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Abstract:   

The objective of this paper is to give some properties of a new subclass with negative coefficients and 

with fixed second coefficients 
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I. INTRODUCTION AND DEFINITIONS 

LetS denote the class of functions of the form 





2

)(
n

n

n zazzf  which are analytic and univalent in the open 

unit disc U = {zC:|z|1}. Also let S* and C denote the subclasses of S that are respectively, starlike and convex.  

 

Motivated by certain geometric conditions, Goodman [1,2] introduced an interesting subclass of 

starlike functions called uniformly starlike functions denoted by UST and an analogous subclass of convex 

functions called uniformly convex functions, denoted by UCV. From [5,7] we have 
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In [7], Ronning introduced a new class Sp of starlike functions which has more manageable properties. 

The classes UCV and Sp were further extended by Kanas and Wisniowska in [3,4] as kUCV() and kST().  

The classes of uniformly spirallike and uniformly convex spirallike were introduced by Ravichandran et al [6]. 

This was further generalized in [9] as UCSP(,). In [10], Herb Silverman introduced the subclass T of 

functions of the form 

 

,)(
2







n

n

n zazzf

     

(1.1) 

which are analytic and univalent in the unit disc U. Motivated by [11], new subclasses with negative coefficients 

UCSPT(,) and SPpT(,) were introduced and studied in [8].  

 

A function f(z) defined by (1.1) is in UCSPT(,) if 
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A function f(z) defined by (1.1) is in SPpT(,) if 
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For the classes UCSPT(,) and  SPpT(,) [8] proved the following lemmas. 

Lemma 1.1. 

A function 
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n zazzf is in UCSPT(,) if and only if 
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Corollary 1.1.1. 

Let the function ,)(
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Lemma 1.2. 

A function 
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Corollary 1.2.1. 

Let the function ,)(
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Using (1.7), the functions f(z) SPpT(,) will satisfy 
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Let SPpTc(,) be the subclass of functions in SPpT(,) of the form 
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(an 0), where 0 c 1.  When c = 1 we get 

SPpT1(,)=SPpT(,). 

II. COEFFICIENT ESTIMATE 

Theorem 2.1. 

The function f(z) defined by (1.5) belongs to SPpTc(,) if and only if 
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The result is sharp. 

 

Proof. 

Taking  
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in (1.6) we get the required result. Also the result is sharp for the function 
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□ 

Corollary 2.1.1. 

If f(z) defined by (1.9) is in the class SPpTc(,) then, 
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The result is sharp for the function f(z) given in (2.3). 

III.  CLOSURE THEOREMS 

Theorem 3.1. 

The class SPpTc(,) is closed under convex linear combination. 

 

Proof. 

Let f(z) defined by (1.9) be in SPpTc(,). Let g(z) be defined by 
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If f(z) and g(z) belong to SPpTc(,) then it is enough to prove that the function H(z) defined by 
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 (3.2) 

is also in SPpTc(,). 
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 (3.3) 

 

Using theorem (2.1) we get 

 

).)(cos1())1()(cos2(
3

 




cban
n

nn

 

  (3.4) 

 

Hence H(z) is in SPpTc(,). Thus SPpTc(,)  is closed under convex linear combination.   □ 

 

Theorem 3.2. 

Let the functions 
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be in the class SPpTc(,) for every j = 1,2,...m. Then the function F(z) defined by 
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is also in the same class SPpTc(,) where  
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Proof. 

Using (3.5) and (3.7) in (3.6) we have 
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Each fj(z) SPpTc(,) for  j = 1,2,...m, theorem (2.1) gives 

 

),)(cos1()cos2(
3

,  




can
n

jn

  

  (3.9) 

 

for j =1,2, ...m.Hence we get 
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This implies F(z) SPpTc(,), by theorem(2.1).        □ 

 

Theorem 3.3. 

Let  
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for n = 3,4,.... Then f(z) is in SPpTc(,) if and only if it can be expressed in the form  
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Proof. 

Let us assume that f(z) can be expressed in the form(3.12). Then we have  
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Hence from (2.1) it follows that f(z) SPpTc(,).Conversely, we assume that f(z) defined by (1.6) is in the class 

SPpTc(,). Then by using (2.4), we get 
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 we have (3.12).  

Hence the proof is complete.         □ 

 

Corollary 3.3.1.  

The extreme points of the class SPpTc(,) are the functions fn(z),(n2) given by theorem (3.3) . 

IV. DISTORTION THEOREMS 

For finding the distortion bounds of f(z) SPpTc(,), we need the following lemmas. 

 

Lemma 4.1. 

Let the function f3(z) be defined by 
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Then, for 0  r < 1 and 0  c  1, 

 

,
cos6

))(cos1(

cos4

)(cos
)(

32

3


















rcrc
rref i

 

  (4.2) 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 58 Number 4 - June 2018 

 

ISSN: 2231-5373                               http://www.ijmttjournal.org                                Page 302 

 

 

with equality for = 0. For either 0c<c0 and 0rr0 or c0c1, 
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with equality for =. Further, for 0c<c0 and r0r< 1, 
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with equality for  ,
)cos4)(1(4

)cos6()1)((cos
cos

2
1













 

rc

crcc




  where 

 

0

2

1
(6cos 4 22))

2(cos )

(22 6cos 4 ) 16(cos )(4 cos )

c  
 

     


  

 


       



 

 (4.4) 

 

and  

 

.))(coscos6)(1()cos4()1(4

)cos4)(1(2
))(cos1(

1

222

0





















ccc

c
cc

r

  (4.5) 

 

Proof. The techniques used by Silverman and Silvia [11] give, 
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2
1

3

(cos ) (1 ) (6 cos )
cos ,

4(1 )(4 cos )

c c r c

c r

   


 

      
  

     

 

 (4.7) 

 

since 3 is a valid root only when 1cos31. Hence there is a third root if and only if r0r<1 and 0  c c0. 

The result follows by comparing the extremal values ,)(3

kiref  (k=1,2,3) on the appropriate intervals. □ 

 

Lemma 4.2. 

Let the function fn(z) be defined by (3.11)  and n 4. Then 
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which gives (4.8) .               □ 

 

Theorem 4.3. 

Let the function f(z) defined by (1.6) belong to the class SPpTc(,). Then for0  r<1, 
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with equality for f3(z) at z=r and  
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iref is given by lemma 4.1. 

 

The proof is obtained by comparing the bounds of Lemma 4.1 and Lemma 4.2. 

 

Corollary 4.3.1.  

Let the function f(z) be defined by (1.1) be in the class SPpT(,). Then for |z| =r<1, we have  
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The result is sharp. 

 

Corollary 4.3.2. 

Let the function f(z) be defined by (1.5) be in the class SPpTc(,). Then the disk |z|<1 is mapped onto a domain 

that contains the disk   
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The result is sharp with the extremal function 
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Proof. 

The result follows by letting r 1 in theorem 4.3. 

 

Lemma 4.4. 

Let the function f3(z) be defined by (4.1) . Then for 0 r <1 and 0  c 1, 
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with equality for  =0. For either 0 c<c1 and 0rr1 or c1c1, 
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with equality for =. Further,0c<c1 and r1r<1, 
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The proof of lemma(4.4) is given in the same way as lemma(4.1). 

 

Theorem 4.5. 

Let the function f(z) defined by (1.6) be in the class SPpTc(,). Then for 0 r <1,  
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When c=1 in theorem 4.5 we get the following corollary. 

 

Corollary 4.5.1. 

Let the function f(z) defined by (1.1) be in the class SPpTc(,). Then for |z| = r<1, we have 
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the result is sharp. 

 

V. CONCLUSION 

The class SPpTc(,)can be further studied for various other properties. 
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