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Abstract:
The objective of this paper is to give some properties of a new subclass with negative coefficients and
with fixed second coefficients

Keywords—Analytic functions, Univalent functions, uniformly convex functions,uniformly spirallike functions.

I. INTRODUCTION AND DEFINITIONS

LetS denote the class of functions of the form f (z) =z +Zanz” which are analytic and univalent in the open
n=2

unit disc U = {zeC:|zJ<1}. Also let S” and C denote the subclasses of S that are respectively, starlike and convex.

Motivated by certain geometric conditions, Goodman [1,2] introduced an interesting subclass of
starlike functions called uniformly starlike functions denoted by UST and an analogous subclass of convex
functions called uniformly convex functions, denoted by UCV. From [5,7] we have

f eUCV < Re{l+ i :'(Z)}zw :'(Z)|, zeU.
') | | f'(2) |

In [7], Ronning introduced a new class S, of starlike functions which has more manageable properties.
The classes UCV and S, were further extended by Kanas and Wisniowska in [3,4] as k-UCV(a) and k—ST(a).
The classes of uniformly spirallike and uniformly convex spirallike were introduced by Ravichandran et al [6].
This was further generalized in [9] as UCSP(a,B). In [10], Herb Silverman introduced the subclass T of
functions of the form

f(z):z—ianz", (1.2)

which are analytic and univalent in the unit disc U. Motivated by [11], new subclasses with negative coefficients
UCSPT(a,8) and SP,T(a.,B) were introduced and studied in [8].

A function f(z) defined by (1.1) is in UCSPT(a.,B) if

e R ONNERG]
Re{e (1+ 2) ]}2| 2) |+ﬁ, (1.2)

o <£,0£ﬂ<1.
2

A function f(z) defined by (1.1) is in SP,T(cw,B) if

relee( @D
@)

For the classes UCSPT(a.,8) and SP,T(a,B) [8] proved the following lemmas.
Lemma 1.1.

zf'(2)
m—l‘+ﬂ, (1.3)

|a|<%,0£ﬂ<1.

A function f(z)=z —Zanz” is in UCSPT(a,B) if and only if

n=2
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i(Zn—COSa—,B)n a, <cosa—f. (1.4)

Corollary 1.1.1.
Let the function f(z)=z- Za 2", a,> 0 be in the class UCSPT(a,B), |o] <— 0< <1, then

n=2
<__Wsa=f s, (1.5)
n(2n—cosa — f3)
Lemma 1.2.
A function f(z)=z —Zanz” is in SP,T(a,B) if and only if
n=2
Z(Zn—cosw—ﬂ) a, <cosa-—f. (1.6)
n=2

Corollary 1.2.1.

Let the function f(z) =z — Za 2", 2,20 be in the class SP,T(a.,), |a| <3 ,0< <1, then

n=2
c_sazf s (L.7)
(2n—cosa - f)
Using (1.7), the functions f(z) eSP,T(o.,B) will satisfy
a, < (cosa - p) (L8)

(4—cosa—p)

Let SP,T¢(c,3) be the subclass of functions in SP,T(a.,B) of the form

_c(cosa—p)z” Pz’
f(z)=2- Tip—— Zaz (1.9)

(an> 0), where 0 <c< 1. When ¢ =1 we get
SPpT1(a,B)=SPpT(c.,B).

Il. COEFFICIENT ESTIMATE

Theorem 2.1.

The function f(z) defined by (1.5) belongs to SP,T(c.,B) if and only if
Z(Zn—cosa—ﬂ) a, <(@-c)cosa—p). (2.1)
n=3

The result is sharp.

Proof.

Taking

C(COS o —
,=eosaf) g qqp
4—cosa—pf
(2.2)

in (1.6) we get the required result. Also the result is sharp for the function

f(z)=2- c(cosa-p)z°  (1-c)cosa—p)z"

(4-cosa—p)  (2n—cosa—f3) 1 (n23). (2.3)

Corollary 2.1.1.
If f(z) defined by (1.9) is in the class SP,T¢(c.,) then,
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< (A=c)(cos a - f)
n m (n > 3) (24)

The result is sharp for the function f(z) given in (2.3).

I1l. CLOSURE THEOREMS
Theorem 3.1.
The class SP,T¢(a,p) is closed under convex linear combination.
Proof.
Let f(z) defined by (1.9) be in SP,T(a.,B). Let g(z) be defined by
_Clcosa—p)z” ﬁ)z
7)= b,z", (b, >0). 3.1
90=2-ea Z (b, >0) (3.1)

If f(z) and g(z) belong to SP,T(a,3) then it is enough to prove that the function H(z) defined by

H(2)=Af(2)+1-2)g(z), (0<41<]) (3.2
is also in SPyT¢(a,B).
clcosa—p)° < n
H(z)=z——>~——- ) (la,+{@-A)b,)z". 3.3
D=2 e s Z( 2+ (1=2)b,) (33)
Using theorem (2.1) we get
Z(Zn —cosa - f)(Aa, +(1-A)b,) < (@-c)(cos a - p). (3.4)
n=3
Hence H(z) is in SP,T¢(a,B). Thus SPyTc(a,B) is closed under convex linear combination. o
Theorem 3.2.
Let the functions
c(cos z
f ()= 2-SC8@=P)Z Zanjz a,,>0). (3.5)

(4-cosa—pf) “=

be in the class SPyTc(a,B) for every j = 1,2,...m. Then the function F(z) defined by

F(2) = Zd (@), 20, (3.6)
is also in the same class SP,T(a.,B) where
idj =1. (3.7)
Proof.
Using (3.5) and (3.7) in (3.6) we have
___c(cosa - Bz’
F(z)=1 Wiy o Z;{Zd anj} . (3.8)
Each fj(z) eSP,T(a,p) for j=1,2,...m, theorem (2.1) gives
i:(Zn—cosoz—ﬂ)anJ <(@-c)(cos a - ), (3.9

for j =1,2, ...m.Hence we get

i(Zn—cosw—ﬂ){i } Zd {Z(Zn cosa — ,B)anj}_(l c)(cos a — f3).
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This implies F(z) eSP,Tc(a.,B), by theorem(2.1). o
Theorem 3.3.
Let
2
f,(x)=z2 _Cleosa - p)z” (3.10)
4—-cosa—-pf
and
2 n
fn(X):Z_c(cosw—ﬂ)z _(A-=c)cos ax - p)z (3.11)
4—cosa—pf 2n—cosa - f
forn=3,4,.... Then f(z) is in SPyT¢(a,B) if and only if it can be expressed in the form
f@)=D 4 f.() (3.12)
n=2

where A, 0 and Z/ln =1

n=2

Proof.
Let us assume that f(z) can be expressed in the form(3.12). Then we have

f(Q)=z- c(cosa — B)z° _i (1-c)(cosa—p) 1

4—cosa—f 45 2n—-cosa—pfB "

(3.13)

But
(@—c)(cos a - ,b’) o 3 3
Z 2n—cosa—p A, (2n—cosa — f)=(@1-c)(cosa—-L)1-4,) (3.14)
<(@-c)(cosa—p).

Hence from (2.1) it follows that f(z) eSP,T¢(a,p).Conversely, we assume that f(z) defined by (1.6) is in the class
SPpTe(a,B). Then by using (2.4), we get
) SW, (n=34,...).
(2n—cosa - p)

Taking 4, = (2n—cosa—f)a, (n=34,...)and A, :1—an,we have (3.12).
(1-c)cosa—p) -
Hence the proof is complete. o

Corollary 3.3.1.
The extreme points of the class SP,T(c,3) are the functions f,(z),(n>2) given by theorem (3.3) .

IV.DISTORTION THEOREMS
For finding the distortion bounds of f(z) €SP,T(a,f), we need the following lemmas.

Lemma 4.1.
Let the function f3(z) be defined by
c(cosa—B)z° (1-c)(cosa - p)z°
f,(z)=2- - :
4—cosa—pf 6-cosa—pf
(4.2)

Then,forO<r<land0<c<1,
clcosa—pB)r*  (1-c)(cosa—p)r’
4—cosa—pf3 6-cosa—f

|f3(re‘9)| >r— (4.2)
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with equality for &= 0. For either 0<c<c, and 0<r<rg or co<c<1,
clcosa—pB)r’  (1—c)(cosa—p)r’

|f3(rel )|Sr+ 4—cosa-pf 6-cosa—pf (43)
with equality for &=z Further, for 0<c<c, and ro<r< 1,
| fa(rem)| < rHH c?(cosa — B)(6—cos & —zﬁ)}
4(1-c)(4—-cosa—pf)
+ r2(cosa—ﬁ){6 -9 ___ci(wsa=p) 2}
—-cosa—pf 2(4-cosa-—p)
N r*(1-c)(cos a — B)° (1-c) . c’(cosa—p) v
(6-cosa—p) | (6-cosa—pB) 4(4—cosa—-pB)? ||
with equality for 6 :cosl{c(cosa_ﬂ)(l_c) r’ —c(6—005a—,8)} where
4(1—-c)(4—-cosa—pB)r
1
c,=——| (6cosa+45-22
0 2(C0$a—,8){( a+4p )
+\/(22—6c0505—4,6’)2 +16(cosa — B)(4—cosa —ﬁ)}
(4.4)
and
=
Iy = —2(1-c)(4—cosa—p)
c(Ll—c)(cos a — p) 45)

+ \/4(1—0)2(4—0050: —B)* +c?(1—c)(6—cosa — S)(cos a —ﬁ)}

Proof. The techniques used by Silverman and Silvia [11] give,
i94|? .
8| f,(re") _2(cosa—pB)risind o M1-c)(4-cosa - p)rcosd
06 (4—cosa—p) (6—cosa - p)
_cl-¢) rZ(COSa—ﬂ)}

(6—cosa — p)
(4.6)

3|ty (re)[
Iso ———
20

A =0, for 6,=0, 8,=xand

0, = COS{(COS@( - ped-c)r’ —0(6—cosa—ﬁ)}’
4(1—c)(4—cosa — B)r

4.7)

since 6 is a valid root only when —1<cosé;<1. Hence there is a third root if and only if ry<r<1 and 0 < ¢ <c,.
The result follows by comparing the extremal values |f3(re‘9")|, (k=1,2,3) on the appropriate intervals. o

Lemma 4.2.
Let the function f,(z) be defined by (3.11) and n>4. Then
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f,(re")| <|f,(-r). (4.8)

Proof.

_c(cosa—p)z*  (1-c)(cosa—p)z"
(4—cosa—p) (2n—cosa — )
c(cosa—p)r? L (@-c)cosa-pr

(4—cosa - f3) (2n—cosa—p)
c(cosa—pB)r? . (1-c)(cos - p)r*
(4—cosa—p) (2n—cosa — p)

Since f (z)=z and r" is a decreasing function of n, we have

fn(rei9)| <r+

== f4 (_r)x

which gives (4.8) . a

Theorem 4.3.
Let the function f(z) defined by (1.6) belong to the class SP,T¢(a,). Then for0 <r<1,

_c(cosa—p)r?  (1-c)(cosa—p)r’

|f(rei9)|2r
(4—cosa—p) (6—cosa—p)

with equality for f3(z) at z=r and
| f (rei9)| < max{maxg| f3(re‘9)|,— f,(-r)},

where max6| fs(re“’)| is given by lemma 4.1.

The proof is obtained by comparing the bounds of Lemma 4.1 and Lemma 4.2.

Corollary 4.3.1.
Let the function f(z) be defined by (1.1) be in the class SP,T(a,3). Then for |z| =r<1, we have
. (cosa— ) r? (cosa— B)r?

<|[f@)|<r+ond 2T
(4—cosa—p) (4—cosa—p)

The result is sharp.

Corollary 4.3.2.
Let the function f(z) be defined by (1.5) be in the class SP,T¢(6,). Then the disk |z|<1 is mapped onto a domain
that contains the disk

- (6—cosa— p)(4—cosa—pf)—(cosa— [)(4+2c—cosa— )
(6—cosa — B)(4—cosa — f) '

W

The result is sharp with the extremal function

f.(2)= Z_c(cosw—ﬂ)z2 _(@-c)eosa-p)7°
3 (4-cosa-p)  (6-cosa—p)

Proof.
The result follows by letting r— 1 in theorem 4.3.

Lemma 4.4.
Let the function f3(z) be defined by (4.1) . Then for 0<r<land 0 <c <1,

_2c(cosa—p)r  3(-c)(cosa—p)r?
(4—cosa - p) (6—cosa—p)

|f3'(rei9)| >1

with equality for £#=0. For either 0 <c<c; and 0<r<r; or ¢;<c<1,
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2c(cosa—B)r 3(1-c)cosa—pB)r?
(4—cosa—p3) (6—cosa - p)

|f3’(re‘6)| <1+

with equality for é=7. Further,0<c<c, and r,;<r<1,

|f5(re'”)| < 1 & (cosa - p)(6-cosa—f)
3 ) 3(l-c)(4-cosa - B)?

+(cosa—/3){ 6l-c) 2¢(cos a — J3) :|I’2

(6—-cosa—p) (4-cosa—p)°

+3(l—c)(cosw—/3)2 3(1-c¢) . c?(cosa —f3) 4 v
6-cosa—pf | (6-cosa—pfB) (4—cosa—pf)? '

with equality for

0= cos{c(l_c)(cOS a—f)3r? —c(6—cosa —ﬂ)}
6(1—c)r(4—cosa - p)

where

. —(30—100050:—4ﬂ)+\/(30—1000505—4ﬂ)2 +72(4—cos o — B)(cos a — f3)
t 6(cos a — 3)

and
_ 1
 3c(l-c)(cos - f)

n

{— 31-c)(4—-cosa—p)

+ \/9(1—0)2(4—0050:—,3)2 +3c?(1—c)(cos a — f)(6—cosa — ) }

The proof of lemma(4.4) is given in the same way as lemma(4.1).

Theorem 4.5.
Let the function f(z) defined by (1.6) be in the class SP,T¢(a.,B). Then for 0<r <1,

2c(cos - ) 3(1—c)(cos x— p)r’
(4—cosa—p) (6—cosa—p)

|f '(re‘9)| >1-

withequality for f;(z) at z=r and

|£(re'”)| < maxgmax, | f;(re”)|—; ()},
where max5| fs’(re“’)| is given by lemma (4.4).

When c=1 in theorem 4.5 we get the following corollary.

Corollary 4.5.1.
Let the function f(z) defined by (1.1) be in the class SPpT¢(a,B). Then for |z| = r<1, we have

1_Mg|f'(z)|gl+M,
(4—cosa—p) (4—cosa—p)

the result is sharp.

V. CONCLUSION
The class SP,T(a,)can be further studied for various other properties.
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