Fixed Coefficients for A Subclass of Spirallike Functions

Geetha Balachandar¹ and Hema P²

 ¹Dept. of Mathematics, R.M.K College of Engg. and Technology, Puduvoyal - 601206, Tamil Nadu, India
 ²Dept. of Mathematics, R.M.K College of Engg. and Technology, Puduvoyal - 601206, Tamil Nadu, India

Abstract:

The objective of this paper is to give some properties of a new subclass with negative coefficients and with fixed second coefficients

Keywords-Analytic functions, Univalent functions, uniformly convex functions, uniformly spirallike functions.

I. INTRODUCTION AND DEFINITIONS

Let *S* denote the class of functions of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ which are analytic and univalent in the open

unit disc $U = \{z \in \mathbb{C} : |z| \le 1\}$. Also let S^* and \mathbb{C} denote the subclasses of S that are respectively, starlike and convex.

Motivated by certain geometric conditions, Goodman [1,2] introduced an interesting subclass of starlike functions called uniformly starlike functions denoted by UST and an analogous subclass of convex functions called uniformly convex functions, denoted by UCV. From [5,7] we have

$$f \in UCV \Leftrightarrow \operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} \ge \left|\frac{zf''(z)}{f'(z)}\right|, \quad z \in U.$$

In [7], Ronning introduced a new class S_p of starlike functions which has more manageable properties. The classes *UCV* and S_p were further extended by Kanas and Wisniowska in [3,4] as $k-UCV(\alpha)$ and $k-ST(\alpha)$. The classes of uniformly spirallike and uniformly convex spirallike were introduced by Ravichandran et al [6]. This was further generalized in [9] as $UCSP(\alpha,\beta)$. In [10], Herb Silverman introduced the subclass *T* of functions of the form

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

which are analytic and univalent in the unit disc U. Motivated by [11], new subclasses with negative coefficients $UCSPT(\alpha,\beta)$ and $SP_pT(\alpha,\beta)$ were introduced and studied in [8].

A function f(z) defined by (1.1) is in $UCSPT(\alpha,\beta)$ if

$$\operatorname{Re}\left\{e^{-i\alpha}\left(1+\frac{zf''(z)}{f'(z)}\right)\right\} \ge \left|\frac{zf''(z)}{f'(z)}\right| + \beta,\tag{1.2}$$

 $\left|\alpha\right| \! < \! \frac{\pi}{2}, 0 \! \le \! \beta \! < \! 1.$

A function f(z) defined by (1.1) is in $SP_pT(\alpha,\beta)$ if

$$\operatorname{Re}\left\{e^{-i\alpha}\left(\frac{zf'(z)}{f(z)}\right)\right\} \ge \left|\frac{zf'(z)}{f(z)} - 1\right| + \beta,$$
(1.3)

 $\left|\alpha\right| \! < \! \frac{\pi}{2}, 0 \! \le \! \beta \! < \! 1.$

For the classes $UCSPT(\alpha,\beta)$ and $SP_pT(\alpha,\beta)$ [8] proved the following lemmas. **Lemma 1.1.**

A function
$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n$$
 is in *UCSPT*(α, β) if and only if

ISSN: 2231-5373

$$\sum_{n=2}^{\infty} (2n - \cos \alpha - \beta) n a_n \le \cos \alpha - \beta.$$
(1.4)

Corollary 1.1.1.

Let the function
$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n$$
, $a_n \ge 0$ be in the class $UCSPT(\alpha, \beta)$, $|\alpha| < \frac{\pi}{2}$, $0 \le \beta < 1$, then
 $a_n \le \frac{\cos \alpha - \beta}{n(2n - \cos \alpha - \beta)}$, $n \ge 2$. (1.5)

Lemma 1.2.

A function $f(z) = z - \sum_{n=2}^{\infty} a_n z^n$ is in $SP_p T(\alpha, \beta)$ if and only if $\sum_{n=2}^{\infty} (2n - \cos \alpha - \beta) a_n \le \cos \alpha - \beta.$ (1.6)

Corollary 1.2.1.

Let the function $f(z) = z - \sum_{n=2}^{\infty} a_n z^n$, $a_n \ge 0$ be in the class $SP_p T(\alpha,)$, $|\alpha| < \frac{\pi}{2}$, $0 \le \beta < 1$, then $a_n \le \frac{\cos \alpha - \beta}{(2n - \cos \alpha - \beta)}$, $n \ge 2$. (1.7)

Using (1.7), the functions $f(z) \in SP_pT(\alpha,\beta)$ will satisfy

$$a_2 \le \frac{(\cos \alpha - \beta)}{(4 - \cos \alpha - \beta)}.$$
(1.8)

Let $SP_pT_c(\alpha,\beta)$ be the subclass of functions in $SP_pT(\alpha,\beta)$ of the form

$$f(z) = z - \frac{c(\cos \alpha - \beta)z^2}{(4 - \cos \alpha - \beta)} - \sum_{n=3}^{\infty} a_n z^n,$$
(1.9)

 $(a_n \ge 0)$, where $0 \le c \le 1$. When c = 1 we get

 $SP_pT_l(\alpha,\beta)=SP_pT(\alpha,\beta).$

II. COEFFICIENT ESTIMATE

Theorem 2.1.

The function f(z) defined by (1.5) belongs to $SP_pT_c(\alpha,\beta)$ if and only if

$$\sum_{n=3}^{\infty} (2n - \cos \alpha - \beta) a_n \le (1 - c)(\cos \alpha - \beta).$$
(2.1)

The result is sharp.

Proof. Taking

$$a_2 = \frac{c(\cos \alpha - \beta)}{4 - \cos \alpha - \beta}, \ 0 \le c \le 1,$$
(2.2)

in (1.6) we get the required result. Also the result is sharp for the function

$$f(z) = z - \frac{c(\cos \alpha - \beta)z^2}{(4 - \cos \alpha - \beta)} - \frac{(1 - c)(\cos \alpha - \beta)z^n}{(2n - \cos \alpha - \beta)}, (n \ge 3).$$
(2.3)

Corollary 2.1.1.

If f(z) defined by (1.9) is in the class $SP_pT_c(\alpha,\beta)$ then,

$$a_n \le \frac{(1-c)(\cos \alpha - \beta)}{(2n - \cos \alpha - \beta)}, (n \ge 3).$$

$$(2.4)$$

The result is sharp for the function f(z) given in (2.3).

III. CLOSURE THEOREMS

Theorem 3.1.

The class $SP_pT_c(\alpha,\beta)$ is closed under convex linear combination.

Proof.

Let f(z) defined by (1.9) be in $SP_pT_c(\alpha,\beta)$. Let g(z) be defined by

$$g(z) = z - \frac{c(\cos \alpha - \beta)z^2}{(4 - \cos \alpha - \beta)} - \sum_{n=3}^{\infty} b_n z^n, \quad (b_n \ge 0).$$
(3.1)

If f(z) and g(z) belong to $SP_pT_c(\alpha,\beta)$ then it is enough to prove that the function H(z) defined by $H(z) = \lambda f(z) + (1 - \lambda)g(z), \quad (0 \le \lambda \le 1)$

is also in $SP_pT_c(\alpha,\beta)$.

$$H(z) = z - \frac{c(\cos\alpha - \beta)z^2}{(4 - \cos\alpha - \beta)} - \sum_{n=3}^{\infty} (\lambda a_n + (1 - \lambda)b_n)z^n.$$
(3.3)

Using theorem (2.1) we get

$$\sum_{n=3}^{\infty} (2n - \cos \alpha - \beta)(\lambda a_n + (1 - \lambda)b_n) \le (1 - c)(\cos \alpha - \beta).$$
(3.4)

Hence H(z) is in $SP_pT_c(\alpha,\beta)$. Thus $SP_pT_c(\alpha,\beta)$ is closed under convex linear combination.

Theorem 3.2.

Let the functions

$$f_{j}(z) = z - \frac{c(\cos \alpha - \beta)z^{2}}{(4 - \cos \alpha - \beta)} - \sum_{n=3}^{\infty} a_{n,j} z^{n}, \quad (a_{n,j} \ge 0),$$
(3.5)

be in the class $SP_pT_c(\alpha,\beta)$ for every j = 1,2,...m. Then the function F(z) defined by

$$F(z) = \sum_{j=1}^{m} d_j f_j(z), \quad (d_j \ge 0),$$
(3.6)

is also in the same class $SP_pT_c(\alpha,\beta)$ where

$$\sum_{j=1}^{m} d_j = 1.$$
(3.7)

Proof.

Using (3.5) and (3.7) in (3.6) we have

$$F(z) = z - \frac{c(\cos \alpha - \beta)z^2}{4 - \cos \alpha - \beta} - \sum_{n=3}^{\infty} \left[\sum_{j=1}^{m} d_j a_{n,j} \right] z^n.$$
(3.8)

Each $f_i(z) \in SP_pT_c(\alpha,\beta)$ for j = 1,2,...m, theorem (2.1) gives

$$\sum_{n=3}^{\infty} (2n - \cos \alpha - \beta) a_{n,j} \le (1 - c)(\cos \alpha - \beta),$$
(3.9)

for $j = 1, 2, \dots m$. Hence we get

$$\sum_{n=3}^{\infty} (2n - \cos \alpha - \beta) \left[\sum_{j=1}^{m} d_j a_{n,j} \right] = \sum_{j=1}^{m} d_j \left[\sum_{n=3}^{\infty} (2n - \cos \alpha - \beta) a_{n,j} \right] \le (1 - c)(\cos \alpha - \beta).$$

(3.2)

This implies $F(z) \in SP_pT_c(\alpha,\beta)$, by theorem(2.1).

Theorem 3.3. Let

$$f_2(x) = z - \frac{c(\cos \alpha - \beta)z^2}{4 - \cos \alpha - \beta}$$
(3.10)

and

$$f_n(x) = z - \frac{c(\cos\alpha - \beta)z^2}{4 - \cos\alpha - \beta} - \frac{(1 - c)(\cos\alpha - \beta)z^n}{2n - \cos\alpha - \beta},$$
(3.11)

for $n = 3, 4, \dots$ Then f(z) is in $SP_pT_c(\alpha, \beta)$ if and only if it can be expressed in the form

$$f(z) = \sum_{n=2}^{\infty} \lambda_n f_n(z)$$
(3.12)

where $\lambda_n \ge 0$ and $\sum_{n=2}^{\infty} \lambda_n = 1$.

Proof.

Let us assume that f(z) can be expressed in the form(3.12). Then we have

$$f(z) = z - \frac{c(\cos\alpha - \beta)z^2}{4 - \cos\alpha - \beta} - \sum_{n=3}^{\infty} \frac{(1 - c)(\cos\alpha - \beta)}{2n - \cos\alpha - \beta} \lambda_n z^n.$$
(3.13)

But

$$\sum_{n=3}^{\infty} \frac{(1-c)(\cos\alpha - \beta)}{2n - \cos\alpha - \beta} \lambda_n (2n - \cos\alpha - \beta) = (1-c)(\cos\alpha - \beta)(1 - \lambda_2)$$

$$\leq (1-c)(\cos\alpha - \beta).$$
(3.14)

Hence from (2.1) it follows that $f(z) \in SP_pT_c(\alpha,\beta)$. Conversely, we assume that f(z) defined by (1.6) is in the class $SP_pT_c(\alpha,\beta)$. Then by using (2.4), we get \mathbf{n}

$$a_n \leq \frac{(1-c)(\cos \alpha - \beta)}{(2n - \cos \alpha - \beta)}, \quad (n = 3, 4, \dots).$$

Taking $\lambda_n = \frac{(2n - \cos \alpha - \beta)a_n}{(1-c)(\cos \alpha - \beta)}, \quad (n = 3, 4, \dots) \text{ and } \lambda_2 = 1 - \sum_{n=3}^{\infty} \lambda_n, \text{ we have } (3.12).$

Hence the proof is complete.

Corollary 3.3.1.

The extreme points of the class $SP_pT_c(\alpha,\beta)$ are the functions $f_n(z), (n\geq 2)$ given by theorem (3.3).

IV.DISTORTION THEOREMS

For finding the distortion bounds of $f(z) \in SP_pT_c(\alpha,\beta)$, we need the following lemmas.

Lemma 4.1.

Let the function $f_3(z)$ be defined by

$$f_3(z) = z - \frac{c(\cos\alpha - \beta)z^2}{4 - \cos\alpha - \beta} - \frac{(1 - c)(\cos\alpha - \beta)z^3}{6 - \cos\alpha - \beta}.$$
(4.1)

Then, for $0 \le r < 1$ and $0 \le c \le 1$,

$$\left|f_{3}(re^{i\theta})\right| \ge r - \frac{c(\cos\alpha - \beta)r^{2}}{4 - \cos\alpha - \beta} - \frac{(1 - c)(\cos\alpha - \beta)r^{3}}{6 - \cos\alpha - \beta},\tag{4.2}$$

with equality for $\theta = 0$. For either $0 \le c < c_0$ and $0 \le r \le r_0$ or $c_0 \le c \le 1$,

$$\left| f_3(re^{i\theta}) \right| \le r + \frac{c(\cos\alpha - \beta)r^2}{4 - \cos\alpha - \beta} - \frac{(1 - c)(\cos\alpha - \beta)r^3}{6 - \cos\alpha - \beta},\tag{4.3}$$

with equality for $\theta = \pi$. Further, for $0 \le c < c_0$ and $r_0 \le r < 1$,

$$\begin{split} f_{3}(re^{i\theta}) &|\leq r \Biggl[\Biggl[1 + \frac{c^{2}(\cos\alpha - \beta)(6 - \cos\alpha - \beta)}{4(1 - c)(4 - \cos\alpha - \beta)^{2}} \Biggr] \\ &+ r^{2}(\cos\alpha - \beta) \Biggl[\frac{2(1 - c)}{6 - \cos\alpha - \beta} - \frac{c^{2}(\cos\alpha - \beta)}{2(4 - \cos\alpha - \beta)^{2}} \Biggr] \\ &+ \frac{r^{4}(1 - c)(\cos\alpha - \beta)^{2}}{(6 - \cos\alpha - \beta)} \Biggl[\frac{(1 - c)}{(6 - \cos\alpha - \beta)} + \frac{c^{2}(\cos\alpha - \beta)}{4(4 - \cos\alpha - \beta)^{2}} \Biggr] \Biggr]^{1/2}, \end{split}$$

with equality for
$$\theta = \cos^{-1} \left[\frac{c(\cos \alpha - \beta)(1-c)r^2 - c(6-\cos \alpha - \beta)}{4(1-c)(4-\cos \alpha - \beta)r} \right]$$
, where

$$c_0 = \frac{1}{2(\cos \alpha - \beta)} \left[(6\cos \alpha + 4\beta - 22)) + \sqrt{(22 - 6\cos \alpha - 4\beta)^2 + 16(\cos \alpha - \beta)(4 - \cos \alpha - \beta)} \right]$$

(4.4)

and

$$r_{0} = \frac{1}{c(1-c)(\cos\alpha - \beta)} \left[-2(1-c)(4-\cos\alpha - \beta) + \sqrt{4(1-c)^{2}(4-\cos\alpha - \beta)^{2} + c^{2}(1-c)(6-\cos\alpha - \beta)(\cos\alpha - \beta)} \right].$$
(4.5)

Proof. The techniques used by Silverman and Silvia [11] give,

$$\frac{\partial \left| f_{3}(re^{i\theta}) \right|^{2}}{\partial \theta} = \frac{2(\cos \alpha - \beta) r^{3} \sin \theta}{(4 - \cos \alpha - \beta)} \left[c + \frac{4(1 - c)(4 - \cos \alpha - \beta) r \cos \theta}{(6 - \cos \alpha - \beta)} - \frac{c(1 - c) r^{2}(\cos \alpha - \beta)}{(6 - \cos \alpha - \beta)} \right].$$

$$(4.6)$$

Also
$$\frac{\partial \left| f_{3}(re^{i\theta}) \right|^{2}}{\partial \theta} = 0, \text{ for } \theta_{1} = 0, \theta_{2} = \pi \text{ and}$$
$$\theta_{3} = \cos^{-1} \left[\frac{(\cos \alpha - \beta)c(1-c)r^{2} - c(6 - \cos \alpha - \beta)}{4(1-c)(4 - \cos \alpha - \beta)r} \right],$$
(4.7)

since θ_3 is a valid root only when $-1 \le \cos \theta_3 \le 1$. Hence there is a third root if and only if $r_0 \le r < 1$ and $0 \le c \le c_0$. The result follows by comparing the extremal values $|f_3(re^{i\theta k})|$, (*k*=1,2,3) on the appropriate intervals. \Box

Lemma 4.2.

Let the function $f_n(z)$ be defined by (3.11) and $n \ge 4$. Then

$$\left|f_{n}(re^{i\theta})\right| \leq \left|f_{n}(-r)\right|. \tag{4.8}$$

Proof.

Since
$$f_n(z) = z - \frac{c(\cos \alpha - \beta) z^2}{(4 - \cos \alpha - \beta)} - \frac{(1 - c)(\cos \alpha - \beta) z^n}{(2n - \cos \alpha - \beta)}$$
 and r^n is a decreasing function of n , we have
 $\left| f_n(re^{i\theta}) \right| \le r + \frac{c(\cos \alpha - \beta)r^2}{(4 - \cos \alpha - \beta)} + \frac{(1 - c)(\cos \alpha - \beta)r^n}{(2n - \cos \alpha - \beta)}$
 $\le r + \frac{c(\cos \alpha - \beta)r^2}{(4 - \cos \alpha - \beta)} + \frac{(1 - c)(\cos \alpha - \beta)r^4}{(2n - \cos \alpha - \beta)} = -f_4(-r),$

which gives (4.8).

Theorem 4.3.

Let the function f(z) defined by (1.6) belong to the class $SP_pT_c(\alpha,\beta)$. Then for $0 \le r < 1$,

$$\left|f(re^{i\theta})\right| \ge r - \frac{c(\cos\alpha - \beta)r^2}{(4 - \cos\alpha - \beta)} - \frac{(1 - c)(\cos\alpha - \beta)r^3}{(6 - \cos\alpha - \beta)},$$

with equality for $f_3(z)$ at z=r and

$$\left|f(re^{i\theta})\right| \le \max\{\max_{\theta} \left|f_3(re^{i\theta})\right|, -f_4(-r)\},\$$

where $\max_{\theta} |f_3(re^{i\theta})|$ is given by lemma 4.1.

The proof is obtained by comparing the bounds of Lemma 4.1 and Lemma 4.2.

Corollary 4.3.1.

Let the function f(z) be defined by (1.1) be in the class $SP_pT(\alpha,\beta)$. Then for |z| = r < 1, we have

$$r - \frac{(\cos \alpha - \beta)r^2}{(4 - \cos \alpha - \beta)} \le |f(z)| \le r + \frac{(\cos \alpha - \beta)r^2}{(4 - \cos \alpha - \beta)}.$$

The result is sharp.

Corollary 4.3.2.

Let the function f(z) be defined by (1.5) be in the class $SP_pT_c(\theta,\beta)$. Then the disk |z|<1 is mapped onto a domain that contains the disk

$$|w| < \frac{(6 - \cos \alpha - \beta)(4 - \cos \alpha - \beta) - (\cos \alpha - \beta)(4 + 2c - \cos \alpha - \beta)}{(6 - \cos \alpha - \beta)(4 - \cos \alpha - \beta)}$$

The result is sharp with the extremal function

$$f_3(z) = z - \frac{c(\cos \alpha - \beta) z^2}{(4 - \cos \alpha - \beta)} - \frac{(1 - c)(\cos \alpha - \beta) z^3}{(6 - \cos \alpha - \beta)}$$

Proof.

The result follows by letting $r \rightarrow 1$ in theorem 4.3.

Lemma 4.4.

Let the function $f_3(z)$ be defined by (4.1). Then for $0 \le r < 1$ and $0 \le c \le 1$,

$$\left|f_{3}'(re^{i\theta})\right| \geq 1 - \frac{2c(\cos\alpha - \beta)r}{(4 - \cos\alpha - \beta)} - \frac{3(1 - c)(\cos\alpha - \beta)r^{2}}{(6 - \cos\alpha - \beta)},$$

with equality for $\theta = 0$. For either $0 \le c < c_1$ and $0 \le r \le r_1$ or $c_1 \le c \le 1$,

$$\left|f_{3}'(re^{i\theta})\right| \leq 1 + \frac{2c(\cos\alpha - \beta)r}{(4 - \cos\alpha - \beta)} - \frac{3(1 - c)(\cos\alpha - \beta)r^{2}}{(6 - \cos\alpha - \beta)}$$

with equality for $\theta = \pi$. Further, $0 \le c < c_1$ and $r_1 \le r < 1$,

$$\begin{split} \left| f_{3}'(re^{i\theta}) \right| &\leq \left\{ \left[1 + \frac{c^{2}(\cos\alpha - \beta)(6 - \cos\alpha - \beta)}{3(1 - c)(4 - \cos\alpha - \beta)^{2}} \right] \\ &+ (\cos\alpha - \beta) \left[\frac{6(1 - c)}{(6 - \cos\alpha - \beta)} + \frac{2c^{2}(\cos\alpha - \beta)}{(4 - \cos\alpha - \beta)^{2}} \right] r^{2} \\ &+ \frac{3(1 - c)(\cos\alpha - \beta)^{2}}{6 - \cos\alpha - \beta} \left[\frac{3(1 - c)}{(6 - \cos\alpha - \beta)} + \frac{c^{2}(\cos\alpha - \beta)}{(4 - \cos\alpha - \beta)^{2}} \right] r^{4} \right\}^{1/2} \end{split}$$

with equality for

$$\theta = \cos^{-1} \left[\frac{c(1-c)(\cos\alpha - \beta) 3r^2 - c(6-\cos\alpha - \beta)}{6(1-c)r(4-\cos\alpha - \beta)} \right]$$

where

$$c_{1} = \frac{-(30 - 10\cos\alpha - 4\beta) + \sqrt{(30 - 10\cos\alpha - 4\beta)^{2} + 72(4 - \cos\alpha - \beta)(\cos\alpha - \beta)}}{6(\cos\alpha - \beta)}$$

and

$$r_{1} = \frac{1}{3c(1-c)(\cos\alpha - \beta)} \left\{ -3(1-c)(4-\cos\alpha - \beta) + \sqrt{9(1-c)^{2}(4-\cos\alpha - \beta)^{2} + 3c^{2}(1-c)(\cos\alpha - \beta)(6-\cos\alpha - \beta)} \right\}.$$

The proof of lemma(4.4) is given in the same way as lemma(4.1).

Theorem 4.5.

Let the function f(z) defined by (1.6) be in the class $SP_pT_c(\alpha,\beta)$. Then for $0 \le r < 1$,

$$\left|f'(re^{i\theta})\right| \ge 1 - \frac{2c(\cos\alpha - \beta)r}{(4 - \cos\alpha - \beta)} - \frac{3(1 - c)(\cos\alpha - \beta)r^2}{(6 - \cos\alpha - \beta)},$$

with equality for $f'_3(z)$ at z=r and

$$\left|f'(re^{i\theta})\right| \le \max\{\max_{\theta} \left|f'_{3}(re^{i\theta})\right|, -f'_{4}(-r)\},$$

where $\max_{\theta} |f'_{3}(re^{i\theta})|$ is given by lemma (4.4).

When c=1 in theorem 4.5 we get the following corollary.

Corollary 4.5.1.

Let the function
$$f(z)$$
 defined by (1.1) be in the class $SP_pT_c(\alpha,\beta)$. Then for $|z| = r < 1$, we have

$$1 - \frac{2(\cos \alpha - \beta)r}{(4 - \cos \alpha - \beta)} \le |f'(z)| \le 1 + \frac{2(\cos \alpha - \beta)r}{(4 - \cos \alpha - \beta)},$$

the result is sharp.

V. CONCLUSION

The class $SP_pT_c(\alpha,\beta)$ can be further studied for various other properties.

ACKNOWLEDGMENT

This research was supported by the National Board for Higher Mathematics.

REFERENCES

- [1] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math., vol. 56, no. 1, pp. 87–92, 1991.
- [2] A.W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., vol. 155, no. 2, pp. 364–370, 1991.
- [3] S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., vol. 105, no. 1-2, pp. 327–336, 1999.
- S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., vol. 45, no. 4, pp. 647–657, 2001.
- [5] Ma, Wan Cang; Minda, David. Uniformly convex functions, Ann. Polon. Math., vol. 57, no. 2, pp. 165–175, 1992.
- [6] V. Ravichandran, C. Selvaraj and R. Rajagopal, On uniformly convex spiral functions and uniformly spirallike functions, Soochow J. Math., vol. 29, no. 4, pp. 393–405, 2003.
- [7] Rnning, Frode. Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., vol. 118, no. 1, pp. 189–196, 1993.
- [8] C. Selvaraj and R. Geetha, On subclasses of uniformly convex spirallike functions and corresponding class of spirallike functions, Int. J. Contemp. Math. Sci., vol. 5, no. 37-40, pp. 1845–1854, 2010.
- [9] C. Selvaraj and R. Geetha, On uniformly spirallike functions and a corresponding subclass of spirallike functions, Glo. J. Sci. Front.Res., vol. 10, pp. 36–41, 2001.
- [10] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., vol. 51, pp. 109–116, 1975.
- H. Silverman and E.M. Silvia, Fixed coefficients for subclasses of starlike functions, Houston J. Math., vol.7, no. 1, pp. 129–136, 1981.