊆ S. Let H be a subsemimodule of

K such that H3 ⊆ S. Suppose H2 * S. ⇒ ∃ h ∈ H such that h2 ⊆ H2 and h2 * S. ⇒

h3 ⊆ H3 ⊆ S. ⇒ h3 ⊆ S. By assumption, h2 ⊆ S, a contradiction. Therefore H2 ⊆ S. �

3. Weakly 2-Absorbing Subsemimodules

Following the notion of weakly 2-absorbing ideals of so-rings in [5], we define weakly 2-

absorbing subsemimodules in partial semirings as follows.

Definition 3.1. Let L be a subsemimodule of a partial semimodule K over R. Then L is

said to be weakly 2-absorbing if 0 6= (xy) ∗ l ∈ L, x, y ∈ R, l ∈ K then xy ∈ (L : K) or

x ∗ l ∈ L or y ∗ l ∈ L.

Remark 3.2. Every 2-absorbing subsemimodule of a partial semimodule K is a weakly 2-

absorbing subsemimodule of K.

Proof. Let K be a partial semimodule over R. Let L be a 2-absorbing subsemimodule of K.

Let x, y ∈ R, l ∈ K such that 0 6= (xy) ∗ l ∈ L. Since L is 2-absorbing, xy ∈ (L : K) or

x ∗ l ∈ L or y ∗ l ∈ L. Hence L is a weakly 2-absorbing subsemimodule of K. �

The following is an example of a partial semiring R in which the converse need not be

true.

Example 3.3. Consider the partial semiring Z8. Take R: = Z8 × Z8. Clearly R is a com-

mutative partial semiring w.r.t. cartesian product operations. Consider L = {(0, 0), (0, 4)}

be a subsemimodule of R. Clearly L is a weakly 2-absorbing subsemimodule of R. Now

(2, 0)(2, 0)(0, 2) = (0, 0) ∈ L but (2, 0)(2, 0) = (4, 0) /∈ L. Hence L is not a 2-absorbing

subsemimodule of R.
6
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Theorem 3.4. Let L be a weakly 2-absorbing subsemimodule of an entire partial semimodule

K over R. Then the associated partial ideal (L : K) is a weakly 2-absorbing partial ideal of

R.

Proof. Let x, y, z ∈ R such that 0 6= xyz ∈ (L : K), xy /∈ (L : K) and yz /∈ (L : K). Then

0 6= (xyz)K ⊆ L and ∃ 0 6= a, b ∈ K such that (xy) ∗ a /∈ L, (yz) ∗ b /∈ L. ⇒ (xy) ∗ a 6= 0,

(yz)∗ b 6= 0. Since K is entire, 0 6= (xyz)∗a ∈ (xyz)K ⊆ L and 0 6= (xyz)∗ b ∈ (xyz)K ⊆ L.

⇒ (xz)(y∗a) ∈ L, (xz)(y∗b) ∈ L. Since L is weakly 2-absorbing, (xy)∗a /∈ L and (yz)∗b /∈ L

then xz ∈ (L : K). Hence (L : K) is a weakly 2-absorbing partial ideal of R. �

The following example illustrates if (L : K) is a weakly 2-absorbing partial ideal of R then

L need not be a weakly 2-absorbing subsemimodule of an entire partial semimodule K over

R.

Example 3.5. Let R be the partial semiring N with finite support addition and usual multi-

plication. Define the scalar multiplication as ∗ : (a, (x, y)) −→ (ax, ay). Clearly K = N×N

be an entire partial semimodule over R by ∗. Let L = 0×4N be a subsemimodule of K. Now

(L : K) = {0} is a weakly 2-absorbing partial ideal of R. Since (0, 0) 6= (2, 2) ∗ (0, 1) ∈ L,

2.2 /∈ (L : K) and 2 ∗ (0, 1) /∈ L, L is not a weakly 2-absorbing subsemimodule of K.

The following is an example in which the above theorem is not true if K is not an entire

partial semimodule over R.

Example 3.6. Let R = N be the partial semiring and K = (Z6,+6) be the partial semimodule

over R. Clearly K is not entire and {0} is a weakly 2-absorbing subsemimodule of K. Also,

({0} : K) = 6N. Since 0 6= 2.2.2 ∈ 6N, 2.2 /∈ 6N. Hence ({0} : K) = 6N is not a weakly

2-absorbing partial ideal of R.

Theorem 3.7. Let L be a subsemimodule of an entire multiplication partial semimodule K

over R. Then L is weakly 2-absorbing subsemimodule of K if and only if the associated

partial ideal (L : K) is a weakly 2-absorbing partial ideal of R.

Proof. Suppose L is weakly 2-absorbing subsemimodule of an entire multiplication partial

semimodule K over R. Then by theorem 3.4., the associated partial ideal (L : K) is a weakly

2-absorbing partial ideal of R. Conversly suppose that (L : K) is a weakly 2-absorbing partial

ideal of R. Let x, y ∈ R, l ∈ K such that 0 6= (xy) ∗ l ∈ L, x ∗ l /∈ L and y ∗ l /∈ L. Since
7
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K is a multiplication partial semimodule then ∃ partial ideal A of R such that Rl = AK.

Now (xyA)K = xy(AK) = xy(Rl) = R[(xy) ∗ l] ⊆ L. Also (xA)K = x(AK) = x(Rl)

= R(x ∗ l) * L and (yA)K = y(AK) = y(Rl) = R(y ∗ l) * L. ⇒ xA * (L : K) and

yA * (L : K). If (xy)A = 0. Then (xyA)K = 0. ⇒ R[(xy) ∗ l] = 0. ⇒ (xy) ∗ l = 0,

a contradiction. So assume that (xy)A 6= 0. Now 0 6= (xy)A ⊆ (L : K), xA * (L : K),

yA * (L : K) and (L : K) is a weakly 2-absorbing partial ideal of R, We have xy ∈ (L : K).

Hence L is a weakly 2-absorbing subsemimodule of K. �

Theorem 3.8. Let L be a subsemimodule of an entire partial semimodule K over R. Then

the following conditions are equivalent:

(i). L is a weakly 2-absorbing subsemimodule of K

(ii). for any subsemimodules A,B,C of K, 0 6= ABC ⊆ L implies AB ⊆ L or BC ⊆ L or

AC ⊆ L

(iii). for any k1, k2, k3 ∈ K, 0 6= k1k2k3 ⊆ L implies k1k2 ⊆ L or k2k3 ⊆ L or k1k3 ⊆ L.

Proof. (i) ⇒ (ii): Suppose L is a weakly 2-absorbing subsemimodule of K. Let A, B and C

be the subsemimodules of K such that 0 6= ABC ⊆ L. Since K is a multiplication partial

semimodule, ∃ partial ideals P, S, T such that A = PK, B = SK and C = TK. Now

0 6= ABC = (PK)(SK)(TK) = (PST )K ⊆ L. ⇒ 0 6= PST ⊆ (L : K). Since (L : K) is

a weakly 2-absorbing partial ideal of R, PS ⊆ (L : K) or ST ⊆ (L : K) or PT ⊆ (L : K).

⇒ (PS)K ⊆ L or (ST )K ⊆ L or (PT )K ⊆ L. ⇒ (PK)(SK) ⊆ L or (SK)(TK) ⊆ L or

(PK)(TK) ⊆ L. ⇒ AB ⊆ L or BC ⊆ L or AC ⊆ L.

(ii) ⇒ (iii): Suppose for any subsemimodules A,B,C of K, 0 6= ABC ⊆ L implies AB ⊆ L

or BC ⊆ L or AC ⊆ L. Let k1, k2, k3 ∈ K, 0 6= k1k2k3 ⊆ L. Since K is a multiplication

partial semimodule, ∃ partial ideals P, S, T of R such that Rk1 = PK, Rk2 = SK and

Rk3 = TK. Now 0 6= k1k2k3 = (Rk1)(Rk2)(Rk3) = (PK)(SK)(TK) = (PST )K ⊆ L. ⇒

0 6= (Rk1)(Rk2)(Rk3) = (PST )K ⊆ L. By assumption, (Rk1)(Rk2) ⊆ L or (Rk2)(Rk3) ⊆ L

or (Rk1)(Rk3) ⊆ L. ⇒ k1k2 ∈ L or k2k3 ∈ L or k1k3 ∈ L.

(iii) ⇒ (i): Suppose for any k1, k2, k3 ∈ K, 0 6= k1k2k3 ⊆ L implies k1k2 ∈ L or k2k3 ∈ L

or k1k3 ∈ L. Let a, b, c ∈ R such that 0 6= abc ⊆ (L : K). ⇒ 0 6= (abc)K ⊆ L. ⇒

0 6= (aK)(bK)(cK) ⊆ L (since K is a multiplication semimodule). ⇒ 0 6= (a ∗ k)(b ∗

k)(c ∗ k) ⊆ L ∀ k ∈ K. By assumption, (a ∗ k)(b ∗ k)]subseteqL or (b ∗ k)(c ∗ k)]subseteqL

or (a ∗ k)(c ∗ k)]subseteqL. ⇒ (aK)(bK) ⊆ L or (bK)(cK) ⊆ L or (aK)(cK) ⊆ L. ⇒
8
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(ab)K ⊆ L or (bc)K ⊆ L or (av)K ⊆ L. ⇒ ab ∈ (L : K) or bc ∈ (L : K) or ac ∈ (L : K).

Therefore (L : K) is a weakly 2-absorbing partial ideal of R. Hence by theorem 3.7., L is a

weakly 2-absorbing subsemimodule of K. �

CONCLUSION: In this paper, we introduced the notions of semi-2-absorbing and weakly

2-absorbing subsemimodules as a generalization of 2-absorbing subsemimodules in partial

semimodules over partial semirings. Further, we obtained the equivalent conditions of these

subsemimodules for a special class of partial semimodules and expressed these subsemimod-

ules in terms of their associated partial ideals of partial semirings.
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