On the Cubic Diophantine Equation with Five Unknowns $x^{3}+y^{3}+(x+y)(x-y)^{2}=32(z+w) p^{2}$

R.Anbuselvi ${ }^{1}$ and N.Ahila ${ }^{2}$
${ }^{1}$ Department of Mathematics, A.D.M. College for Women (Autonomous), Nagapattinam - 600 001, Tamil Nadu, India.
${ }^{2}$ Department of Mathematics, Thiru.Vi.Ka. Govt. Arts College, Tiruvarur- 610003, Tamil Nadu, India

Abstract

The cubic Diophantine equation with five unknowns represented by
$x^{3}+y^{3}+(x+y)(x-y)^{2}=32(z+w) p^{2}$ is analyzed for its patterns of non-zero distinct integral solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.

Keywords : Cubic Equation, Integral Solutions, Special Polygonal Numbers, Pyramidal Numbers

I. INTRODUCTION

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular, cubic equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians since antiquity (Dickson,1952; Mordell,1969; Carmichael, 1959).For illustration, one may refer (Gopalan and premalatha,2009;Gopalan and Pandichelvi,2010;Gopalan and Sivagami,2010;Gopalan and premalatha, 2010; Gopalan et al., 2012)for homogeneous and non-homogeneous cubic equations with three, four and five unknowns. This paper concerns with the problem of determining non-trivial integral of the non-homogeneous cubic equation with five unknowns given by $x^{3}+y^{3}+(x+y)(x-y)^{2}=32(z+w) p^{2}$. A few relations between the solutions and the special numbers are presented.

Notations Used

- $\mathrm{t}_{\mathrm{m}, \mathrm{n}}$-Polygonal number of rank n with size m .
- $\mathrm{gn}_{\mathrm{a}}-$ Gnomonic number of rank n .
- J_{n} - Jacobsthal number of rank n .
- J_{n} - Jacobsthal-Lucas number of rank n .
- Pr_{n} - Pronic number of rank n.
- SO_{n} - Stella Octangular number of rank n .
- PP_{n} - Pentagonal Pyramidal number of rank n .

II. METHOD OF ANALYSIS

The cubic Diophantine equation with five unknowns to be solved for its non-zero distinct integral solutions is given by

$$
\begin{equation*}
x^{3}+y^{3}+(x+y)(x-y)^{2}=32(z+w) p^{2} \tag{1}
\end{equation*}
$$

Introducing the linear transformations

$$
\begin{equation*}
x=u+v, y=u-v, z=u+R, w=u-R \tag{2}
\end{equation*}
$$

In (1), leads to

$$
\begin{equation*}
u^{2}+7 v^{2}=32 p^{2} \tag{3}
\end{equation*}
$$

We present below different methods of solving (3) and thus obtain different patterns of integral solutions to (1).

Pattern-I

Assume $p=p(r, s)=r^{2}+7 s^{2}$
Where r and s are non zero distinct integers.
Write 32 as $32=(5+i \sqrt{7})(5-i \sqrt{7})$
Substituting (4) and (5) in (3) and employing factorization, define

$$
(u+i \sqrt{7} v)=(3+i \sqrt{7})(r+i \sqrt{7} s)^{2}
$$

Equating the real and imaginary parts, we have
$u=u(r, s)=5 r^{2}-35 s^{2}-4 r s$
$v=v(r, s)=r^{2}-7 s^{2}+10 r s$
Hence in view of (2) and (4), the non-zero distinct integral solutions of (1) are
$x=x(r, s)=6 r^{2}-42 s^{2}-4 r s$
$y=y(r, s)=4 r^{2}-28 s^{2}-24 r s$
$z=z(r, s, R)=5 r^{2}-35 s^{2}-14 r s+R$
$w=w(r, s, R)=5 r^{2}-35 s^{2}-14 r s-R$
$p=p(r, s)=r^{2}+7 s^{2}$

Properties

1. $4 x(r, s)-6 y(r, s)=128 r s$
(i) $4 x\left(r, 2 r^{2}-1\right)-6 y\left(r, 2 r^{2}-1\right)=128 S O_{r}$
(ii) $4 x\left(2 s^{2}+1, s\right)-6 y\left(2 s^{2}+1, s\right)=384 O H_{s}$
(iii) $4 x(2 r+1,1)-6 y(2 r+1,1)=128 g n_{r}$
2. $x(1, r)-z(1, r,-5)+t_{16, r}-O H_{2} \equiv 0(\bmod 3)$
3. $y\left(2 s^{2}-1, s\right)-w\left(2 s^{2}-1, s,-8\right)-14 \operatorname{Pr}_{s}-C P_{s}^{6}+10 S O_{s} \equiv 0(\bmod 14$
4. $x\left(r, 2 r^{2}-1\right)+6 p\left(r, 2 r^{2}-1\right)-t_{26, r}+4 S O_{r} \equiv 0(\bmod 11)$
5. $5 x(r, r+1)-6 z(r, r+1,5)-64 \operatorname{Pr}_{r}+30=0$
6. $5 y\left(r, r^{2}\right)-4 w\left(r, r^{2}, R\right)-64 C P_{r}^{6}-4 R=0$

Pattern-II

Instead of (5),write 32 as $32=(-5+i \sqrt{7})(-5-i \sqrt{7})$
Following the procedure similar to pattern-I,the corresponding non-zero distinct integer solutions of (1)
$x=x(r, s)=-4 r^{2}+28 s^{2}-24 r s$
$y=y(r, s)=-6 r^{2}+42 s^{2}-4 r s$
$z=z(r, s, R)=-5 r^{2}+35 s^{2}-14 r s+R$
$w=w(r, s, R)=-5 r^{2}+35 s^{2}-14 r s-R$
$p=p(r, s)=r^{2}+7 s^{2}$

Properties

1. $y(2 r-1,1)+6 p(2 r-1,1)+4 g n_{r}-J_{7}-j_{5}=10$
2. $5 x\left(r, r^{2}\right)-4 z\left(r, r^{2}, R\right)-C P_{4 r}^{6}+4 R=0$
3. $y(1, s)-42 \operatorname{Pr}_{s} \equiv-6(\bmod 46)$
4. $6 x\left(s^{2}, s\right)-4 y\left(s^{2}, s\right)-128 C P_{s}^{6}=0$
5. $w\left(r, 2 r^{2}-1, R\right)-5 p\left(r, 2 r^{2}-1\right)+14 S O_{r}+10 \operatorname{Pr}_{r}=-R(\bmod 10)$

Pattern-III

Rewrite (3) as $u^{2}=32 p^{2}-7 v^{2}$
Introducing the linear transformations

$$
\begin{equation*}
p=X+7 T, v=X+32 T \tag{6}
\end{equation*}
$$

In (6), it leads to

$$
\begin{equation*}
u^{2}=25 X^{2}-5600 T^{2} \tag{8}
\end{equation*}
$$

Replacing u by 5 U ,we get

$$
\begin{equation*}
X^{2}=224 T^{2}+U^{2} \tag{9}
\end{equation*}
$$

Which is satisfied by

$$
\begin{aligned}
T & =2 r s \\
U & =224 r^{2}-s^{2} \\
X & =224 r^{2}+s^{2}
\end{aligned}
$$

In view of (7) and (8), we have

$$
\begin{aligned}
& u=1120 r^{2}-5 s^{2} \\
& v=224 r^{2}+s^{2}+64 r s \\
& p=224 r^{2}+s^{2}+14 r s
\end{aligned}
$$

Substituting the value of u, v and p in (2), the corresponding non-zero integer solutions are given by
$x=1344 r^{2}-4 s^{2}+64 r s$
$y=896 r^{2}-6 s^{2}-64 r s$
$z=1120 r^{2}-5 s^{2}+R$
$w=1120 r^{2}-5 s^{2}-R$
$p=224 r^{2}+s^{2}+14 r s$
Properties

1) $x(r, 1)+y(r, 1)-2240 \operatorname{Pr}_{r} \equiv-10(\bmod 2240)$
2) $z\left(2 s^{2}-1, s, R\right)-5 p\left(2 s^{2}-1, s\right)+70 S O_{s}+10 \operatorname{Pr}_{s}-R \equiv 0(\bmod 10)$
3) $y(2 r-1,1)-4 p(2 r-1,1)+120 G n O_{r}=-10$
4) $x(s+1, s)-6(s+1, s)+10 P P_{s}+20 \operatorname{Pr}_{s} \equiv 0(\bmod 10)$
5) $y(r, 1)-896 \operatorname{Pr}_{r} \equiv-6(\bmod 960)$

Note 1

The linear transformation (7) can also be taken as

$$
p=X-7 T, v=X-32 T
$$

By following the procedure as in the above pattern, we get the non-zero distinct integer solutions are given by
$x=x(r, s)=1344 r^{2}-4 s^{2}-64 r s$
$y=y(r, s)=896 r^{2}-6 s^{2}+64 r s$
$z=z(r, s)=1120 r^{2}-5 s^{2}+R$
$w=w(r, s)=1120 r^{2}-5 s^{2}-R$
$p=p(r, s)=224 r^{2}+s^{2}-14 r s$

Pattern -IV

Equation (9) can be written in the form

$$
\begin{equation*}
X^{2}-U^{2}=224 T^{2} \tag{10}
\end{equation*}
$$

Define $(X+U)(X-U)=224 T^{2}$
Now consider $\begin{array}{ll}X+U=T^{2} \\ & X-U=224\end{array}$
Solving the above two equations, we obtain

$$
\begin{aligned}
X & =\frac{T^{2}+224}{2} \\
U & =\frac{T^{2}-224}{2}
\end{aligned}
$$

Since our interest is on finding integer solutions, it is noted that the values of X and U are integers when T is even.
In other words, choosing $\mathrm{T}=2 \mathrm{k}$ and proceeding as in pattern-III the corresponding non-zero integer solutions are $x=x(k)=12 k^{2}+64 k-448$
$y=y(k)=8 k^{2}-64 k-672$
$z=z(k)=10 k^{2}-560+R$
$w=w(k)=10 k^{2}-560-R$
$p=p(k)=2 k^{2}+14 k+112$

Properties

1) $x(k)+y(k)-20 \operatorname{Pr}_{k} \equiv-1120(\bmod 20)$
2) $y(k)+p(k)-10 P P_{k} \equiv-560(\bmod 60)$
3) Each of the following exp ressions represents the nasty number
a) $x(1)+y(1)+p(1)+996$
b) $x(1)+3 p(1)$
c) $x(1)-y(1)-380$
4)Each of the following exp ression represents a perfect square
a) $4 y(1)-8 x(1)$
b) $-[z(k, R)+w(k, R)]+20 t_{4, k}-96$

Note 2

The system (10) can also be written as

$$
\begin{aligned}
& X+U=2 T^{2} \\
& X-U=112
\end{aligned}
$$

Following the procedure similar to pattern-IV, the corresponding integral solutions are obtained to be

$$
\begin{aligned}
& x=x(T)=6 T^{2}+32 T-224 \\
& y=y(T)=4 T^{2}-32 T-336 \\
& z=z(T)=5 T^{2}-280+R \\
& w=w(T)=5 T^{2}-280-R \\
& p=p(T)=T^{2}+7 T-224
\end{aligned}
$$

Note 3

Rewrite (10),

$$
\begin{aligned}
& X+U=2 T^{2} \\
& X-U=112
\end{aligned}
$$

By repeating process as in pattern-IV, the non-zero distinct integer solutions are found to be

$$
\begin{aligned}
& x=x(T)=12 T^{2}+32 T-112 \\
& y=y(T)=8 T^{2}-32 T-168 \\
& z=z(T)=10 T^{2}-140+R \\
& w=w(T)=10 T^{2}-140-R \\
& p=p(T)=2 T^{2}+7 T+28
\end{aligned}
$$

Note 4

Rewrite (10),

$$
\begin{aligned}
& X+U=8 T^{2} \\
& X-U=28
\end{aligned}
$$

By repeating process as in pattern-IV, the non-zero distinct integer solutions are found to be

$$
\begin{aligned}
& x=x(T)=24 T^{2}+32 T-56 \\
& y=y(T)=16 T^{2}-32 T-84 \\
& z=z(T)=20 T^{2}-70+R \\
& w=w(T)=20 T^{2}-70-R \\
& p=p(T)=4 T^{2}+7 T+14
\end{aligned}
$$

III. CONCLUSION

To conclude, one may search for other patterns of integral solutions of (1).

REFERENCE

[1] Carmichael RD (1959). The Theory of Numbers and Diophantine Analysis (New York, Dover).
[2] Dickson LE (1952). History of Theory of Numbers (Chelsea Publishing Company) New York 2.
[3] Gopalan MA and Premalatha S (2009). Integral solutions of $x+y)\left(x y+w^{2}\right)=2\left(k^{2}+1\right) z^{3}$. Bulletin of Pure and Applied Sciences 28E(2) 197-202
[4] Gopalan MA and Pandichelvi V (2010). Remarkable solutions on the cubic equation with four unknowns $x^{3}+y^{3}+z^{3}=28(x+y+z) w^{2}$. Antarctica Journal of Mathematics 4(4) 393-401.
[5] Gopalan MA and Sivagami B (2010). Integral solutions of homogeneous cubic equation with four unknowns $x^{3}+y^{3}+z^{3}=3 x y z+2(x+y) w^{3}$ Indian Journal of Science and Technology 4(3) 53-60.
[6] Gopalan MA and Premalatha S (2010). On the cubic Diophantine equation with four unknowns $(x-y)\left(x y-w^{2}\right)=2\left(n^{2}+2 n\right) z^{3}$. International Journal of Mathematical Sciences 9(1-2) 171-175.
[7] Gopalan MA and KaligaRani J (2010). Integral solutions of $x^{3}+y^{3}+(x+y) x y=z^{3}+w^{3}+(z+w) z w$. Bulletin of Pure and Applied Sciences 29E (1) 169-173.
[8] Gopalan MA and Premalatha S (2010). Integral solutions of $(x+y)\left(x y+w^{2}\right)=2(k+1) z^{3}$. The Global Journal of applied Mathematics and Mathematical Sciences 3(1-2) 51-55.
[9] Gopalan MA, Vidhyalakshmi S and Usha Rani TR (2012). On the cubic equation with five unknowns $\mathrm{x}^{3}+\mathrm{y}^{3}=\mathrm{z}^{3}+\mathrm{w}^{3}+\mathrm{t}^{2}(\mathrm{z}+\mathrm{w})$. Indian Journal of Science 1(1) 17-20.
[10] Gopalan MA, Vidhyalakshmi S and Usha Rani TR (2012). Integral solutions of the cubic equation with five unknowns $x^{3}+y^{3}+u^{3}+v^{3}=3 t^{3}$. IJAMA 4(2) 147-151.
[11] Gopalan MA, Vidhyalakshmi S and Sumathi G (2012). On the Homogeneous Cubic Equation with four unknowns $x^{3}+y^{3}=14 z^{3}-$ $3 w^{2}(x+y)$. Discovery 2(4) 17-19.
[12] Gopalan MA, Vidhyalakshmi S and Sumathi G (2013). On the Homogeneous Cubic Equation
$x^{3}+y^{3}=z^{3}+w^{2}(x+y)$. Diophantus Journal of Mathematics 2(2) 99-103. Mordell LJ (1969). Diophantine Equations (Academic press) London.

