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Abstract 

The velocity profiles with analytical solutions for the flow rates have been obtained through worked out 

solutions and are found to be accurate. The solution attributes to poiseuille and couette-poiseuille flow of a third 

grade fluid between two parallel plates.  Such analytical solutions are almost equivalent to the   corresponding 

numerical solutions.  They are found to be rich in quality and comparitatively better than the approximate analytical 

solutions those were brought out in recent times.  The impact of several parameters in respect of velocity profile and 

flow rate has been studied extensively in detail to conform to the process for further Research. 

Keywords — poiseuille,  couette-poiseuille flow, third grade fluid, Numerical solution, Closed form solution 

I. INTRODUCTION 

The characteristics, mainly simulates to have engineering applications viz. Polymer solutions, pastes and 

semi liquids (slurry) exhibit features of non-Newtonian engineering fluids.  These fluids show different peculiar 

features with elastic temperament as shear thinning / thickening.  Redundancy cannot be ruled out in explaining the 

equations relevant to Navier-stokes formulations about their rheological behavior approximately.  Non-Newtonian 

flow behavior [1-4] has been suggestive to present models on rheological behavior.  This has a characteristic of 

showing fluid model which also keeps a similar rheological pattern whereas the third grade fluid is categorized as a 

sub class under differential type fluid models.  The capacity to store number of non-Newtonian effects are construed 

as the ability that has been retained as a source to innovation which can be applied for persuasive research which is 

ideal for investigation on the applied aspects of Thermodynamics [5-7], existence and uniqueness solutions [8-10] 

and certain other basic flow situations[11-16]. 

In recent times same of the nascent development, which are profiled have been adopted as analytical tools 

which are nomenclated as „Adomian Decomposing‟ Method (ADM), „Homotopy perturbation Method‟ (HPM), 

„Hamotopy Analysis Method‟ (HAM) are applied to bring out solutions for solving basic flow problems of third 

grade fluid where velocity profiles are derived through solutions with similar characteristics [15-19 ] unlike the flow 

rate of velocity profile solutions for expression were not taken or secured to measure similar values distinctively.  

In this paper exact analytical solutions for the velocity profile and flow rates have been obtained for the 

Poiseuille and couette-Poiseuille flow of a third grade fluid between two parallel plates.  The observations are in 

compliance with the impacts of different parameters on velocity profiles and flow rates have also been discussed. 

 

II. MATHEMATICAL MODEL 

Mathematical model of the present flow problem is given by the following equations and the details of their 

derivatives can be found elsewhere (13, 17,18) 

Nomenclature 

a  velocity of the plate(m/s) 

A  dimensionless velocity of the plate,A=
2

a

dp h

dy 

 
 
 

 

B  dimensionless parameters considered in (17) 

1 2,C C                 constants of integration   

2h  separation between the two plates (m) 

Text Box
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1 2 3, ,K K K  constants 

p  pressure ( 2N m ) 

p


  modified pressure ( 2N m ) 

q  fluid flow rate per unit width of the plate ( 2m s ) 

Q  dimensionless fluid flow rate per unit width of the plate  

T  constant term 

U  dimensionless fluid velocity 

0U   Dimensionless maximum fluid velocity 

, ,x y zU U U          Fluid velocity in the x, y and z coordinates, respectively (m/s) 

X                dimensionless distance in x direction 
*X   Dimensionless distance where maximum fluid velocity occurs 

x,y,z  distances in x,y and z directions ,respectively(m) 

               Greek symbols 

,i i 
    

   Material module (kg/m,kg.s/m) 

   Dimensionless parameter 

   Fluid viscosity (kg/m.s) 

   Fluid density (
3

kg m ) 

 

 

  

 

   
2

1 22 1a
yup

x x x
 

   
    

     

 
 

2 2

32 2
6 1b

y y yu u up

y xx x
 
   

   
   

  0 1c
p

z




  

By defining a modified pressure as in [13,17,19]

 

2

ˆ ˆ (2 )
1 2

uy
p p

x
 


  



 
 
 

   

The above equations can be simplified into the following forms  

 

 

 

22 2

32 2

ˆ
0 2a

ˆ
6 2b

ˆ
0 2c

p

x

p u u u

x xx x

p

z

 






    
   

   





 

It is found that the Eqs. (2a)-(2c) remain same when compared with  the different flow situations arising out of the 

present flow problem. However, the boundary condition problem, differ for each and result in different solutions . 
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III. EXACT SOLUTIONS 

3.1 Case 1:Pure poiseuille flow of 3
rd

 grade fluid between two parallel plates 

In this case the flow of fluid between parallel plates due to the due to the pressure gradient and the flow is given by 

Eq.(2b) along with the following BCs: 

 

     3aBC I:U 0 at X upper stationary plateh h 

 
     3BC II:U 0 at X lower stationary plate bh h  

 
Introducing the below dimensionless parameters 

2
2

3 3 2

ˆdp
, ,

dy ˆdp

dy

x h u
X U

h h
 





 
 

  
 
 

   


 

The Eqs.(2b),(3a) and (3b) becomes forms 

 
22 2

2 2
4a6 -1

d U dU d U

dXdX dX

 
 
 

 

 

     4BC I: 1 0 upper stationary plate bU 
                                               

 
 

     4BC II : 1 0 lower stationary plate cU  

                                                                       
BC II  can be replaced by  BC IIꞋ  

i.e 

(middle of the two plates)                                                               (4c‟) 

 

By using the transformation  

( )
dU

f U
dX



,

 Where f(U) is some unknown function of U[20],the Eq.(4a)is reduced to the following form: 

'(1 6 ) 2w w                                                                                                                                 (5) 

Where 2( )w f U and 
dw

w
dX

 
  

Eq.(5) is almost close the following exact solution:  

BC II ' : 0 0
dU

at X
dX

 
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2

13 2w w U C                                                                                                                               (6) 

1C  is the constant of integration and by using BC II'  it is found to be 1 0 02 .C U U  is the unknown dimensionless 

velocity at the centerline ,i.e  0 0U U  and can be found by using BC I, put 1C in Eq.(6) and solve for w; to get 

   
22 0'

1 1 24 ( )

6

U
U U

UdU
w f

dX





   
                                                                      (7) 

The express for U'  is given by the negative sign of radical is omitted to avoid imaginary value of  U' :  

 01 1 24
'

6

U UdU
U

dX





   
                                                                                            (8)  

 

Fig 1.Dimensionless Velocity Profiles for Pure Poiseuille Flow of 3
rd

 Grade Fluid Between Two Parallel Plates, Solid 

Lines: Exact Solution; Open Circle: Numerical Solution; Broken Lines: Siddiqui Et Al.[17]. 
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For this case 

0

' 0 ; 1 0

' 0 ;0 1

' 0 ; X

U X

U X

U

   


 




 

 

 [See Fig.1].since U is symmetric about X=0, hence one can select the region 0 1X  .for which the Eq. (8) 

becomes: 

             
01 1 24( )

'
6

U UdU
U

dX 

   
   for  0 1X                                                        (9) 

The explicit form of U can be obtained from equation(9) 

 
2

0 10
1 24

24

T U
U





 
  

          

 

 1

1
32 2 2 2 4 41

3 1 1 1

1 1
3 32 2 2 2 4 4

1 1 1 1

where

2 42
1

22 4

K X K X K X
T

K X K X K X

  
   

  

 

And 1 0K 3 6 .U  is found by BC I and is given as follows: 

             
 

 

0 1
32 2 3 4

1
32 2 3 4

1 1081

12
24 1 270 1458 6 3 8 324 4374 19683

1 270 1458 6 3 8 324 4374 19683

24

U



      

     



 
 

      

      


(11) 

In design of pumps and piping flow rate  is essential. The quantity „Q‟ indicate the flow rate per unit width of plates 

and is given by 

          
1

1

Q UdX


                                                                                                                                    (12)                                         

where 
3ˆ h

q
Q

dp

dy 

 
 
 

  due to the complex from of U .(10)Eq    

 Using the symmetry, we get 

             
0

1 0

0

1
2

dUU
dX

Q UdX U dU                                                                                                          (13)              

From Eqs.(9)and (13),it can be observe that flow rate Q is in positive „Y‟ direction 
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 0 0 0 0

3
2

1 1 24 1 1 24 24 (13 5 1 24

315 6

U U U U
Q

   



        
                         (14) 

3.1.1. Discussion and comparison of results 

    For a limiting case of  =0, the fluid behaves as a Newtonian fluid and one finds the established results.[1]:

 2

0

1 1
1 ,

2 2
U X U    and 

2

3
Q 

  

similarly, for    , one can conclude that with the increase in  ,U decreases 

and so as Q. this fact is also evident from the Fig.1. 

The results are compared with the HPM results of.[17].inspite of the obtained results it should be noted that 

dimensionless variables defined in .[17]are slightly different yet for B=1 (a dimensionless parameter considered in 

.[17]the relevant equation and the related BCs of .[17] become similar to those in  the present study i.e.Eqs.(26) and 

(28) of .[17] and the present Eqs.(4a)-(4c)are identical to B=1.Moreover ,in .[17] heat transfer effects were 

considered for the present problem ,while  the present work shall exclusively focused on the isothermal situation 

.Inspiteof the variation, the current contrast occurred while comparing which is substantiated as the works of 

siddiqui et al. .[17]have assumed that the equation of momentum is unique by  itself which is not dependent on  

temperature and will be handled exclusively. It culminates into having the same velocity profiles whether the heat 

transfer effects are for? yet it can be observed that the assumption as viewed to consider in .[17]is not correct for 

higher temperature gradients as the density and viscosity will vary ,and the momentum equations cannot be handled 

in segregation. Hence, the solutions found in.[17] are only ideal to situations where lesser effects of temperature are 

prevalent  .the HPM solution of .[17]for the velocity profile is shown below for B=1. 

Table 1-Comparison of the Flow Rates Per Unit Width of the Plate For The Pure Poiseuille Flow of 3
rd

 Grade Fluid 

Between Two Parallel Plates. 

  Q   %Error  

HPM solution siddiqui et 

at.  17  

Exact solution Numerical 

Solution 

HPM Solution 

Siddiqui et al.
 

 17  

Exact solution 

 A=0     

0 0.66667 0.66667 0.66667 0 0 

0.4 0.89524 0.52465 0.52465 -70.635 0 

0.7 1.78667 0.48019 0.48019 -272.073 0 

1 3.29524 0.45013 0.45013 -632.071 0 

 

2 4 2 61 1
(1 ) (1 ) 2 (1 )

2 2
HPMU X X X                                                                               (15) 

For the same values of   as considered in.[17], the velocity profiles, obtained by the exact, numerical and HPM 

solutions, are shown in fig.A close match is found between the velocity profiles obtained by exact and numerical 

solutions , whereas HPM velocity profiles match only for  =0, depicting an opposite trend as   increases . Table 

1 compares the values of Q obtained by the exact, numerical and HPM solution resulted in the following expression 

for Q:  

1

2

1

2 4 24

3 5 7
HPM HPMQ U dX  



                                                                                             (16)         

3.2. Case 2: Couette-poiseuille flow of 3
rd

 grade fluid between two parallel plates  
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    In this case fluid flow between parallel plates due to moving of upper plate and the flow is given by equation (2b) 

with the BC‟S  The governing equation for this situation will remain same as that of the previous case  .(2 )Eq b

,however, the following different BCs will be used: 

     17aBC I:U upper moving plateh a at X h   

     17bBC I:U 0 X Lower stationary plateh at h    

Positive (negative) value of‟ a‟ indicates that the upper plate moves in positive (negative)‟Y‟ direction 

.Eqs.(2b),(17a) and (17b) are transformed into following dimensionless forms ;A is the dimensionless plate velocity: 

                

22 2

2 2
6 1

d U dU d U

dXdX dX

 

   
 

                                                                                     (18a)                                                                                

     18bBC I: 1 1 Upper moving plate   U A at X   

     18cBC II :U -1 0  1 Lower stationary plate                              at X   

                                                                        

 

Fig.2a.Dimensionsless Velocity Profiles For Coquette-Poiseuille Flow Of 3
rd

 Grade Fluid Between Two Parallel Plates 

(Upper Moving Plate Is Moving Slowly In The Positive Y Direction), Solid Lines; Exact Solution; Open Circle: Numerical 

Solutions Broken Lines: Siddiqui Et Al. .[17]
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Fig.2b. Dimensionless Velocity Profiles For Coquette-Poiseuille Flow Of 3
rd

 Grade Fluid Between Two Parallel Plates 

(Upper Plate Is Moving Slowly In The Negative Direction), Solid Lines: Exact Solution; Open Circle: Numerical Solution. 

 

Fig .2c.Dimensionless Velocity Profiles For Coquette-Poiseuille Flow Of 3
rd

 Grade Fluid Between Two Parallel Plates 

(Upper Plate Is Moving Quickly In The Negative Direction),Solid Lines : Exact Solution ;Open Circle :Numerical 

Solution. 
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'U  is given by: 

 11 1 12 ( 2 )
'

6

C UdU
U

dX





   
                                                                                       (19) 

Where 1C is the constant of integration .Unlike the previous care ,the velocity profile for this configuration will not 

be symmetric around X=0,i.e U‟(X=0) 0.insted ,U‟=0 at some unknown position *X X ,where the fluid velocity 

will be maximum 0( )U .In fact, *X depends on the plate velocity and can lie inside or outside the region of interest 

( 1 1)X   .Due to this ,one needs to consider the whole region ,i.e. 1 1X   .following three situations may 

arise in the present case: 

(i) Upper plate moves in positive y direction but 
0A U or *0 1X   (see Fig.2a).however, if the upper 

plate moves in the negative y direction but with 0U >0, then -1< *X <0 [see Fig.2b].In both these 

situations,  ' * 0U X  .
  
 

(ii) 
Upper plate moves in the positive y direction but with a velocity higher enough that thus

 

   * ' *

0U =A Thus X .However U X =1 >0 See Fig.2c  

(iii) Upper plate moves in the negative y direction but with a velocity higher enough that 0 0U  .hence.

* 1X    and  ' *  .2( 1) 0 .See FiU X g c    

3.2.1 Case2 (a): Upper plate moves with a show velocity in any direction ( A  is small) 

 Solution of this can be obtained by the same methodology of case .1.However .for brevity we present the 

solutions and the details may be obtained from the authors. 

               
2

01 24

24

T U
U





 
                                                                                                          (20)                                                                                   

        Where  

                     

1
3

1
3

2 2 2 2 4 4

1 1 1

1
3

2 2 2 2 4 4

1 1 1

1
3

2
1

* * *2 ( ) 4 ( ) ( )

* * *2 ( ) 4 ( ) ( )

2

T

K X X K X X K X X

K X X K X X K X X

 
 
 

 
 
 

  

     

     



 

And      1 3 6K    

The unknown 0U  and *X can be found from the BCs.Q is given by:   

             

  

     

0 0 0 0
0

3 3
2 2

0 0 0 0 21

1 1 24 1 1 24 24 13 5 1 24 1 1 24( )

630 6 630 6

1 1 24( ) 18 6 5 1 24( ) 24 13 5 1 24( )

U U U U U

U U U

A
Q

U A A A A

   

 

  
  

            
  

           

                                                                                                                                                                                               

Depending on the value of A,Q can be positive or negative, which signifies that the net flow is in the positive 

and negative y directions ,respectively. 

3.2.1.1 Discussion and comparison of the results. 

Figs .2a and 2b reveal an agreement between the velocity profiles obtained by exact and numerical solutions. 

For    :    1
2

A
X X U   and Q=A ,whereas ,for  0  (Newtonian fluid):    21

2

A
U X A AX X     

and 
2

3
Q A  .this means that with the increase in  ,the flow tends to be a coquette flow and results in the 

decrease  in Q,since A>0, Q will be maximum for Newtonian fluid . This fact is also supported by Figs.2a and 

2b. 
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      The results of this case have also been compared against the available HPM solution .[17].the HPM solution 

for velocity profile  HPMU .given by Eq.(72) in .[17], is reproduced below for B=1: 

            
 

          2 2 3 4
1 1

1 3 1 4 2 1 22
2 2 4

HPM

X
U X X X X X


            

Similarly, the HPM expression of flow rate is given below: 

 
Table 2-Comparison of the  Rates Per Unit Width of the Plate for the Coquette-Poiseuille Flow of 3rd Grade Fluid 

Between Two Plates   

  Q   %Error  

HPM solution 

siddiqui et al.[17] 

Exact solution Numerical 

solution 

HPM solution 

siddiqui et al.[17] 

Exact 

solution 

 A=1     

0 1.66667 1.66667 1.66667 0 0 

0.2 1.30667 1.4866 1.4866 12.103 0 

0.3 1.12667 1.44032 1.44032 21.77641 0 

0.4 0.946667 1.40413 1.40413 32.57982 0 

0.6 0.586667 1.34904 1.34904 56.51226 0 

  A=-1     

0 - -0.333333 -0.333333 - 0 

0.2 - -0.513405 -0.513405 - 0 

0.3 - -0.559677 -0.559677 - 0 

0.4 - -0.595873 -0.595873 - 0 

0.6 - -0.650963 -0.650963 - 0 

      

 Not evaluated. 

1

HPM HPM
-1

5 9
Q = U dX = - β (23)

3 5
                    

 

Discrepancies in HPMU  and HPMQ  are visible in Fig .2a and Table 2 respectively. 

 

3.2.2 Case 2(b): Upper plate moves in positive y direction with a high velocity (A>0 and A is large ) 

For this case, one finds the following explicit relation for U. 

           
2

11 12
(24)

24

T C
U





 
  

 

Where  

         

 

 

 
 

 

1
321

3 3 3

1 1
3 32

3 3

1

2 1 1

2 2 2 2 2

3 1 1 2 2 1 1 2 1

29163 2
1 ,

3 22916

3 6 ,

1 1 12 2  

54 27 54 27 54 54 4

1 12

2

K K
T

K K

K

K C C and

K K K K K K X K K X K X



 

  
   

  

 

   

    

 

 

 

Unknown constants can be found from the BCs, and Q is given as follows: 
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  

   

1 1 1 1 1

3 3
2 2

1 1 1 1

1 1 12 1 1 12 12 13 5 1 12 1 1 12 24

630 6 630 6

1 1 12 24 12 13 1 12 24 18 6 5 1 12 24

C C C C C A
Q

C A C C A A C A

     

 

       

            
  

             
 

                     (25)

                                                                                                                          

                                   

                                                                                                                                                                                                                                         

Since A>0, Q>0 and corresponds to the net flow in the positive y direction. 

 

3.2.2.1 Discussion of results. Fig.2C shows that the velocity profiles obtained by the exact and numerical solutions 

are in a good agreement. Limiting values of ( ,0)   yield the same expressions of U and Q as those in sub case 

2(a).  

 

3.2.3 Case 2(c): Upper plate moves in negative y direction with a high velocity  A<0 and A  Is large  

For this sub case, the following explicit relation for U is obtained: 

    
2

11 12
(26)

24

T C
U





 


 

where

 

 

 

 
 

 

1
321

3 3 3

1 1
3 32

3 3

1 2 1

2 2 2 2 2

3 1 1 2 2 1 1 2 1

1

29163 2
1

3 22916

3 6

54 27 54 27 54 54

, 1 1 12 2 1

4

12

2

K K
T

K K

K K C C

K K K K K K X K K X K X

and  

  
   

  

     

    

 

 
 

The unknown constants can be found from the BCs and Q is given by: 

      

  

   

1 1 1 1 1

3 3
2 2

1 1 1 1

1 1 12 1 1 12 12 13 5 1 12 1 1 12 24

630 6 630 6

1 1 12 24 12 13 1 12 24 18 6 5 1 12 24

C C C C C A
Q

C A C C A A C A

     

 

       

            
  

             
 

        

(27)

                                                                                                                                                          

 

                                                                                                                                                                                

3.2.3.1.Discussion of results .Fig.2c validates the velocity profiles obtained by the exact solution .limiting values of 

 ,0   gives the same expressions of U and Q as in the sub case 2(a).Since A<0,Q<0 for     .However for 

0, 0Q    or  Q<0 depending on the magnitude of A.As A<0,
2

3
Q A
 
  
 

 will be minimum for Newtonian 

fluid. 

CONCLUSION 

 

An attempt has been made to discuss the closed form solution and numerical solution for the velocity 

profile of Poiseuille and Couette-Poiseuille flow of a third grade fluid between parallel plates. We have observed 

that the observation are in compliance with the velocity profiles and flow rates as discussed in [17] Siddiqui etal.    
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