Fixed Coefficients for A Subclass of Spirallike Functions

Geetha Balachandar ${ }^{1}$ and Hema P^{2}
${ }^{1}$ Dept. of Mathematics, R.M.K College of Engg. and Technology, Puduvoyal - 601206, Tamil Nadu, India
${ }^{2}$ Dept. of Mathematics, R.M.K College of Engg. and Technology, Puduvoyal-601206, Tamil Nadu, India

Abstract

: The objective of this paper is to give some properties of a new subclass with negative coefficients and with fixed second coefficients

Keywords-Analytic functions, Univalent functions, uniformly convex functions, uniformly spirallike functions.

I. INTRODUCTION AND DEFINITIONS

LetS denote the class of functions of the form $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ which are analytic and univalent in the open unit disc $U=\{z \in \mathrm{C}:|z| \leq 1\}$. Also let S^{*} and C denote the subclasses of S that are respectively, starlike and convex.

Motivated by certain geometric conditions, Goodman [1,2] introduced an interesting subclass of starlike functions called uniformly starlike functions denoted by UST and an analogous subclass of convex functions called uniformly convex functions, denoted by UCV. From [5,7] we have

$$
f \in U C V \Leftrightarrow \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|, \quad z \in U .
$$

In [7], Ronning introduced a new class S_{p} of starlike functions which has more manageable properties. The classes $U C V$ and S_{p} were further extended by Kanas and Wisniowska in [3,4] as $k-U C V(\alpha)$ and $k-S T(\alpha)$. The classes of uniformly spirallike and uniformly convex spirallike were introduced by Ravichandran et al [6]. This was further generalized in [9] as $\operatorname{UCSP}(\alpha, \beta)$. In [10], Herb Silverman introduced the subclass T of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in the unit disc U. Motivated by [11], new subclasses with negative coefficients $\operatorname{UCSPT}(\alpha, \beta)$ and $S P_{p} T(\alpha, \beta)$ were introduced and studied in [8].

A function $f(z)$ defined by (1.1) is in $\operatorname{UCSPT}(\alpha, \beta)$ if

$$
\begin{equation*}
\operatorname{Re}\left\{e^{-i \alpha}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\} \geq\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|+\beta \tag{1.2}
\end{equation*}
$$

$|\alpha|<\frac{\pi}{2}, 0 \leq \beta<1$.

A function $f(z)$ defined by (1.1) is in $S P_{p} T(\alpha, \beta)$ if

$$
\begin{equation*}
\operatorname{Re}\left\{e^{-i \alpha}\left(\frac{z f^{\prime}(z)}{f(z)}\right)\right\} \geq\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|+\beta, \tag{1.3}
\end{equation*}
$$

$|\alpha|<\frac{\pi}{2}, 0 \leq \beta<1$.
For the classes $\operatorname{UCSP} T(\alpha, \beta)$ and $S P_{p} T(\alpha, \beta)[8]$ proved the following lemmas.

Lemma 1.1.

A function $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}$ is in $\operatorname{UCSPT}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}(2 n-\cos \alpha-\beta) n a_{n} \leq \cos \alpha-\beta \tag{1.4}
\end{equation*}
$$

Corollary 1.1.1.

Let the function $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, a_{n} \geq 0$ be in the class $\operatorname{UCSPT}(\alpha, \beta),|\alpha|<\frac{\pi}{2}, 0 \leq \beta<1$, then

$$
\begin{equation*}
a_{n} \leq \frac{\cos \alpha-\beta}{n(2 n-\cos \alpha-\beta)}, \quad n \geq 2 . \tag{1.5}
\end{equation*}
$$

Lemma 1.2.

A function $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}$ is in $S P_{p} T(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}(2 n-\cos \alpha-\beta) a_{n} \leq \cos \alpha-\beta \tag{1.6}
\end{equation*}
$$

Corollary 1.2.1.

Let the function $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, a_{n} \geq 0$ be in the class $S P_{p} T(\alpha),,|\alpha|<\frac{\pi}{2}, 0 \leq \beta<1$, then

$$
\begin{equation*}
a_{n} \leq \frac{\cos \alpha-\beta}{(2 n-\cos \alpha-\beta)}, \quad n \geq 2 . \tag{1.7}
\end{equation*}
$$

Using (1.7), the functions $\mathrm{f}(\mathrm{z}) \in S P_{p} T(\alpha, \beta)$ will satisfy

$$
\begin{equation*}
a_{2} \leq \frac{(\cos \alpha-\beta)}{(4-\cos \alpha-\beta)} \tag{1.8}
\end{equation*}
$$

Let $S P_{p} T_{c}(\alpha, \beta)$ be the subclass of functions in $S P_{p} T(\alpha, \beta)$ of the form

$$
\begin{equation*}
f(z)=z-\frac{c(\cos \alpha-\beta) z^{2}}{(4-\cos \alpha-\beta)}-\sum_{n=3}^{\infty} a_{n} z^{n}, \tag{1.9}
\end{equation*}
$$

($a_{n} \geq 0$), where $0 \leq c \leq 1$. When $\mathrm{c}=1$ we get

$$
S P_{p} T_{l}(\alpha, \beta)=S P_{p} T(\alpha, \beta)
$$

II. COEFFICIENT ESTIMATE

Theorem 2.1.

The function $f(z)$ defined by (1.5) belongs to $\mathrm{SP}_{\mathrm{p}} \mathrm{T}_{\mathrm{c}}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{n=3}^{\infty}(2 n-\cos \alpha-\beta) a_{n} \leq(1-c)(\cos \alpha-\beta) \tag{2.1}
\end{equation*}
$$

The result is sharp.
Proof.
Taking

$$
a_{2}=\frac{c(\cos \alpha-\beta)}{4-\cos \alpha-\beta}, 0 \leq c \leq 1
$$

(2.2)
in (1.6) we get the required result. Also the result is sharp for the function

$$
\begin{equation*}
f(z)=z-\frac{c(\cos \alpha-\beta) z^{2}}{(4-\cos \alpha-\beta)}-\frac{(1-c)(\cos \alpha-\beta) z^{n}}{(2 n-\cos \alpha-\beta)},(n \geq 3) \tag{2.3}
\end{equation*}
$$

Corollary 2.1.1.

If $f(z)$ defined by (1.9) is in the class $S P_{p} T_{c}(\alpha, \beta)$ then,

$$
\begin{equation*}
a_{n} \leq \frac{(1-c)(\cos \alpha-\beta)}{(2 n-\cos \alpha-\beta)},(n \geq 3) \tag{2.4}
\end{equation*}
$$

The result is sharp for the function $f(z)$ given in (2.3).

III. CLOSURE THEOREMS

Theorem 3.1.

The class $S P_{p} T_{c}(\alpha, \beta)$ is closed under convex linear combination.
Proof.
Let $f(z)$ defined by (1.9) be in $S P_{p} T_{c}(\alpha, \beta)$. Let $g(z)$ be defined by

$$
\begin{equation*}
g(z)=z-\frac{c(\cos \alpha-\beta) z^{2}}{(4-\cos \alpha-\beta)}-\sum_{n=3}^{\infty} b_{n} z^{n}, \quad\left(b_{n} \geq 0\right) \tag{3.1}
\end{equation*}
$$

If $f(z)$ and $g(z)$ belong to $S P_{p} T_{c}(\alpha, \beta)$ then it is enough to prove that the function $H(z)$ defined by

$$
\begin{equation*}
H(z)=\lambda f(z)+(1-\lambda) g(z), \quad(0 \leq \lambda \leq 1) \tag{3.2}
\end{equation*}
$$

is also in $S P_{p} T_{c}(\alpha, \beta)$.

$$
\begin{equation*}
H(z)=z-\frac{c(\cos \alpha-\beta) z^{2}}{(4-\cos \alpha-\beta)}-\sum_{n=3}^{\infty}\left(\lambda a_{n}+(1-\lambda) b_{n}\right) z^{n} \tag{3.3}
\end{equation*}
$$

Using theorem (2.1) we get

$$
\begin{equation*}
\sum_{n=3}^{\infty}(2 n-\cos \alpha-\beta)\left(\lambda a_{n}+(1-\lambda) b_{n}\right) \leq(1-c)(\cos \alpha-\beta) . \tag{3.4}
\end{equation*}
$$

Hence $H(z)$ is in $S P_{p} T_{c}(\alpha, \beta)$. Thus $S P_{p} T_{c}(\alpha, \beta)$ is closed under convex linear combination.

Theorem 3.2.

Let the functions

$$
\begin{equation*}
f_{j}(z)=z-\frac{c(\cos \alpha-\beta) z^{2}}{(4-\cos \alpha-\beta)}-\sum_{n=3}^{\infty} a_{n, j} z^{n}, \quad\left(a_{n, j} \geq 0\right) \tag{3.5}
\end{equation*}
$$

be in the class $S P_{p} T_{c}(\alpha, \beta)$ for every $j=1,2, \ldots m$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\sum_{j=1}^{m} d_{j} f_{j}(z), \quad\left(d_{j} \geq 0\right) \tag{3.6}
\end{equation*}
$$

is also in the same class $S P_{p} T_{c}(\alpha, \beta)$ where

$$
\begin{equation*}
\sum_{j=1}^{m} d_{j}=1 \tag{3.7}
\end{equation*}
$$

Proof.
Using (3.5) and (3.7) in (3.6) we have

$$
\begin{equation*}
F(z)=z-\frac{c(\cos \alpha-\beta) z^{2}}{4-\cos \alpha-\beta}-\sum_{n=3}^{\infty}\left[\sum_{j=1}^{m} d_{j} a_{n, j}\right] z^{n} . \tag{3.8}
\end{equation*}
$$

Each $f_{j}(z) \in S P_{p} T_{c}(\alpha, \beta)$ for $j=1,2, \ldots m$, theorem (2.1) gives

$$
\begin{equation*}
\sum_{n=3}^{\infty}(2 n-\cos \alpha-\beta) a_{n, j} \leq(1-c)(\cos \alpha-\beta) \tag{3.9}
\end{equation*}
$$

for $j=1,2, \ldots m$.Hence we get

$$
\sum_{n=3}^{\infty}(2 n-\cos \alpha-\beta)\left[\sum_{j=1}^{m} d_{j} a_{n, j}\right]=\sum_{j=1}^{m} d_{j}\left[\sum_{n=3}^{\infty}(2 n-\cos \alpha-\beta) a_{n, j}\right] \leq(1-c)(\cos \alpha-\beta)
$$

This implies $F(z) \in S P_{p} T_{c}(\alpha, \beta)$, by theorem(2.1).

Theorem 3.3.

Let

$$
\begin{equation*}
f_{2}(x)=z-\frac{c(\cos \alpha-\beta) z^{2}}{4-\cos \alpha-\beta} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{n}(x)=z-\frac{c(\cos \alpha-\beta) z^{2}}{4-\cos \alpha-\beta}-\frac{(1-c)(\cos \alpha-\beta) z^{n}}{2 n-\cos \alpha-\beta} \tag{3.11}
\end{equation*}
$$

for $n=3,4, \ldots$. Then $f(z)$ is in $S P_{p} T_{c}(\alpha, \beta)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=2}^{\infty} \lambda_{n} f_{n}(z) \tag{3.12}
\end{equation*}
$$

where $\lambda_{n} \geq 0$ and $\sum_{n=2}^{\infty} \lambda_{n}=1$.
Proof.
Let us assume that $f(z)$ can be expressed in the form(3.12). Then we have

$$
\begin{equation*}
f(z)=z-\frac{c(\cos \alpha-\beta) z^{2}}{4-\cos \alpha-\beta}-\sum_{n=3}^{\infty} \frac{(1-c)(\cos \alpha-\beta)}{2 n-\cos \alpha-\beta} \lambda_{n} z^{n} \tag{3.13}
\end{equation*}
$$

But

$$
\begin{align*}
\sum_{n=3}^{\infty} \frac{(1-c)(\cos \alpha-\beta)}{2 n-\cos \alpha-\beta} \lambda_{n}(2 n-\cos \alpha-\beta) & =(1-c)(\cos \alpha-\beta)\left(1-\lambda_{2}\right) \tag{3.14}\\
& \leq(1-c)(\cos \alpha-\beta)
\end{align*}
$$

Hence from (2.1) it follows that $f(z) \in S P_{p} T_{c}(\alpha, \beta)$.Conversely, we assume that $f(z)$ defined by (1.6) is in the class $S P_{p} T_{c}(\alpha, \beta)$. Then by using (2.4), we get

$$
a_{n} \leq \frac{(1-c)(\cos \alpha-\beta)}{(2 n-\cos \alpha-\beta)}, \quad(n=3,4, \ldots)
$$

Taking $\lambda_{n}=\frac{(2 n-\cos \alpha-\beta) a_{n}}{(1-c)(\cos \alpha-\beta)}, \quad(n=3,4, \ldots)$ and $\lambda_{2}=1-\sum_{\mathrm{n}=3}^{\infty} \lambda_{\mathrm{n}}$, we have (3.12).
Hence the proof is complete.

Corollary 3.3.1.

The extreme points of the class $S P_{p} T_{c}(\alpha, \beta)$ are the functions $f_{n}(z),(n \geq 2)$ given by theorem (3.3) .

IV.DISTORTION THEOREMS

For finding the distortion bounds of $f(z) \in S P_{p} T_{c}(\alpha, \beta)$, we need the following lemmas.

Lemma 4.1.

Let the function $f_{3}(z)$ be defined by

$$
\begin{equation*}
f_{3}(z)=z-\frac{c(\cos \alpha-\beta) z^{2}}{4-\cos \alpha-\beta}-\frac{(1-c)(\cos \alpha-\beta) z^{3}}{6-\cos \alpha-\beta} \tag{4.1}
\end{equation*}
$$

Then, for $0 \leq \mathrm{r}<1$ and $0 \leq \mathrm{c} \leq 1$,

$$
\begin{equation*}
\left|f_{3}\left(r e^{i \theta}\right)\right| \geq r-\frac{c(\cos \alpha-\beta) r^{2}}{4-\cos \alpha-\beta}-\frac{(1-c)(\cos \alpha-\beta) r^{3}}{6-\cos \alpha-\beta} \tag{4.2}
\end{equation*}
$$

with equality for $\theta=0$. For either $0 \leq c<c_{0}$ and $0 \leq r \leq r_{0}$ or $c_{0} \leq c \leq 1$,

$$
\begin{equation*}
\left|f_{3}\left(r e^{i \theta}\right)\right| \leq r+\frac{c(\cos \alpha-\beta) r^{2}}{4-\cos \alpha-\beta}-\frac{(1-c)(\cos \alpha-\beta) r^{3}}{6-\cos \alpha-\beta} \tag{4.3}
\end{equation*}
$$

with equality for $\theta=\pi$. Further, for $0 \leq c<c_{0}$ and $r_{0} \leq r<1$,

$$
\begin{aligned}
\left|f_{3}\left(r e^{i \theta}\right)\right| \leq & r\left[\left[1+\frac{c^{2}(\cos \alpha-\beta)(6-\cos \alpha-\beta)}{4(1-c)(4-\cos \alpha-\beta)^{2}}\right]\right. \\
& +r^{2}(\cos \alpha-\beta)\left[\frac{2(1-c)}{6-\cos \alpha-\beta}-\frac{c^{2}(\cos \alpha-\beta)}{2(4-\cos \alpha-\beta)^{2}}\right] \\
& \left.+\frac{r^{4}(1-c)(\cos \alpha-\beta)^{2}}{(6-\cos \alpha-\beta)}\left[\frac{(1-c)}{(6-\cos \alpha-\beta)}+\frac{c^{2}(\cos \alpha-\beta)}{4(4-\cos \alpha-\beta)^{2}}\right]\right]^{1 / 2}
\end{aligned}
$$

with equality for $\theta=\cos ^{-1}\left[\frac{c(\cos \alpha-\beta)(1-c) r^{2}-c(6-\cos \alpha-\beta)}{4(1-c)(4-\cos \alpha-\beta) r}\right]$, where

$$
c_{0}=\frac{1}{2(\cos \alpha-\beta)}[(6 \cos \alpha+4 \beta-22))
$$

$$
\begin{equation*}
\left.+\sqrt{(22-6 \cos \alpha-4 \beta)^{2}+16(\cos \alpha-\beta)(4-\cos \alpha-\beta)}\right] \tag{4.4}
\end{equation*}
$$

and

$$
\begin{align*}
& r_{0}=\frac{1}{c(1-c)(\cos \alpha-\beta)}[-2(1-c)(4-\cos \alpha-\beta) \tag{4.5}\\
&\left.+\sqrt{4(1-c)^{2}(4-\cos \alpha-\beta)^{2}+c^{2}(1-c)(6-\cos \alpha-\beta)(\cos \alpha-\beta)}\right]
\end{align*}
$$

Proof. The techniques used by Silverman and Silvia [11] give,

$$
\begin{align*}
\frac{\partial\left|f_{3}\left(r e^{i \theta}\right)\right|^{2}}{\partial \theta}=\frac{2(\cos \alpha-\beta) r^{3} \sin \theta}{(4-\cos \alpha-\beta)}[& c+\frac{4(1-c)(4-\cos \alpha-\beta) r \cos \theta}{(6-\cos \alpha-\beta)} \\
& \left.-\frac{c(1-c) r^{2}(\cos \alpha-\beta)}{(6-\cos \alpha-\beta)}\right] \tag{4.6}
\end{align*}
$$

Also $\frac{\partial\left|f_{3}\left(r e^{i \theta}\right)\right|^{2}}{\partial \theta}=0$, for $\theta_{1}=0, \theta_{2}=\pi$ and

$$
\begin{equation*}
\theta_{3}=\cos ^{-1}\left[\frac{(\cos \alpha-\beta) c(1-c) r^{2}-c(6-\cos \alpha-\beta)}{4(1-c)(4-\cos \alpha-\beta) r}\right] \tag{4.7}
\end{equation*}
$$

since θ_{3} is a valid root only when $-1 \leq \cos \theta_{3} \leq 1$. Hence there is a third root if and only if $r_{0} \leq r<1$ and $0 \leq \mathrm{c} \leq c_{0}$. The result follows by comparing the extremal values $\left|f_{3}\left(r e^{i \theta k}\right)\right|,(k=1,2,3)$ on the appropriate intervals.

Lemma 4.2.
Let the function $f_{n}(z)$ be defined by (3.11) and $n \geq 4$. Then

$$
\begin{equation*}
\left|f_{n}\left(r e^{i \theta}\right)\right| \leq\left|f_{n}(-r)\right| . \tag{4.8}
\end{equation*}
$$

Proof.
Since $f_{n}(z)=z-\frac{c(\cos \alpha-\beta) z^{2}}{(4-\cos \alpha-\beta)}-\frac{(1-c)(\cos \alpha-\beta) z^{n}}{(2 n-\cos \alpha-\beta)}$ and r^{n} is a decreasing function of n, we have

$$
\begin{aligned}
\left|f_{n}\left(r e^{i \theta}\right)\right| & \leq r+\frac{c(\cos \alpha-\beta) r^{2}}{(4-\cos \alpha-\beta)}+\frac{(1-c)(\cos \alpha-\beta) r^{n}}{(2 n-\cos \alpha-\beta)} \\
& \leq r+\frac{c(\cos \alpha-\beta) r^{2}}{(4-\cos \alpha-\beta)}+\frac{(1-c)(\cos \alpha-\beta) r^{4}}{(2 n-\cos \alpha-\beta)}=-f_{4}(-r),
\end{aligned}
$$

which gives (4.8) .

Theorem 4.3.

Let the function $f(z)$ defined by (1.6) belong to the class $S P_{p} T_{c}(\alpha, \beta)$. Then for $0 \leq \mathrm{r}<1$,

$$
\left|f\left(r e^{i \theta}\right)\right| \geq r-\frac{c(\cos \alpha-\beta) r^{2}}{(4-\cos \alpha-\beta)}-\frac{(1-c)(\cos \alpha-\beta) r^{3}}{(6-\cos \alpha-\beta)}
$$

with equality for $f_{3}(z)$ at $z=r$ and

$$
\left|f\left(r e^{i \theta}\right)\right| \leq \max \left\{\max _{\theta}\left|f_{3}\left(r e^{i \theta}\right)\right|,-f_{4}(-r)\right\}
$$

where $\max _{\theta}\left|f_{3}\left(r e^{i \theta}\right)\right|$ is given by lemma 4.1.

The proof is obtained by comparing the bounds of Lemma 4.1 and Lemma 4.2.

Corollary 4.3.1.

Let the function $f(z)$ be defined by (1.1) be in the class $S P_{p} T(\alpha, \beta)$. Then for $|z|=r<1$, we have

$$
r-\frac{(\cos \alpha-\beta) r^{2}}{(4-\cos \alpha-\beta)} \leq|f(z)| \leq r+\frac{(\cos \alpha-\beta) r^{2}}{(4-\cos \alpha-\beta)}
$$

The result is sharp.

Corollary 4.3.2.

Let the function $f(z)$ be defined by (1.5) be in the class $S P_{p} T_{c}(\theta, \beta)$. Then the disk $|z|<1$ is mapped onto a domain that contains the disk

$$
|w|<\frac{(6-\cos \alpha-\beta)(4-\cos \alpha-\beta)-(\cos \alpha-\beta)(4+2 c-\cos \alpha-\beta)}{(6-\cos \alpha-\beta)(4-\cos \alpha-\beta)}
$$

The result is sharp with the extremal function

$$
f_{3}(z)=z-\frac{c(\cos \alpha-\beta) z^{2}}{(4-\cos \alpha-\beta)}-\frac{(1-c)(\cos \alpha-\beta) z^{3}}{(6-\cos \alpha-\beta)}
$$

Proof.

The result follows by letting $\mathrm{r} \rightarrow 1$ in theorem 4.3.

Lemma 4.4.

Let the function $f_{3}(z)$ be defined by (4.1). Then for $0 \leq \mathrm{r}<1$ and $0 \leq \mathrm{c} \leq 1$,

$$
\left|f_{3}^{\prime}\left(r e^{i \theta}\right)\right| \geq 1-\frac{2 c(\cos \alpha-\beta) r}{(4-\cos \alpha-\beta)}-\frac{3(1-c)(\cos \alpha-\beta) r^{2}}{(6-\cos \alpha-\beta)}
$$

with equality for $\theta=0$. For either $0 \leq c<c_{1}$ and $0 \leq r \leq r_{1}$ or $c_{1} \leq c \leq 1$,

$$
\left|f_{3}^{\prime}\left(r e^{i \theta}\right)\right| \leq 1+\frac{2 c(\cos \alpha-\beta) r}{(4-\cos \alpha-\beta)}-\frac{3(1-c)(\cos \alpha-\beta) r^{2}}{(6-\cos \alpha-\beta)},
$$

with equality for $\theta=\pi$. Further, $0 \leq c<c_{1}$ and $\mathrm{r}_{1} \leq r<1$,

$$
\begin{aligned}
\left|f_{3}^{\prime}\left(r e^{i \theta}\right)\right| \leq & \left\{\left[1+\frac{c^{2}(\cos \alpha-\beta)(6-\cos \alpha-\beta)}{3(1-c)(4-\cos \alpha-\beta)^{2}}\right]\right. \\
& +(\cos \alpha-\beta)\left[\frac{6(1-c)}{(6-\cos \alpha-\beta)}+\frac{2 c^{2}(\cos \alpha-\beta)}{(4-\cos \alpha-\beta)^{2}}\right] r^{2} \\
& \left.+\frac{3(1-c)(\cos \alpha-\beta)^{2}}{6-\cos \alpha-\beta}\left[\frac{3(1-c)}{(6-\cos \alpha-\beta)}+\frac{c^{2}(\cos \alpha-\beta)}{(4-\cos \alpha-\beta)^{2}}\right] r^{4}\right\}^{1 / 2},
\end{aligned}
$$

with equality for

$$
\theta=\cos ^{-1}\left[\frac{c(1-c)(\cos \alpha-\beta) 3 r^{2}-c(6-\cos \alpha-\beta)}{6(1-c) r(4-\cos \alpha-\beta)}\right]
$$

where

$$
c_{1}=\frac{-(30-10 \cos \alpha-4 \beta)+\sqrt{(30-10 \cos \alpha-4 \beta)^{2}+72(4-\cos \alpha-\beta)(\cos \alpha-\beta)}}{6(\cos \alpha-\beta)}
$$

and

$$
\begin{aligned}
& r_{1}=\frac{1}{3 c(1-c)(\cos \alpha-\beta)}\{-3(1-c)(4-\cos \alpha-\beta) \\
&\left.+\sqrt{9(1-c)^{2}(4-\cos \alpha-\beta)^{2}+3 c^{2}(1-c)(\cos \alpha-\beta)(6-\cos \alpha-\beta)}\right\} .
\end{aligned}
$$

The proof of lemma(4.4) is given in the same way as lemma(4.1).

Theorem 4.5.

Let the function $f(z)$ defined by (1.6) be in the class $S P_{p} T_{c}(\alpha, \beta)$. Then for $0 \leq \mathrm{r}<1$,

$$
\left|f^{\prime}\left(r e^{i \theta}\right)\right| \geq 1-\frac{2 c(\cos \alpha-\beta) r}{(4-\cos \alpha-\beta)}-\frac{3(1-c)(\cos \alpha-\beta) r^{2}}{(6-\cos \alpha-\beta)}
$$

withequality for $f_{3}^{\prime}(z)$ at $z=r$ and

$$
\left|f^{\prime}\left(r e^{i \theta}\right)\right| \leq \max \left\{\max _{\theta}\left|f_{3}^{\prime}\left(r e^{i \theta}\right)\right|,-f_{4}^{\prime}(-r)\right\},
$$

where $\max _{\theta}\left|f_{3}^{\prime}\left(r e^{i \theta}\right)\right|$ is given by lemma (4.4).
When $c=1$ in theorem 4.5 we get the following corollary.
Corollary 4.5.1.
Let the function $f(z)$ defined by (1.1) be in the class $S P_{p} T_{c}(\alpha, \beta)$. Then for $|z|=r<1$, we have

$$
1-\frac{2(\cos \alpha-\beta) r}{(4-\cos \alpha-\beta)} \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2(\cos \alpha-\beta) r}{(4-\cos \alpha-\beta)}
$$

the result is sharp.

V. CONCLUSION

The class $S P_{p} T_{c}(\alpha, \beta)$ can be further studied for various other properties.

ACKNOWLEDGMENT

This research was supported by the National Board for Higher Mathematics.

REFERENCES

[1] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math.,vol. 56, no. 1, pp. 87-92, 1991
[2] A.W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl.,vol. 155, no. 2, pp. 364-370, 1991.
[3] S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math.,vol. 105, no. 1-2, pp. 327-336, 1999.
[4] S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl.,vol. 45, no. 4, pp. 647-657, 2001.
[5] Ma, Wan Cang; Minda, David. Uniformly convex functions,Ann. Polon. Math.,vol. 57, no. 2, pp. 165-175, 1992.
[6] V. Ravichandran, C. Selvaraj and R. Rajagopal, On uniformly convex spiral functions and uniformly spirallike functions, Soochow J. Math.,vol. 29, no. 4, pp. 393-405, 2003.
[7] Rnning, Frode. Uniformly convex functions and a corresponding class of starlike functions,Proc. Amer. Math. Soc.,vol. 118, no. 1, pp. 189-196, 1993.
[8] C. Selvaraj and R. Geetha, On subclasses of uniformly convex spirallike functions and corresponding class of spirallike functions, Int. J. Contemp. Math. Sci.,vol. 5, no. 37-40, pp. 1845-1854, 2010.
[9] C. Selvaraj and R. Geetha, On uniformly spirallike functions and a corresponding subclass of spirallike functions, Glo. J. Sci. Front.Res., vol. 10, pp. 36-41, 2001.
[10] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc.,vol. 51, pp. 109-116, 1975.
[11] H. Silverman and E.M. Silvia, Fixed coefficients for subclasses of starlike functions, Houston J. Math.,vol.7, no. 1, pp. 129-136, 1981.

